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It would often be very advantageous if the behavior under 

service conditions of projected structures or machines could be 

predicted from the results of experiments on small models; even 

roughly approximate information, if thoroughly reliable within its 

known limits of accuracy, would often prevent serious failures or 

enable the designer to avoid the use of exaggerated or badly co- 

ordinated factors of safety and allowances for uncertainty. Experi- 

ments on the resistance of ship models have been used in this way 

for many years with satisfactory results, and have been of great 

value to the naval architect. On the other hand, it is a familiar 

fact that in many instances, small scale models do not act at all 

like their full-sized originals under conditions which seem at first 

sight to be similar, and that hasty conclusions from model experi- 

ments are very unsafe indeed. 

2 It is of interest to enquire into the general principles in- 

volved in the use of models, and to find, if possible, conditions which 

must govern such experiments in order that the model shall be 

similar to its original and its behavior give definite information 

about the behavior of the original. Just what is meant by similar, 

depends on the nature of the particular case in hand; but there 

are general rules which show us how to make a model similar to its 

original, when this is practicable, and which also show us how and 

why it is often not practicable to fulfill the required conditions. I 

shall not dilate on the origin of the rules, which are a simple and 

immediate consequence of familiar physical principles, but will 

illustrate their meaning and practical application by a few simple 

examples. There is nothing essentially new in what I have to 
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264 MODEL EXPERIMENTS AND EMPIRICAL EQUATIONS 

present, but the subject seems to be rather unfamiliar to engineers 

in general and is worth discussing because of its frequent practical 

utility. 

THE GENERAL THEOREM 

)» 3 To interpret model experiments we have to know how the 

behavior of the model or the original depends on size; i.e., we must 

have an equation which describes the behavior of the machine or 

structure under the conditions of service, and which contains as 

variables, the size of the machine and the quantities such as speed, 

applied forces, viscosity of the surrounding medium, ete., which 

suffice to specify all the essential circumstances of operation. Such 

an equation is called a physical equation. 

4 Except in the most simple cases, the required equation can 

be found only by experiment, and to set up a satisfactory empirical 

equation may require very laborious and expensive experimentation | i | : 
if the problem is at all complicated. But the so-called “principle 

of dimensional homogeneity”’ is sometimes of great assistance in the 

following ways: First, it directs our attention to the things we need 

to measure and keeps our eyes open to the simplifying approximate 

assumptions we may have to adopt in our work. Second, it re- 

duces the number of separate quantities that have to be varied and 

gives hints and suggestions as to the most economical way of getting 

the desired information. Third, it always gives us some informa- 

tion as to the possibilities, and by showing conclusively that certain 

empirical equations cannot possibly be generally valid, warns us 

against trusting them too far outside the range of the experiments 

from which they were deduced and which they may represent quite 

satisfactorily. Fourth, it sometimes enables us to put equations in 

such a form that we can use English and metric measurements 

indiscriminately without wasting time on conversion. And _ last, 

and most important for the present discussion, it often enables us to 

dispense with complete experimental investigations and shows us 

how very incomplete sets of experiments may give reliable informa- 

tion in particular cases. 

5 The principle of dimensional homogeneity states that all the 

terms of any correct and complete physical equation must have the 

same dimensions. By this is meant merely that if the numerical 

value of any term in the equation depends on the size chosen for one 

of our fundamental units, all the other terms must depend on it in 

the same way, so that when the size of this unit is changed, the terms 
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will all be changed in the same ratio and the equation will remain 

valid, which it would not do otherwise. The necessity for this may 

be seen from the consideration that the relation, to be described by 

the equation, among the sizes of certain physical quantities, is a 

reality which subsists quite independently of any arbitrary choice of 

units on our part. Hence if the equation is to be complete and cor- 

rect, the description of facts which it gives must not change when 

we arbitrarily change from pounds to kilograms or from inches 

to miles. 

6 By means of this principle it may easily be shown! that 

any equation 

F (Q:, Q2, . . . Qn) =0 [1] 

describing a relation among the n different kinds of quantity 

1, Qe, . Qn is always reducible to the form 

j (th, Ws, . . . ez) =9, [2] 

in Which each of the variables II represents a dimensionless product 

of the form 

TI =Q*, Q’ 2. . Q™:; [3] 

k is the number of independent fundamental units needed in specify- 

ing the units of the n kinds of quantity; and f is some unknown 

function to be found by experiment. 

7 A dimensionless quantity is one of which the numerical 

value does not change when the sizes of the fundamental units alter, 

so long as the relations between the derived and the fundamental 

units are kept unchanged. The simplest example of such a quantity 

is the ratio of two quantities of the same kind; the ratio of two 

lengths, for instance, does not depend on the unit we adopt for 

measuring lengths. Another simple example is the expression 
Da 
g@ or DgS~*, in which D is the diameter of a flygwheel, S its 

peripheral speed, and g the acceleration of gravity. The numerical 

value of this product, in any particular case, will be the same whether 

measured by an American using feet and seconds or by a European 

using meters and seconds, and either of them might change from 

seconds to minutes without affecting his numerical result, if he 

changed his derived units of speed and of acceleration accordingly. 

