Intermediate Fluid Mechanics in Science and Engineering

Course Description:

This is a preparatory course for students who will continue pursuing advanced topics of fluid physics and modeling. The course content is designed to familiarize the students with the fundamental equations governing most of the flow problems in science and engineering. The underlying physics behind the mathematics will be emphasized. Analytical solutions for some flows are then introduced. More advanced topics, including vortex kinematics and dynamics, turbulence, and free-surface flows, will be included when class schedule permits.

Prerequisites:

No previous knowledge of fluid mechanics or undergraduate course on fluid mechanics is needed. Multivariable Calculus plus an undergraduate course of Applied Mathematics or Engineering Mathematics on vector analyses and ordinary differential equation, however, are required.
本課程無需先修其他基礎流體力學課程,但是需修畢微積分以及內容包括向量分析、常微分方程式、傅立葉分析、線性偏微分方程式 的工程數學或應用數學課程

Textbooks:


Currie, I.G., Fundamental Mechanics of Fluids, CRC Press, 4th ed., 2012
Kundu, P.K., Cohen, I.M. & Dowling, D.R., Fluid Mechanics, Academic Press, 6th ed., 2015

Grading: Based on the grades of homework and two quizzes.

Online classroom: 

Tentative Schedule:

  
Topics
Reading
Supplement Materials
Homework
1
 Fundamental Methods and Tools
Continuum hypothesis
Eulerian vs Lagrangian coordinates
Material derivative
Control vs system volumes - Reynolds' transport theorem
(Currie)
1.1
1.2
1.3
1.4 1.5
NCFMF film on Eulerian & Lagrangian description   (note )
Fluid as a continuum
Introduction to tensors
Einstein summation convention: an introduction
Einstein notation: proofs, examples, and Kronecker delta
Kronecker delta and Levi-Civita symbol

2
 Governing Equations
Conservation of mass - continuity equation
Conservation of momentum
Deformation (rotation and shear)
Constitutive equations

1.6
1.7  1.9
1.10
1.11
NCFMF film on deformation of continuous media   (note )
 Movie shows rotational vs irrotational flow (shorter version)

3
Viscosity coefficients
Navier-Stokes equations
Boundary conditions
Conservation of energy
Thermal and mechanical energy equations
1.12
1.13
1.16
1.8
1.14
Movies demonstrates non-Newtonian fluid: 12345
Discussions on Stokes' hypothesis:
(1) Gad-el-Hak, M.,1995, Questions in fluid mechanics: Stokes’ hypothesis for a Newtonian, isotropic fluid, J. Fluids Eng. 117(1), 3-5. (pdf1 or pdf2 )
(2) Buresti, G. 2015, A note on Stokes' hypothesis, Acta Mech., 226, 3555-3559. (pdf )
Movie demonstrates no-slip condition

 







4
 Exact Solutions for Viscous Laminar Flows of Incompressible Fluids
Couette flow
Poiseuille flow
Governing equations in cylindrical coordinate system
(Currie)
7.1
7.2
Why laminar flow is AWESOME
Turbulent flow is MORE awesome than laminar flow
See below for some interesting reading on Couette flow and Poiseuille flow

5
Circular Couette flow
Stokes' first problem
Stokes' second problem 
7.3
7.4
7.5
Movies demonstrate reversible laminar flow (circular Couette flow): 1,   2,   3

 
6
 Boundary Layers
Boundary-layer thickness
Boundary-layer equations
(Currie)
9.1
9.2
NCFMF film on fundamentals of boundary layers   (note )
Prandtl, L., 1904, Über Flüssigkeitsbewegung bei sehr kleiner Reibung, Verhandlungen des III. Internationalen Mathematiker Kongresses, Heidelberg, S. 484-491
  (English translation from NACA )

7
Blasius solution of boundary-layer equations for a flat surface  9.3 Blasius, H., 1908, Grenzschichten in Flüssigkeiten mit kleiner Reibung, Z. Math. Phys. 56, 1–37. (English translation from NACA )
Hager, W.H., 2003, Blasius: a life in research and education, Exp. Fluids, 34(5), 566-571
About Heinrich Blasius

8
Approximate solution for flat surface -momentum integral equation
General momentum integral equation of boundary layer 
9.8
9.9


9

Kármán-Pohlhausen approximation
Boundary-layer separation

9.10
9.11
von Kármán, T. 1921, Über laminare and turbulent Retbung, Z. Angew. Math. Mech., 1(4), 233-252.
  (English translation from NACA: On laminar and turbulent friction )
Pohlhausen, K. 1921, Zur näherungsweisen Integration der Differentialgleichung der Iaminaren Grenzschicht, Z. Angew. Math. Mech., 1(4), 252-290
  (English translation: The approximate integration of the differential equation of the laminar boundary layer )
Boundary layer separation and stall
NCFMF film on Boundary Layers Control

