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SUPPLEMENT TO A PAPER ON THE THEORY OF OSCILLATORY

WAVES.

THE labour of the approximation in proceeding to a high order,
when conducted according to the method of the former paper
whether we employ the function <p or i^, depends in great measure
upon the circumstance that the two equations which have to be
satisfied simultaneously at the free surface are both composed in a
rather complicated manner of the independent variables, and in the
elimination of y the length of the process is still further increased
by the necessity of expanding the exponentials in y according to
series of powers, giving for each exponential a whole set of terms.
This depends upon the circumstance that of the limits of y belong-
ing to the boundaries of the fluid, one instead of being a constant
is a function of x, and that too a function which is only known
from the solution of the problem.

If we convert the wave motion into steady motion, and refer
the fluid to two independent variables of which one is the para-
meter of the stream lines or a function of the parameter, and the
other is « or a quantity which extends with * from -co to + oo,
we shall ensure constancy of each independent variable at both its
limits, but in general the equations obtained will be of great com-
plexity. It occurred to me however that if from among the infinite
number of systems of independent variables possessing the above
character we were to take the functions <f>, ^r, where

$ =f(udx + vdy), yjf = J(udy — vdx),

simplicity might be gained in consequence of the immediate rela-
tion of these functions to the problem.
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We know that cf>, ^ are conjugate solutions of the equation

satisfying the equations
d$_djr d$_ _djr
dx dy' dy dx ^ "

so that if the form of either be assigned, satisfying of course the
equation (1), the other may be deemed known, since it can be
obtained by the integration of a perfect differential. If now we
take <f>, yjr for the independent variables, of which x and y are re-
garded as functions, we get by changing the independent variables
in differentiation

d<f> _ 1 dy d(j} _ 1 dx d-fr _ 1 dy difr _ 1 dx
d~8lj' dy~~Sd^' ~dx~~Sdcp' ~dy'~8d~4

. a dx dy dx dy
where S = -^j ~ f - -j-p -fr,

d<p d^ dijr d<j>

whence from (2)
dx _ dy dx _ dy
d4~dyjr' df = ~dj>

so that x, y are conjugate solutions of the equation

We have also from (4)

We get from (3), (4) and (6)

whence

f = </(2/ + C ) - ^ - (8) ,
where C is an arbitrary constant.

The mode of proceeding is the same in principle whether the
depth of the fluid be finite or infinite; but as the formulas are
simpler in the latter case, it may be well to consider it separately
in the first instance.
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If c be the velocity of propagation, c will be the horizontal
velocity at a great depth when the wave motion is converted into
steady motion. The difference between <f> and — ex will be a
periodic function of * or of <j>. We may therefore assume in ac-
cordance with equation (5)

x = - * + 2" (-4/"*" + B.e-im^lc) sin imfyjc (9).
c

No cosines are inserted in this equation because if we take, as we
may, the origins of x and of </> at a trough or a crest (suppose a
trough), x will be an odd function of <fi, in accordance with what
has already been shown at page 212. Corresponding to the above
value of x we have

y = _ t + £- (Afiim*ie _ B.e-im^c) cos im<f>/c (10),
c

the arbitrary constant being omitted, as may be done provided we
leave open the origin of y.

The origin of i/r being arbitrary, we may take, as it will be
convenient to do, i|r = 0 at the free surface. We see from (10) that
i/r increases negatively downwards; and therefore of the two ex-
ponentials that with — im-tyfc for index is the one which must be
omitted, as expressing a disturbance that increases indefinitely in
descending.

We may without loss of generality shorten the formulas during
a rather long approximation by writing 1 for any two of the con-
stants which depend differently on the units of space and time.
These constants can easily be reintroduced in the end by rendering
the equations homogeneous. We may accordingly put m = 1 and
c = 1. The expressions for x and y as thus shortened become, on
retaining only the exponential which decreases downwards,

sin i$ (11),
osi(£ (12).