8 If there are n separate kinds of quantity but more than 

one quantity of each kind,—a number of lengths or a number of 

forces concerned in the relation to be described by the equation, all 

‘Physical Review, vol. 4, p. 345, October 1914, 
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the quantities of any one kind may be represented by specifyinga 

single one of that kind and the ratios r’,r” . . . of the others to 

this one. Equation [1] then takes the form 

fe Se ee [4] 

and this is always reducible to 

f Ch, Te, "oe ae P. =a (5) 

9 This theorem which, for short, I may call the II theorem, is 

a convenient statement, for practical use, of the requirement of di- 

mensional homogeneity. We may proceed at once to illustrate its 

meaning by application to the familiar problem of the flow of fluids 

through pipes. 

THE FLOW OF LIQUIDS IN SMOOTH PIPES 

10 When a liquid flows, at a constant rate, through a smooth 

straight pipe, the pressure gradient G may be expected to depend 

on diameter D, speed S, and density p and viscosity uw of the 

liquid. So long as the pipe is full and the liquid sensibly incom- 

pressible, we do not see anything else for G to depend on; and unless 

we have omitted sume essential circumstance, these five quantities 

must be connected by some sort of relation which may be sym- 

bolized by writing 

F (G, D, 8S, p, w) =0 (6) 

We shall proceed to apply the II theorem to this equation and com- 

pare the results with observed facts. 

11 There are 5 separate kinds of quantity involved in the rela- 

tion,so thatn =5, but the units needed for measuring them can all be 

derived from k =3 fundamental units, so that n-—k=2. Hence, 

whatever the nature of the relation may be, it must be reducible to 

the form 

f (Th, Il.) =0 [7] 

containing not five but only two independent variables. Further- 

more, we know that any empirical form for [6] which cannot be 

expressed in the form [7] cannot be generally correct, no matter 

how good an approximation it may be over a limited range of ex- 

periments. 

12 To find the two independent dimensionless products II; and 

II, we must first know the dimensions of the five kinds of quantity 

in terms of some three which we agree to regard as fundamental. 

We are not restricted to any particular three, because we are not 

now concerned with the question of preserving our units by con- 
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venient primary standards, but only with the interrelations of the 

five kinds of unit needed in our measurements. Any three me- 

chanical units will serve our purpose if they are independent, i.e., 

if no one of them can be derived from the others. We adopt mass m, 

length 1, and time t, because these are most commonly used. If we 

used any other three, such as force, length, and time, the results 

would be the same, only a little intermediate algebra would be 

different. We then have the following definitions and dimensional 

equations: 

force 
Pressure gradient = - -length G 

area 

Diameter =a length. . oe .. Del 

Speed =length +time ............ S=lt™ 

Density =mass +volume ......... p=ml~8 

force 
Viscosity = - -+rateofshear.. w=ml-'t"! | 

area J 

13 We select any three of these quantities, D, S, p, which are in- 

dependent and might therefore, if we chose, be themselves used as 

fundamental units, and we write down the equation 

I], =D* SY p*G ; [9] 

We have then to determine the exponents x,y,z so that IT, shall have 

no dimensions, i.e., so that its unit shall be independent of the sizes 

of the arbitrary fundamental units m,/,t. This is very easy. Sub- 

stituting in [9] from [8] we have for the dimensions of IT, 

IT, =1*.1 t~¥.m? 1 3*.m 1-2 t-? 

— [x+¥—32—2 -—y—2_ yt tl [10] 

For II, to be dimensionless, the exponent of 1 which shows how the 

unit of II, depends on the size of the length unit, must vanish; and 

similar conditions hold for time and mass. We therefore have the 

three equations 

r+y—3z-—2=0 

—y—2=0 > whence 

z+1=0 J 

and by substituting in [9] we have 

D 
Il,=> Ss? 
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14 To find Il, we start with the equation 

II, =D" S” pu 

and follow a similar procedure for determining the exponents a, b, ¢ 

so that II, shall be dimensionless. The result is 

iv 
II, 12 “DSp [12] 

and by equations [11] and [12], equation [7] finally takes the form 

f D G ML 

F S*? DSp 
)=0 [13] 

Fic. 1 RESULTS WITH SEAMLESS-DRAWN Brass PIPE 

15 The form of the function f remains to be found from experi- 

ment; but whatever it may turn out to be, we know that if there isany 

relation involving the five quantities of equation [6] and no others, 
J 
= and —“— are connected by a single 

f-} D 
it is such that the values of — : 

PS DS p 

relation, symbolized by [13], and that the size of either of them fixes 

that of the other,—as may be more conveniently expressed by 

: - ; DG ; ; 
imagining equation [13] to be solved for oS and written in the 

form 
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DG DSp 
ae? (—a) 4) 

16 We are now in a position to check results: for if observed 

. D G A : DSp 
values of ~ are plotted against simultaneous values of ; P © M 

the resulting points should lie along a single curve. If they do not 

do so, within the experimental errors, we shall know that some es- 

sential circumstance must have been overlooked in writing down 

our original equation |6!. 

17 Fig. 1 shows results obtained with seamless-drawn brass pipe 

DG 
of various diameters. The ordinate is 3 X10* or its equivalent 

p , 

Dg h / 
7 X 10%, where j 3s the hydraulic gradient. The abscissa is Ss: 

DNSp F p “DSp. : ’ 
logy ——, which is better than - itself which would make the 

bu 

diagram inconveniently long. Some of the points are from Saph 

and Schoder’s! experiments on water. The others are from Stanton 

and Pannell’s? experiments on both water and air. Out of the large 

number of series of experim nts, a few were selected at random but 

so as to cover the whole range of diameters; and of these only 

DSp 
every fourth point was plotted except for log,, <3.5 when all 

the points were plotted. If all the hundreds of points had been put 

in, the diagram would have had to be on a very large scale, but the 

conclusions to be drawn from it would have been unchanged. 

