Homework 3

1. If $A_{i j}=B_{m n} e_{i m} e_{j n}$, write down terms A_{13} and A_{32}.
2. (a) Write down all the components of tensor notations $\frac{\partial}{\partial x_{j}}\left(\frac{\partial u_{i}}{\partial x_{i}}\right)$ and $u_{i} \frac{\partial u_{j}}{\partial x_{i}}$.
(b) What are their vector forms?
3. Show that if $B_{i j}$ is a symmetrical tensor and $C_{i j}$ is an anti-symmetrical tensor, then
(a) $B_{i j} C_{j i}=0$,
(b) if $A_{i j}=B_{i j}+C_{i j}$ then $A_{i j}+A_{j i}=2 B_{i j}$.
4. If $\overrightarrow{\mathcal{V}}$ is a vector function, show by expansion in Cartesian coordinates that the following hold:
(a) $\nabla \cdot(\nabla \times \overrightarrow{\mathcal{V}})=0$,
(b) $(\vec{V} \cdot \nabla) \overrightarrow{\mathcal{V}}=(\nabla \times \overrightarrow{\mathcal{V}}) \times \overrightarrow{\mathcal{V}}+\nabla\left(\frac{1}{2} \overrightarrow{\mathcal{V}} \cdot \overrightarrow{\mathcal{V}}\right)$.