At the free surface ty = 0, and we must therefore have for -\]r = 0

which gives

{C + 2 A cos i<f>) [1 - 2tiA. cos i<f> + tFAt*+ ^tijAAi cos [(i -j

<13>'
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where in the last term within parentheses each different combina-
tion of unequal integers i, j is to be taken once.

On account of the complicated form of this equation, we can
proceed further only by adopting some system of approximation.
The most obvious is that adopted in the former paper, namely to
proceed according to powers of the coefficient of the term of the
first order. If we multiply out in equation (13), and replace pro-
ducts of cosines by cosines of sums and differences, we may arrange
the equation in the form

Bo + Bt cos <f> + J52 cos 20 + ... = 0,

where the several B's are series of terms involving the coefficients
A. And as the equation has to be satisfied independently of <f>,
we must have separately

-B0 = 0, ^ = 0 , 52 = 0, &c.

A slight examination of the process will show that A. is of the
order i, and that consequently the product of any number of the
A's is of the order marked by the sum of the suffixes, and that B(

is of the order {. In proceeding therefore to any desired order we
can see at once what terms need not be written down, as being of
a superior order.

Thus in proceeding to the fifth order we must take the six
equations Bo= 0, Bx = 0,... B5 = 0, which when written at length
are

C (1 + A: + 4A%*) - A* + 2A*A, - 2A? - \g" = 0,

C(-4A2 + 6AtAJ +A2- A? + ZA?A2 - 4>A1AS = 0,
C(-6A3+ 8AtAJ + Aa- 3AtAa+ 4A1*A3+ 2AJ*- oAJ^ 0,
G (- 8 A4) + A4- 4>AXA3 - 2A* = 0,

c (-104)+A - 5AJ* - °AA = o.
These equations may be looked on as giving, the first, the

arbitrary constant O, the second, the velocity of propagation, and
the succeeding ones taken in order the values of the constants
A2, Aa, At, A5, respectively. I say " may be looked on as giving",
for it is only when we restrict ourselves to the terms of the lowest
order in each equation that those quantities are actually given in
succession ; the equations contain also terms of higher orders; and
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to get the complete values of the quantities true to the order to
which we are working, we must use the method of successive sub-
stitutions. As to the second equation, if we take the terms of
lowest order in the first two we get 0 = \g~x, and then by substi-
tution in the second equation 1 = g, the constant A1 dividing out.
The equation 1 = g becomes on generalizing the units of space and
time c2 = g/m, and accordingly gives the velocity of propagation to
the lowest order of approximation.

On eliminating the arbitrary constant in the above equations,
and writing b for Alt the results become

l=g(L + ff + ibi) (14),

x = _ 0 + IS1 sin 0 - (¥ + IVy* sin 20 + (f ¥ +jfJ5)es* sin 30
- f 6V* sin 40 + i,2_5 tfgW s i n 5^ (15);

y = - f + he* cos 0 - {V + 164) e2* cos 20 + (f 63 +1§ V) es* cos 30

- f 6V* cos 40 + y^ V^f cos 50 (16).

The equation (14) gives to the fifth order the square of the
velocity of propagation in the wave motion; and (15), (16) give
the point where the parameters 0, yjr have given values, and also,
by the aid of the formulae previously given, the components of the
velocity, and the pressure, in the steady motion. These same
equations (15), (16), if we suppose ^r constant give implicitly the
equation of the corresponding stream line, or if we suppose 0
constant the equation of one of the orthogonal trajectories.

To find implicitly the equation of the surface, we have only to
put yjr= 0 in (15), (16), which gives

x = - 0 + b sin 0 - {b2 + P 4 ) sin 20 -f (f ¥ + if F) sin 30

- f V sin 40 + ^ 6 * sin 50 (17),

y = b cos 0 - (b2 +1 &4) cos 20 f (f bs + if ¥) cos 30

It is not necessary to form the explicit equation, but we can do so
if we please, most conveniently by the aid of Lagrange's theorem.
The result, carried to the fourth order only, which will suffice for
the object more immediately in view, is

+ f ¥ cos 3% - i&4 cos 4c...(19).