18 It appears first,that the points of all three classes are mixed 

indiscriminately; and second, that the points are in fact distributed 

in a well defined band. Hence we conclude that nothing essential 

was omitted from equation [6]. 

19 The construction of this diagram illustrates one advantage 

of using dimensionless variables, namely, that it obviates the need 

of conversions from metric to English units, and vice versa. Saph 

and Schoder’s data are published in English units and in reducing 

them, the values of were also expressed in English units. On the 
p 

other hand, Stanton and Pannell’s data are published in c.g.s. units: 

*Am. Soc. Civ. Engineers; vol. 29, 1903, p. 419. 
*Phil. Trans. Royal Soe. London: vol. A 214, 1914, p. 199. 
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but no conversion was needed before plotting, because the numerical 

value of a dimensionless quantity is independent of the size of the 

fundamental units so long as we keep the interrelations of the units 

unchanged, as we do in passing from ¢.g.s units to normal English 

foot, second, pound mass units. 

20 Since the object of this section is to illustrate the meaning 

of the II theorem in a familiar problem, it would be out of place here 

to go into an extended discussion of the mathematical form of the 

function ¢ and the consequent form’ of the equation 

h S? DSp 

TOC 3 

and we must also pass over the more interesting subject of rough 

pipes and the modifications needed in the equations for treating 

them. We may, however, make three remarks before leaving the 

present subject: 

First. The critical region, where stream line flow changes over 

to turbulent or hydraulic flow, is shown by the plot to occur at 
Y 

D Sp P D Sp o 
about log,, —— =3.3 to 3.4 or —— = 2000 to 2500, as found by. 

a fv 
Reynolds and others. 

Second. If G is proportional to S, as we know experimentally 

that it is, below the critical speed, the unknown function ¢ must 
DS p\ 

have the form ¢ = = - 
Mey DSp 

equation [14] reduces toy 

. where K is a constant. Hence 

q-KS# D? 

a form of Poiseuille’s equation, showing that in this sort of motion 

the resistance is directly proportional to the viscosity and independent 

of the density.. 

Third. If, by reason of high speed, large diameter, or low 

viscosity, the motion becomes very turbulent, we know from ob- 

servation that the resistance approaches proportionality to the 
DSp 

square of the speed. The function ¢ ) must then degenerate 

into a mere constant A, and equation [14] gives us 

p 8? 
G=Ki- 

the resistance being now sensibly proportional to the density 



E. BUCKINGHAM 271 

independent of the viscosity. This agrees perfectly with common 

sense. The tangential drag between two bodies of liquid moving 

past each other is merely an effect of cross transmission of momentum 

becween them. When there are no eddies, this interchange of 

momentum occurs by mixing on a molecular scale, i.e., by diffusion. 

Hence in stream line motion the resistance depends directly on 

diffusion and the resulting viscosity. But if the motion is very 

turbulent, mixing occurs by eddies, and the amount of momentum 

carried by an eddy of given size depends on the density; the effects 

of diffusion and its consequence, viscosity, being of very minor im- 

portance. We also see why it is that temperature has so little effect 

on the resistance if the motion is turbulent. Temperature in- 

fluences viscosity very much and density very little. Hence as 

turbulence increases and the resistance is more nearly proportional 

to S*, the importance of temperature decreases because the im- 

portance of viscosity, the only thing sensibly dependent on tem- 

perature, decreases. 

RESISTANCE OF IMMERSED BODIES AT MODERATE SPEEDS 

21 We may next consider the motion of a completely im- 

mersed body such as an aeroplane, a dirigible balloon, or a submarine 

so deeply submerged as to cause no appreciable surface disturbance. 

Let us enquire how the forces between the fluid and the solid body 

depend on the various circumstances; and to be specific, let us 

consider the total head resistance R. The first question is : On 

what measurable quantities does R depend? 

22 To start with, we have the relative speed S of the body and 

the undisturbed fluid at a distance; we shall suppose S to be constant 

so that there is no acceleration of the body. Next, we have the 

size and shape of the body and its orientation with regard to the 

line of motion: if D is a linear dimension of the body, the shape and 

. etc., of a number 
” 

orientation may be specified by the ratios r’, r 

of other lengths to the particular length D.... Finally, we have 

the mechanical properties of the fluid, its density p and viscosity wu. 

The effects of compressibility do not play any sensible part until 

the speed approaches that of sound in the medium, and at aeroplane 

speeds the air behaves very nearly as if incompressible. By moder- 

ate speeds we therefore mean speeds which are only a small fraction 

of the acoustic speed, and for such speeds, compressibility may be 

left out of account. "!"4 ¢ 

23 The condition of total immersion obviates the need to con- o~r 
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sider either surface tension or the intensity of gravity. In problems of 

fluid motion, the ratio of viscosity to density appears very often, 

and it is convenient to represent it by a single symbol Luv. The 
p 

quantity v is known as the kinematic viscosity and we may specify 

the properties of the medium by p and vy instead of by p and was 

hitherto. 

24 If we have not overlooked any important circumstance, there 

must be some definite quantitative relation connecting the resistance 

R with the other quantities enumerated, and it may be symbolized 

by the equation 

Fig. DS. p,¥.?'.f +... .)@@ {15} 

which is analogous to equation [6] except that beside the n =5 phy- 

sical quantities 2, D, S, p, v, it contains also a number of dimen- 

sionless ratios r. 