10
Stability of boundary layer 9.12 NCFMF film on flow instabilities   (note )
Heisenberg, W. 1924, Über Stabilität und Turbulenz von Flüssigkeitsströmen, Annalen der Physik, 379(15), 577-627.
  (English translation from NACA: On stability and turbulence of fluid flows )
Eckert, M. 2010, The troublesome birth of hydrodynamic stability theory: Sommerfeld and the turbulence problem, Eur. Phys. J. H 35, 29–51.



11
 Flow Kinematics
Flow lines
Circulation and vorticity
Kinematics of vortex lines (Helmholtz theorem of vorticity)
Kelvin's theorem of circulation
(Currie)
2.1
2.2
2.4
3.1


12
Special Forms of the Governing Equation
Vorticity equation
Bernoulli equation
(Currie)
3.4
3.2


13
 Ideal-Fluid Flow (Tow-Dimensional)
Stream function, complex potential and complex velocity
Uniform flow and flows of sink, source, vortex and doublet
Flow around a circular cylinder without circulation
Flow around a circular cylinder with circulation
(Currie)
4.1  4.2
4.3  4.4  4.7
4.8
4.9
Potential Flow Simulator






14
 Dynamical Similarity and Dimensional Analysis
Non-dimensional parameters determined from differential equation
Dimensional matrix
Buckingham's Pi theorem
Dynamical similarity
(Kundu)
8.1  8.2
8.3
8.4
8.5 8.6 8.7
Buckingham's original papers:
  Buckingham, E., 1914, On physically similar systems; illustrations of the use of dimensional equations, Physical Review, 4(4), 345-376.
  Buckingham, E., 1915, Model experiments and the forms of empirical equations, American Society of Mechanical Engineers, Transactions, 37, 263-292.
A mechanical engineer's view: pdf
  Sonin, A.A., 2001, The physical basis of dimensional analysis 
A physical oceanographer's view: 2005 essay
  Price, J.F., 2003, Dimensional analysis of models and data sets, Am. J. Phys. 71(5), 37-447
A mathematician's view: 2009 lecture note
  Hunter, J.K., 2009, Dimensional analysis, scaling, and similarity






15
 Turbulence (An introduction)
Averaging
Correlations and spectra
Reynolds averaged equations of motion
(Kundu)
12.1 12.2 12.3
12.4
12.5

NCFMF film on turbulence   (note )

Movie demonstrates laminar vs turbulent flow 1
Movie demonstrates laminar vs turbulent flow 2
Movie demonstrates transition from laminar to turbulent flow
Turbulent Flow is MORE Awesome Than Laminar Flow
Turbulent boundary layer from direct numerical simulation

16
Kinetic energy budget of mean flow
Kinetic energy budget of turbulent flow
Turbulence production and cascade
12.6
12.7
12.8  12.9

17
Wall-free turbulent shear flow
Wall-boundary turbulent shear flow
12.10
12.11




 

18
 Surface Waves (An introduction)
Boundary conditions between immiscible fluids
Gravity surface waves - ideal flow and linearization
Influence of surface tension
Group velocity, energy flux, and dispersion
Nonlinear effects in shallow and deep Water
The Stokes drift
(Kundu)

7.2
7.3
7.5
7.6
Stokes, G.G. 1847, On the theory of oscillatory waves, Transactions of the Cambridge Philosophical Society, 8, 441-455
Stokes, G.G. 1880, Supplement to a paper on the Theory of Oscillatory Waves. In Mathematical and Physical Papers, 314-326
Movie demonstrates dispersion of water wave


Useful materials
     National Committee for Fluid Mechanics Films (NCFMF) (MIT)  also see the NSF Film series in YouTube
     Illustrated Experiments in Fluid Mechanics: The NCFMF Book of Film Notes (MIT)
     Classic and Historical Papers in Geophysical Fluid Dynamics and Atmospheric and Oceanic Dynamics  (by G.K Vallis of Exeter University)
     Greek alphabets