THEORY OF OSCILLATORY WAVES. 319

If we put b + f b3 — a, we have to the fourth order
6 = a-|a",

and substituting in (19) we get
y + 1 a

2 — | a* = a cos « — (•£ a" + ^ | a4) cos 2a; + | a3 cos 3«
- ^ a4 cos 4K (20).

The expression (14) for the square of the velocity of propagation,
and the equation of the surface (20), agree with the results pre-
viously obtained by the former method (see p. 221) to the degree
of approximation to which the latter were carried, as will be seen
when we remember that the origins of y are not the same in the
two cases; but it would have been much more laborious to obtain
the approximation true to the fifth order by the old method.

It has already been remarked (p. 211) that the equation of the
profile in deep water agrees with a trochoid to the third order,
which is as far as the approximation there proceeded. This is no
longer true when we proceed to the fourth order. On shifting
the origin of y so as to get rid of the constant term, the equation
(20) of the profile becomes

y = a cos x — (J a2 + \\ a4) cos 2x + § «" cos 3x — ̂  a4 cos 4*x.. .(21).

On the other hand, the equation of a trochoid is given impli-
citly by the pair of equations

x = ad 4- /S sin 6, y = [3 cos 6 + 7.
In order that x may have the same period in the trochoid as in

the profile of the wave, we must have a = 1. We get then by
development to the fourth order, choosing 7 so as to make the
constant term vanish,

y = (/3 _ s/F) cos * - (4 /82- /̂S4) cos 2x +1/33 cos 3x - i/34 cos 4mc,

and putting
/3-f/33=a,

we get to the fourth order
y = a cos x — (̂  a2 + -^ a4) cos 2% +1 as cos Sx — ^ a* cos ix... (22).
Hence if yw, yt denote the ordinates for the wave and trochoid

respectively, we have to the fourth order

Hence the wave lies a little above the trochoid at the trough and
crest, and a little below it in the shoulders.
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This result agrees well with what might have been expected.
It has been shown (p. 227) that the limiting form for a series of
uniformly propagated irrotational waves is one presenting edges of
120°, and that the inclination in this limiting form is in all proba-
bility restricted to 30°, whereas in the trochoidal waves investigated
by Gerstner and Rankine the limiting form is the cycloid, presenting
accordingly cusps, and an inclination increasing to 90". Hence the
limiting form must be reached with a much smaller value of the
parameter a in the former case than in the latter. Hence when
a is just large enough to make the difference of form of the irrota-
tional and trochoidal waves begin to tell, since the limiting form
is more nearly approached in the former case than in the latter, we
should expect the curvature at the summit to be greater, while at
the same time as the general inclination is probably rather less,
and the inclination begins by increasing more rapidly as we recede
from the summit, the troughs must be shallower and flatter for an
equal mean height of wave.

Let us proceed now to the case of a finite depth. As before
we may choose the units of space and time so that c and m
shall each be 1, and we may choose 0 for the value of the para-
meter -«|f at the surface. Let — & be its value at the bottom.
Then since d<p/dy = 0 at the bottom we have from (3) and (4)
dy/d<f> = 0 when ty + k = 0, and consequently

A.eih=Bfi\

whence writing A.ea for Ai we have

i<f> (23),

(24).

Putting for shortness

we have by the condition at the free surface

(G + 'ZAV.cosfy) [1 - 22AJS,cos ij, + (XiAR cos ty,*

+ (tiA.D. sin i$f) - ~ = 0 (25).