25 To this equation apply the II theorem in its general form [5]. 

The quantities are all mechanical and k =3 fundamental units are 

required for measuring them. Hence n—k =2 and if such a rela- 

tion as [15] subsists, it must Be of or reducible to the form 

ils Daf. ,.s.. . a8 

As in the previous example, the II’s may be found by setting 

IT, =D* SY p? R; Tl, =D* S? pe v 

inserting the known dimensions of D, S, p, R, v; and determining the 

unknown exponents 2, y, z and a,b,c so as to make IJ, and II, dimen- 

sionless. It is unnecesgary to give the very simple algebra of the 

solution: it suffices to note that FP is a force and has the dimensions 

R =m 1t~?, while v has the dimensions v =/? t~'. The result is 

R v 

nop Ss "" DB 

and the II theorem therefore tells us that if such a relation as !15] 

subsists, it must necessarily be reducible to the form 

. R y 

Spee parr: 0 (16) 

If this is solved for I]; it may be written 

DS 
vont aa eee [17] R=pD’°S*¢ p 

in which the nature of the dependence expressed by the unknown 
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function ¢ remains to be found by experiment if it has to be found 

at all. 

26 In view of the infinite possibilities of varying a body’s 

shape, there are, in the general case, an infinite number of the inde- 

pendent arguments r so that a general determination of the form 

of ¢ is impossible. Even if we restrict ourselves to comparatively 

simple shapes, there will usually be so many r’s that the determination 

of the form of ¢ would be very laborious. We therefore cut the 

knot by limiting ourselves to the consideration of one shape and 

orientation at a time, in other words to studying a series of geo- 

metrically similar bodies, anyone of which may be regarded as an 

increased or diminished model of any other. The separate bodies 

now differ only in their size, specified by the value of D. The r’s 

are the same for all, i.e., they are mere constants: hence they may 

be omitted from our equations, and [17] reduces, for any series of 

geometrically similar bodies, to the simpler form 

DS 
p [18] R=pD’?S°¥ ( 

DS 
in which the unknown function VY has only the one argument 

27 We might now proceed to find the form of ¥ for bodies of 

' __R , 
the given shape by plotting observed values of oD Ss? against simul- 

DS 
taneous values of me drawing a curve, and representing it by an 

empirical equation. And it may be noted that while the results of 

experiments on bodies of any size and in any medium might all be 

utilized, no such variation of D and y is at all necessary. For — 

may be given any value we please by varying S alone, so that the 

required information is obtainable from experiments on a single body 

of the series in a particular fluid. 

28 But let us suppose that we are confronted, say, by the 

practical problem of finding, as economically and quickly as possible, - 

the head resistance of a dirigible balloon of some new and untried 

shape but of given size and at some given speed. We must if 

possible avoid the labor of such a complete investigation as outlined 

above, and equation [18] shows us how this may be accomplished 

by means of model experiments. 

29 The original being of length D, we may construct a small- 
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scale model of length D. Let S, be the speed of the original and let 

dD, 
S =S, D° If the model is run at the speed S and the medium 

is air, as for the original, we shall then have 

D S dD. So 

Vv Vo [19] ? 

DS 
so that v( : may be treated as a mere constant. Hence dividing 

equation [18] for the original by the same equation for the model 

and setting p =p,, we have 

a D, So\? 

R (><) = (20) 

Speeds which are thus chosen so that the unknown function with 

which the dimensional reasoning leaves us degenerates into a con- 

stant, are called corresponding speeds; and at corresponding speeds 

the original and the model are said to be dynamically similar. In 

the present case corresponding speeds are inversely proportional to 

the linear dimensions, and at corresponding speeds the resistance of 

the original is equal to that of the model as shown by equation [20]. 

30 Uponreflexion we see that the toregoing result is of little or no 

value. For unless the speed S, were rather low, any great reduction 

of scale would require the corresponding speed S of the model to be 

impracticably high, perhaps even approaching the acoustic speed, 

so that our disregard of compressibility would no longer be legitimate. 

But we have still another possibility, namely that of using another 

l 
medium and so changing —. The kinematic viscosity of water at y 

ordinary temperatures is from 1/10 to 1/20 that of air according to 

the temperatures. If we take 1/15 and run the model not in air 

: y l ; ' 
but in water, we have — = Ip and equation [19] then gives us 

Vv * 

S_1D 
2 15s DD?’ 

so that a model of given size need be run only 1/15 as fast as in air. 

If experiments are thus made in water, R, may be computed from 

the observed resistance R of the model by using the equation 

a Po (Pe a)" = 15 > 

RR p\DS, 



E. BUCKINGHAM 

approximately 

Ro 
— =(),28 
R 

31 While the foregoing method is strictly correct for speeds at 

which compressibility is negligible, the process may be much simpli- 

fied when no high accuracy is required. For it has been established 

by experiment that with bodies of ordinary shapes at ordinary 

speeds, i.e., in cases where eddy resistance rather than skin friction 

is the important thing, the head resistance is very nearly proportional 

to the square of the speed. But if Ro S*, the function V is no 

longer unknown: equation [18] shows that it is a constant, i.e., a 

mere shape factor for bodies of the given shape; and the influence 

of viscosity vanishes just as it does in the flow of liquids through 

pipes when there is so much turbulence that the resistance is pro- 

portional to the square of the speed. It then follows that 

R=KpD*S? (21) 

and all speeds of a body and its model are corresponding speeds, no 

matter what the scale ratio or the nature of the medium. All we 

need, therefore, is a determination of the shape factor AK by an 

experiment on a model of any size, in any convenient medium, after 

which # may be found from equation [21] for the original. Ex- 

periments on very small models of dirigibles run in water have been 

used for determining the relative values of shape factors for various 

shapes. 