Osborne Reynolds (1842-1912)
     "Osborne Reynolds: Scientist, Engineer and Pioneer" (Jackson, J.D., 1995, Proc. R. Soc. Lond. A 451, 49-86)
       "Note on the History of the Reynolds Number" (Rott, N., 1990, Annu. Rev. Fluid Mech., 22, 1-12)
     "Osborne Reynolds and the Publication of His Papers on Turbulent Flow" (Jackson, D. and Launder, B., 2007, Annu. Rev. Fluid Mech., 39 19-35)
     "Collected Papers on Mechanical and Physical Subjects", in three volumes, in digital format: volume 1, volume 2, volume 2
Osborne Reynolds at approximately the time of the
                  1895 paper. Copyright... | Download Scientific
                  Diagram
Ludwig Prandtl (1876-1953)
     A short collection of biographical and technical links about Ludwig Prandtl
     In 1904, Prandtl delivered a lecture entitled "On the motion of fluids of very small viscosity" to the 3rd International Mathematical
       Congress in Heidelberg, and introduced the concept of boundary layer.
       (NACA Technical Memorandum 452: English translation of the original paper: "Über Flüssigkeitsbewegung bei sehr kleiner Reibung",
        Verhandlungen des III. Internationalen Mathematiker Kongresses, Heidelberg, 1904, S. 484-491)
     Anderson, J.D., 2005, Ludwig Prandtl's Boundary Layer, Physics Today, Dec. 2005, 42-48
     "Ludwig Prandtl - A Biographical Sketch, Remembrances and Documents"  (authored by his daughter Johanna Vogel-Prandtl)
     Ludwig Prandtl in Wikipedia

Geoffrey Ingram Taylor (1886-1975)
     Biography of G.I. Taylor
     "The Life and Legacy of G.I. Taylor", Cambridge University Press, 1994  (by G.B. Batchelor)
     G.I. Taylor demonstrated low-Reynolds-Number Flows  (NCFMF film from MIT)
     Classical Physics Through the Work of GI Taylor  (a course at Harvard)
    
"Modern Classical Physics Through the Work of G.I. Taylor"  (an article in Physics Today about the course above)
     G.I. Taylor in Wikipedia


Some interesting readings on Couette flow
     Donnelly, R.J., 1991, Taylor-Couette flow: the early days, Phys. Today ,44(11), 32-39
    
Piau, J.M., Bremond, M., Couette, J.M. & Piau, M., 1994, Maurice Couette, one of the founders of rheology, Rheol. Acta, 33, 357-368
    
Dontula, P., Macosko, C.W. & Scriven, L.E., 2005, Origin of concentric cylinder viscometry, J. Rheol., 49, 807-818
    
Piau, J.M. & Piau, M., 2005, Letter to the Editor: Comment on “Origin of concentric cylinder viscometry” [J. Rheol. 49, 807–818 (2005)].
         The relevance of the early days of viscosity, slip at the wall, and stability in concentric cylinder viscometr
y, J. Rheol. 49, 1539-1550

Some interesting readings on Poiseuille flow
     A blog on Jean Leonard Marie Poiseuille
     Brillouin, M., 1930, Jean Leonard Marie Poiseuille, J. Rheol., 1, 345-348
     Herrick, J.F., 1942, Poiseuille's observations on blood flow lead to a law in hydrodynamics, Am. J. Phys., 10, 33-39
     Pfitzner J., 1976, Poiseuille and his law, Anaesthesia, 31, 273-275
     Sutera, S.P. & Skalak, R.,1993, The History of Poiseuille's Law, Annu.Rev. Fluid Mech., 25, 1-20 

Classic textbooks of Fluid Mechanics

     Batchelor, G.B., An Introduction to Fluid Dynamics, Cambridge University Press, 1967  (Google book, Amazon)
     Landau, L.D. & Lifshitz, E.M., Fluid Mechanics, Pergamon, 1959  (Amazon)
     Prandtl, L. (expanded by H. Oertel), Essentials of Fluid Mechanics, Springer, 2010  (Chapter 1 Introduction, Amazon)

Other good textbooks of Fluid Mechanics
     Acheson, D.J., Elementary Fluid Dynamics, Oxford University Press, 1990  (Google book, Amazon)
     Faber, T.E., Fluid Dynamics for Physicists, Cambridge University Press, 1995  (Google book, Amazon)
     Smith, C.R., Introduction to Graduate Fluid Mechanics, Self published, 2019
     Smyth, W.R., All Things Flow: Fluid Mechanics for the Natural Sciences, 2019

Books with pictures
     Van Dyke, M., An Album of Fluid Motion, Parabolic Press, 1982  (Amazon)
     Samimy, M, Breuer, K.S., Leal, L.G. & Steen, P.H., A Gallery of Fluid Motion, Cambridge University Press, 2004  (Google book, Amazon)

Visualization of fluid flow
     efluids media galleries
     Flow Visualization: Art and Physics
     Flow Visualization