Homework 3

- 1. If $A_{ij} = B_{mn} \ e_{im} \ e_{jn}$, write down terms A_{13} and A_{32} .
- 2. (a) Write down all the components of tensor notations $\frac{\partial}{\partial x_j} \left(\frac{\partial u_i}{\partial x_i} \right)$ and $u_i \frac{\partial u_j}{\partial x_i}$.
 - (b) What are their vector forms?
- 3. Show that if $\,B_{ij}\,$ is a symmetrical tensor and $\,\mathcal{C}_{ij}\,$ is an anti-symmetrical tensor, then
 - (a) $B_{ij}C_{ji} = 0$,
 - (b) if $A_{ij} = B_{ij} + C_{ij}$ then $A_{ij} + A_{ji} = 2B_{ij}$.
- 4. If $\vec{\mathcal{V}}$ is a vector function, show by expansion in Cartesian coordinates that the following hold:
 - (a) $\nabla \cdot (\nabla \times \vec{\mathcal{V}}) = 0$,
 - (b) $(\vec{V} \cdot \nabla)\vec{\mathcal{V}} = (\nabla \times \vec{\mathcal{V}}) \times \vec{\mathcal{V}} + \nabla \left(\frac{1}{2}\vec{\mathcal{V}} \cdot \vec{\mathcal{V}}\right)$.