32 It may be noted that although R in the equations has 

represented head resistance, it might equally well have repre- 

sented the lift of an aeroplane or an inclined dirigible, or any 

other particular force on an immersed moving body, since we used 

in our reasoning only the dimensions of R, and all forces have the 

same dimensions. An equation of the form [18] is obtained in any 

ease or, if R& S*, an equation of the form [21], the shape factor K 

depending, of course, on what sort of force is under discussion. 

RESISTANCE TO THE FLIGHT OF PROJECTILES 

33 When the speed of an immersed body approaches or 

exceeds that of sound in the medium, as with modern projectiles, the 

compressibility may become a determining factor in the phenomenon, 

the energy lost by a high speed projectile being drained away princi- 

pally in the head and base waves. Compressibility must therefore 

be recognized in any equations which are to describe what happens. 
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34 Compressibility and density, together, determine the acous- 

tic speed in the medium, so that this speed C may be used, with 

the density p, in specifying the properties of the medium, instead 

of using the compressibility itself. Furthermore, since C is a quan- 

tity of the same kind as S, the speed of the body, we need not intro- 

duce both C and S into our equations but if S appears, we may repre- 

~y . . . C “ss . S 
sent C by its ratio to S, i.e., by <> or, if we prefer, by 7. In place 

of equation [15] we now have 

-r , S 
F (R, D, 8S, p, v, aiteh y+ + +) 0) 

- la hl . S . ° ° 9 . 
35 The new variable 7; being a mere ratio like the r’s, the appli- 

‘ation of the II theorem is precisely the same as before, and instead 

of equation [17] we have 

9 i) D S S , 
R=pD’S ¢ ( 7 [22] Vv 

To make any practical advance we must again confine our attention 

to projectiles of some one shape so as to get rid of the shape variables 

r, and we thus arrive at the equation 

a ial DS S 
R=p D? 8? W | 2, [23] Vy 

36 We have here an instance in which model experiments in a 

single medium could not, a priori, be expected to furnish reliable in- 

formation. In order to insure that a projectile and its model shall be 

dynamically similar, i.e., that the numerical value of the unknown 

function be the same for both, we must, until it is shown to be 

D S Ss 
needless, make both > and 7G constant. Now for a given medium 

under fixed conditions, the acoustic speed C is fixed; hence the 

speed S of the model must be the same as that of the original. But v 
DS 

is also constant for the medium; and it follows that if S, v, and Fe; 

are to be constant, D also must be the same for the model as for 

the original. Therefore no change of scale is permissible and we 

cannot expect to get reliable information from a model. 

37 Evenif we change the medium from air to water, the case is 

not much better. The speed of sound in water is about four times 

that in air, so that if the original were a 15-in. shell at a muzzle veloc- 

ity of 2500 ft. per sec., a dynamically similar model would need to 

have a speed in water of about 10,000 ft. per sec.,—a rather formidable 
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requirement. Assuming this difficulty to be superable, and using 

water at a temperature such as to make its kinematic viscosity 

1/15 of that of air under service conditions, we might then make the 

model dynamically similar to the original by reducing its diameter 

DS DSo S So 
to 0.25 in. for we should then have a well as he 

It is conceivable that if we could attain the required initial speed, 

experiments conducted in this way might furnish some interesting 

information, equation [23] reducing to [21] and the shape factor K 

being found from experiments on models to a scale of about 1/60. 

c ~~) 

lic. 2 RESISTANCE OF PROJECTILES 

38 While the form of V in [23] has not been accurately 

determined for any shape of projectile, we know that the influence 
Ss DS ; 

ol (~~ predominates over that of [~, as might have been expected 

in view of the turbulence of the motion. For if the observed values 

. . . v . . 
of the dimensionless variable —>52-q@ for projectiles of the older forms 

pbs 
S 

and of various calibers are plotted against values o ran the resulting 

points, while rather scattered, do lie more or less along a single 
DS 

curve, which proves that such variations of shape and of “> as 

occurred, were of minor importance in comparison with the ratio of 
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the speed S to the acoustic speed C. Fig. 2 which is reproduced 

from Cranz’s Text Book of Ballistics, exhibits a number of experi- 

mental results. The striking thing about the observations is their 

showing that the development of the wave system on passing the 
S 

acoustic speed Cc =1 increases the resistance about three times, 

> 

while both above and below this critical region is fairly 
1 

pb? 

constant, i.e., the head pressure in air of given density is nearly 

proportional to the square of the speed. 