As the expressions are longer than in the case of an infinite
depth, and the problem itself of rather less interest, I shall content
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myself with proceeding to the third order. We have to this
order from (25), on taking account of the relations

X

(0 + AlDx cos 0 + AJ)2 cos 20 + A3D3 cos 30)

1 -2A181cos<l> -4ul2#2cos20-6J3£3cos30
+ A'8, + 4AtAj3t cos 0 + 2A* cos 20 + M ^ ^ c o s 30

Multiplying out, retaining terms up to the third order only,
arranging the terms according to cosines of multiples of 0, and
equating to zero the coefficients of the cosines of the same
multiple, we get the four equations

(- 2AJS, + 4

C ( -

A slight examination of the process of approximation will
show that whatever be the order to which we proceed, C, and
the coefficients A2, Ait... with even suffixes, will contain only
even powers, and the coefficients As, A&, ... with odd suffixes
only odd powers, of the first coefficient At. Writing b for-,4,, we
may therefore assume, in proceeding to the third ord«r only,

A3 = SP.

Substituting in the last three equations of the preceding group,
which after the substitution may be divided by b, b2, ba respect-
ively, arranging, and equating coefficients of like powers of b,
we get

-2/8f
la + D 1 =0 ,

- 28,0, - Sfij 7 - 28,0 +

8tDJ y + D1 + {Dz - 68,*) 8 = 0.
s. 21
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The substitution for G and the coefficients A2, Aa,... of series
•according to even or odd powers of b with indeterminate coeffi-
cients was hardly worth making in proceeding to the third order
only, but seems advantageous when we want to proceed to a
rather high order. In proceeding to the nth order it is to be noted
that the coefficients of G in the group of n +1 equations got by
equating to zero the coefficients of cosines of multiples of <f>
(including the zero multiple, or constant term), are of the orders
0, 1, 2,. . . n in b, so that G being determined only to &""1 in the
equations after the first, the terms of the order n in the first
•equation (which could only occur when n is even) are not required,
but this first equation need only be carried as far as to n — 1.
In fact, in proceeding to the orders 1, 2, 3, 4, 5, 6,..., the velocity
of propagation is given to an order not higher than 0, 1, 2, 3,
4, 5, . . . in b, and therefore actually to 0, 0, 2, 2, 4, 4, ... since
it involves only even powers of b.

The last equations give in succession

(27),

(28),

and then by substituting in the first equation of the group on
the middle of p. 321, we get

l ^ + (8t + 28t + 12)V (30).

We get now from (23), (24), after rendering the equations ho-
mogeneous,

x = - - + b (emM+k)le + e-m(^+k'ilc) sin mj>jc
cc

^ ~

/c (31),

cos mb/c + &c (32),
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the expression for y after the first term differing from that for x
only in having a minus sign before the second exponential in each
term, and cosines in place of sines. We have also from (30)

§ ^ ^ + 2 ^ + 1 2 ) & 2 (38))

which gives the velocity of propagation according to one of its
possible definitions (see Art. 3, p. 202). In these expressions
it is to be observed that

$ g/ _j_ g / J) =

We might of course in the numerators of the coefficients have
used expressions proceeding according to powers of 8X instead of
according to the functions >Ŝ , $2, Ss...

Let h be the value of y at the bottom, which is a stream line
for which ijr = — k, then we have from (24) generalized as to
units

k=ch (34),

so that it remains only to specify the origin of y and the meaning
of c. To the first order of small quantities we have

+ ( + ) £/c (35),
c

y — - X -j_ I (Q™{$+k)lc _ e-i»W»+ft)/e) c o s m ^ 0 (3(3)^

c

and at the surface

a; = - * + bSt sinm<jfc/c (37),
0

y = Wl cos m^/o. (38).