SCREW PROPELLERS 

39 The thrust 7 of a screw propeller of given shape may be 

supposed to depend on diameter D, rate of revolution n, and speed 

of advance S, and on the density p and kinematic viscosity v of the 

water. If the screw were so deeply immersed that it caused no 

surface disturbance, these would seem to be all the quantities to be 

considered; but screws are not usually so deeply immersed as this 

and we must therefore bring in the weight of the water, i.e., the 

acceleration of gravity g. We may as well confine our attention, 

from the start, to propellers of a smgle shape, immersed to depths 

proportional to their diameters, and if we have not overlooked any 

essential factor in the a¢tion of the propeller we shall then have 

F (T, D, n, S, p, v, g) =0 (24) 

40 For the measurement of these n =7 kinds of quantity, k =: 

fundamental units are again required, so that?n—k=4. The II 

theorem therefore states that if equation [24] is complete, it must 

be reducible to the form 

f (Th, Ie, IT,, IT,) =0 [25] 

As usual, we select D, S,p as convenient independent quantities, 

and proceed as already illustrated, the only new kinds of quantity 

having the dimensions n ={~' and g =1 t"? 

41 Writing 

IT = D* SY p? P, 

where P =T, n, v, and g successively, and finding the four sets of 

values which z, y, z must have in order to make IT dimensionless, we 

obtain the following expressions: 

T y 
T= Ds? Is=ps 

Dn- Dg 
IT,= S ’ Il,="g2 
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Hence if an equation [24] subsists, it is certainly of such a nature that 

it is reducible to the form 

f ( aig ee ee ae )=0 [27] 
pD?S” S’°DS’ S?* 

Being interested more particularly in 7’, we may solve for IT; and write 

the equation 

om — Dn DS Dq 
P=p DS y (2% PS D9), (28) 

in which ¢ is the usual unknown function which always remains 

after the application of dimensional reasoning, when the number 

of separate kinds of quantity n is greater than k+1. 

42 We shall not discuss possibilities of determining the general 

form of ¢, which in this instance has three independent arguments, 

but shall proceed at once to the question whether experiments on 

small-scale model propellers can be so carried out and interpreted 

as to furnish reliable information about full sized propellers of the 

same shape. 

43 To ensure the model being dynamically similar to the 

original, or in other words, to make certain that ¢ shall have thé 

same numerical value for both, we must make the three separate 

arguments of ¢ have the same values for both, unless it has already 

been proved that this is unnecessary. The first condition is very 

simple; for since D n is proportional to the tip speed of the blades, 

In 
—_ will be constant if the ratio of tip speed to speed of advance is 

constant. Since the two propellers are of the same shape, this means 

that corresponding elements of the blades must have the same angle 

of attack, or that the slip ratios must be the same. The first con- 

dition, therefore, for the dynamical similarity of two propellers of 

the same shape is that they shall be run at the same relative immer- 

sion and at the same slip ratio. When this condition is satisfied 

equation [28] reduces to 

DS D ) 
T=p DPS ¥(- [29] 

y? §? 

44 We now encounter a seemingly insuperable obstacle. In 

practice, we are limited to water so that v remains nearly 

constant, and furthermore g is constant. Hence to attain exact 
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oe D 
similarity we are directed to keep both DS and @ constant, which 

means that neither D nor S can vary. It follows that no change of 

size is permissible, and two propellers of different diameters run in 

the same liquid cannot be made dynamically similar unless it turns 

out in practice that one of the two arguments of VY does not in fact 

have any sensible influence on the numerical value of ¥. 

45 We therefore cast about to see what may be done in making 

a justifiable approximation. Viscosity affects the motion of fluids 

mainly when the motion is quiet; if the motion is very turbulent, 

viscosity becomes of small or vanishing importance. Now the 

motion of the water about a screw propeller is excessively turbulent, 

and if we assume that it is therefore sensibly unaffected by viscosity, 

D S 
we may omit from equation [29] the argument - in which alone 

the viscosity appears. We thus get a still further simplification to 

the form 

Dg 
T=p DS ¥,( ) (30) 

46 The rest is easy: if the model of diameter D and original of 

Uiameter D, are run at corresponding speeds of advance, S and S,, 

such that 

De De. - 2s DN a pte. ST =( -), [31] 
"ey ‘gt Oo 

the numerical value of VW; will be the same for both. We then have, 

by equation [30], 

T p 
To _ Po | Do So 

DS ); 

or since p =p, we have, utilizing [31], 

Te /@s\* 

T | D [32] 

Equation [32] states that if geometrically similar propellers are run 

at the same relative immersion, at the same slip ratio, and at cor- 

responding speeds as defined by [31], the thrusts will be proportional 

to the cubes of the diameters, if the effects of viscosity are unim- 

portant. 

47 The validity of this result evidently depends on how far we 

are justified in the approximation introduced by neglecting viscosity 
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and so stepping from equation [29] to equation [30]. It might 

appear, at first sight, that we were assuming the skin friction of the 

blades to be unimportant, but the assumption is by no means so 

violent as this. The only resistance to flow through straight pipes 

is skin friction, and we know that even for smooth pipes viscosity 

cuts very little figure in the resistance above the critical speed; 

while for rougher pipes or more turbulent motion, the influence of 

viscosity becomes quite negligible. The assumption made above 

amounts, therefore, only to assuming that if skin friction does play 

an important role in the operation of a screw propeller, the whole 

flow of water past the blades is so turbulent that skin friction is 

sensibly proportional to the square of the speed of the water over the 

blades. This assumption may not be quite accurate for slow speed 

propellers but will almost certainly be correct for higher speeds. 

The justification for the assumption must, of course, rest finally on 

experiment. So far as the writer knows—his information coming 

from Rear Admiral D. W. Taylor, U. 8. N.—the application of 

equations [31] and [32], which amounts to using ‘‘Froude’s law of 

comparison,” does give correct results, though the available data are 

not very numerous. 