Since y in (38) is a small quantity of the first order, we may
replace <f>/c in its expression by x, in accordance with (37), which
gives for the equation of the surface

y = bD± cos mx,

so that to this order of approximation the origin is in the plane
of mean level, and therefore h denotes the mean depth of the fluid.
Also since u — dj>jdx we have to the first order from (3), (4), (6)

u = (^\ = j - + ^ (e»(++*)/» + «,-»(*+*)/.) cos m<

= — c — c.mb(emlJl-rf + e'™^'^) cos mx,
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and consists therefore of two parts, one representing a uniform
flow in the negative direction with a velocity c, and the other
a motion of periodic oscillation. To this order therefore there
can be no question that c should be the horizontal velocity in
a positive direction which we must superpose on the whole mass
of fluid in order to pass to pure wave motion without current.
In passing to the higher orders it will be convenient still to regard
this constant as the velocity of propagation, and accordingly as
representing the velocity which we must superpose, in the positive
direction, on the steady motion in order to arrive at the wave
motion; but what, in accordance with this definition, may be
the mean horizontal velocity of the whole mass of fluid in the
residual wave motion, or what may be the mean horizontal velocity
at the bottom, &c, or again what is the distance of the origin from
the plane of mean level, are questions which we could only answer
by working out the approximation, and which it would be of
very little interest to answer, as we may just as well suppose
the constant h defined by (34) given as suppose the mean depth
given, and similarly as regards the flow.

Putting i|r=0 in (31) and (32), we have implicitly for the
equation of the surface the pair of equations

a: — - - + Sfi sin m<p/e — j ^ ($2 + 1) 82m¥ sin 2m<j>/c
c JJ1

DJ) cos m(f>/c - jy2 (#a + l ) DjnV cos 2m<f>/c

c o s

The ratios of the coefficients of the successive cosines in y or
.sines in x to what they would have been for an infinite depth,,
supposing that of cos m^/c the same in the two cases, are

1 i

1 1

multiplied respectively by

i A A
' A 2 ' D?
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for the cosines in y, and by

for the sines in oo. Expressed in terms of D1, the first three ratios
become

and increase therefore as the depth diminishes, and consequently
Dj diminishes. The same is the case with the multipliers
DJD*, DJDf, SJDV &c, and on both accounts therefore the
series converge more slowly as the depth diminishes. Thus for
D* = 3 the first three ratios are 1, 2, 3f. D* = 3 corresponds to
h/X = 0'125, nearly, so that the average depth is about the one-
eighth of the length of a wave.

The disadvantage of the approximation for the case of a finite
as compared with that of an infinite depth is not however quite so
great as might at first sight appear. There can be little doubt
that in both cases alike the series cease to be convergent when
the limiting wave, presenting an edge of 120°, is reached. In the
case of an infinite depth, the limit is reached for some determinate
ratio of the height of a wave to the length, but clearly the same
proportion could not be preserved when the depth is much
diminished. In fact, high oscillatory waves in shallow water tend
to assume the character of a series of disconnected solitary waves,
and the greatest possible height depends mainly on the depth of
the fluid, being but little influenced by the length of the waves,
that is, the distance from crest to crest. To make the comparison
fair therefore between the convergency of the series in the cases of
a finite and of an infinite depth, we must not suppose the co-
efficient of cos m,(f>/c the same in the two cases for the same length
of wave, but take it decidedly smaller in the case of the finite
depth, such for example as to bear the same proportion to the
greatest possible value in the two cases.

But with all due allowance to this consideration, it must be
confessed that the approximation is slower in the case of a finite
depth. That it must be so is seen by considering the character of
the developments, in the two cases, of the ordinate of the profile
in a harmonic series in terms of the abscissa, or of a quantity
having the same period and the same mean value as the abscissa.
The flowing outline of the profile in deep water lends itself readily
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to expansion in such a series. But the approximately isolated
and widely separated elevations that represent the profile in very
shallow water would require a comparatively large number of
terms in their expression in harmonic series in order that the
form should be represented with sufficient accuracy. In extreme
cases the fact of the waves being in series at all has little to
do with the character of the motion in the neighbourhood of the
elevations, where alone the motion is considerable, and it is not
therefore to be wondered at if an analysis essentially involving the
length of a wave should prove inconvenient.