48 For propellers so deeply immersed as to cause no surface 

disturbance, the weight of the water can have no effect, but only its 

inertia, so that the value of g can not influence the thrust. It follows 

: Dg 
that g cannot appear in the equations; WY ( <3 ) must be a mere 

constant shape factor; and [30] reduces to 

T=K p D*S’ (33) 

Thus we conclude that for propellers of a given shape, running at 

the same slip ratio and sufficiently deeply immersed, there is no 

condition of corresponding speeds to be satisfied: the shape factor K 

may be found by a thrust measurement on the model, and the thrust 

of the original, running at any speed but with the same slip ratio, 

may then be computed from equation [33] and from the shape factor 

found for the model at the given slip ratio. 

49 Numerous other points might be considered, in addition 

to the question how the foregoing reasoning, which evidently applies 

only to propellers advancing into still water, may have to be modified 

when the propeller is working behind a hull. One such point is 

cavitation. It is evident without any further algebra that the 

beginning of cavitation depends on the hydrostatic pressure, among 
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other things, so that even for deeply immersed propellers, the value 

of g must occur in the conditions for similarity as regards the cavita- 

tion point. When we come to the study of light-weight aero- 

propellers, we may have to run our propellers so that they are simi- 

larly distorted by thrust or by centrifugal foree. Or the blade speeds 

may be so high that the compressibility of the air cannot be disre- 

garded, and then we may have to run propellers of a given shape all 

at the same tip speed, in order to make them comparable. It is 

impossible to discuss these questions here but it is also needless 

because our object is not to discuss the theory of screw propellers 

but merely to illustrate the use of a method of reasoning. 

50 In any case, we have first to ask what are all the physical 

quantities which may enter into the problem. If we are in doubt 

about any quantity, it is best to include it in our list and let it drop 

out later if it proves unimportant. The principle of dimensional 

homogeneity, in the convenient form of the II theorem, tells us 

something about how these various quantities must appéar in any 

correct equation connecting them. Upon examining the result we 

then see, by inspection, the conditions of dynamical similarity and 

can judge whether model experiments offer any prospect of advantage 

or whether they must involve the use of so many doubtful assumptions 

as to be untrustworthy until based on more complete and general 

experimental investigations of the phenomena in question. 

HEAT TRANSMISSION 

51 To avoid leaving one with the erroneous impression that 

the use of the principle of dimensional homogeneity is confined to 

the field of mechanies, it will be worth while to treat an illustrative 

problem which involves thermal quantities. In order not to run to 

intolerable lengths, we must introduce various simplifying restric- 

tions and use very roughly approximate data as if they were exact; 

but if these limitations are clearly recognized they will not impair 

the illustrative value of the treatment. 

52 Let us suppose that a homogeneous fluid such as air, water, 

or superheated steam, is flowing through some metallic apparatus 

which is hotter or colder than the fluid by an average amount A°. 

The apparatus and the fluid might, for instance, be a surface con- 

dense: and the water in its tubes; or a nest of steam or brine coils 

and the air passing over them; or simply a straight pipe with hot 

water running through it. A certain amount of heat H will be 

transmitted per unit time between the metal and the fluid in ac- 
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cordance with the temperature head A, and we wish to examine the 

question what this rate of heat transmission depends on and how. 

53 The first condition we impose is that the speed of flow S meas- 

ured, say, at the inlet, shall be great enough that the fluid motion 

is everywhere very turbulent. We may then regard the motion of 

the fluid and its convective action as not dependent on viscosity. 

On the other hand, the speed shall nowhere be so great as to oblige 

us to introduce compressibility into our equations. We thus exclude 

from consideration the transmission of heat between a steam-turbine 

nozzle and its steam jet, but we do not exclude any ordinary practical 

case. Under the foregoing conditions, the density p of the fluid is 

the only one of its mechanical properties that concerns us. 

54 Theother properties of the fluid on which H may be supposed 

to depend are specific heat C, which determines the convective effect 

of the motion of a given volume, and the thermal conductivity X, 

which determines the facility with which heat can pass through the 

nearly stagnant film which always sticks to the metal surfaces. 

The greater the speed, in a given apparatus, the more effective will 

convection be and the more important the specific heat; while simul- 

taneously, the increased scouring action decreases the thickness of 

the quas'-stagnant film and so decreases the relative importance of 

the conductivity of the fluid. So long as we have clean metal sur- 

faces we may usually disregard the resistance of the solid parts of 

the apparatus; but in any event the temperature head A now refers 

to the temperature difference between the fluid and the surface of 

the metal or other solid, either between two specified points or as an 

average for the whole apparatus, so that the nature and properties 

of the solid walls do not interest us. 

55 We next agree to limit ourselves to consideration of moderate 

temperature heads such as 200 deg. fahr. or less, within ordinary 

temperature ranges,—say 0 deg. to 500 deg. fahr. This permits us 

to introduce several approximations. In the first place, we may dis- 

regard variations of the properties of the fluid with temperature, and 

treat p, C, and X as constants, using average values at the mean 

temperature. In the second place, we may treat the heat trans- 

mission H as dependent only on the difference of temperatures and 

not directly on the temperatures themselves. And finally, we may 

without serious error, disregard direct radiation, which might not be 

legitimate if we were treating of flame in boiler tubes or other in- 

stances in which one of the temperatures was very high and the other 

was not. 
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56 Inspite of these various limitations, it appears upon reflexion 

that we may still expect our treatment to be approximately correct 

for the great majority of heat transmitting devices under their 

ordinary working conditions. 

57 The only things not yet mentioned which may be expected 

to influence H, are shape and size of the apparatus. If we confine 

our attention to an apparatus of one particular design, the only 

quantity needed for specifying it is some linear dimension D; and 

if we have not overlooked anything, there is an equation 

F (H, A, D, S, p, C,¥)=0 |34| 

to which we may apply the II theorem as soon as we know the dimen- 

sions of the separate kinds of quantity involved. 

58 Three fundamental units are not now sufficient because, in 

addition to purely mechanical quantities, we now have also thermal! 

quantities to deal with and require a thermal fundamental unit. 

The most convenient is temperature, which will be denoted by 6 

and the units for all the n =7 kinds of quantity may be derived from 

the k =4 fundamental units |m, /, t, 6]. The II theorem therefore tells 

us that equation [34] must be reducible to the form 

f (th, Ue, I,) = 0 (35) 

59 To determine the forms of the II’s we need the new dimen- 

sional equations 

H =(m I? t~3)! C =l? t-2 6-1, 

A =8, A =mlt- 30-1, 

and if we select D, S, p, A as the quantities for which exponents are 

to be found, the result of proceeding in the usual manner is to give 

us, for equation [35], the more specific expression 

H C€CB Aad 
iin PS.) +0. p DPS” S DpS 

or after solving for H, in which we are particularly interested, 

: ‘CA XA = 2 @3 wall amamene a H=p D S o( @ ‘DpS (36) 

60 This is as far as we can go by dimensional reasoning alone, 

and we must next refer to experimental data, if we can find any 

suitable, in order to get some information about the form of the 

unknown function ¢. In a new experimental investigation we 

1A rate of heat flow is merely an amount of power; e.g., 2543 B.t.u. per 

hour = 1 horse power. 
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CA AA 
a and Dp 

separately. But the quantities S and A, which are the easiest to 

should, of course wish to vary the two quantities 

vary in practice, occur in both; while p, C and X, being properties of 

the fluid, cannot be varied arbitrarily; and changing D requires 

the use of a larger or smaller model of the apparatus under in- 

vestigation. What is true of future experiments is true of the past; 

we must expect to find that the most accurate and most numerous 

data available refer to the dependence of H on S and A. 

61 Equation [36] is therefore not in proper form for our present 

purpose, but it may readily be transformed so that either S or A 

shall appear in only one of the arguments of ¢. Starting with A, 

we proceed as follows: if 

CA AA 
— and ve II,, 2 D p SS 2 

d 
and Il, DSpcll» 

whence we may write 

/ r 
¢ (I, I) ¢ (Wn agoolh) 

But if the value of a certain quantity is determined by the values 

of two other quantities z and y, it may equally well be specified by 

: y y ' 
stating the values of x and -_? for x and ~ together fix both z and y. 

To put it in another way, any function ¢ (7, y) may also be described 

' . 7] . 
as some other function W (z, ‘a ). Accordingly we may replace the 

° DSpC) 
unknown function ¢ (II,, II.) of equation [36] by V (1 

and so get the equivalent equation 

CA dx 

H=p DPS (3 :DSpc) [37] 

in which A appears in only one argument of the unknown function VW. 

62 We are now able to refer to experimental facts, and the 

first we shall use is that when everything else is kept unchanged, 

the rate of heat transmission in any given apparatus is approximately 

proportional to the temperature head, when that head is not very 
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large. Treating this as if it were an exact relation, we conclude that 

in equation [37], Y must contain A as a factor and may therefore be 

written 

cad) CA h_) — ; — Vv. ( —— 
»* ’DSp es DSpC 

Y | 

in which the new unknown function WV; has only a single argument. 

Equation [37] thus reduces to 

H=D?SApCY,( A a1 [38] 
DS pl 

63 To proceed further by experiment we might change the 

fluid, thus altering p, C, and X simultaneously; or we might change 

D by using an apparatus of the same shape but different size; but 

the most obvious thing to do is to try the effect on H of varying the 

speed of flow S, while keeping everything else constant. However, 

even without further experiment we may feel nearly certain that if 

the flow is very turbulent and the scouring action on the surfaces 

sufficiently violent, the effect of conductivity \ on H must be small 

compared with that of specific heat, and that where \ appears in 

the equation for H it can only be in terms with small exponents. 

As a rough approximation, we may disregard conductivity altogether 

and if we do so we have 

A =constant, 
r 

¥; | DSaC) 

so that equation [38] reduces to 

H=AD*SApC, (39) 

in which A is a characteristic constant shape factor for apparatus 

of the given design. 

64 To show that the above approximation is not a wild «s- 

sumption we may refer to the fact that Nusselt,' working with 

compressed gases in round pipes found H nearly proportional to 

S°*, while Stanton,’ using liquids, found that H was proportional 

to a power of S which was a little less than unity,—equation [39] 

indicating that the exponent should be exactly unity. Nusselt’s 

result would require that [38] should have the form 

H =A D'8 S°8A p® 8 (70°8 K02 

in which the effect of conductivity is still perceptible though small, 

1Zeitschrift des Vereines deutscher Ingenieure 53, pp. 1750 and 1808; 1909. 

*Phil. Trans. Royal Soc. London; A190, p. 67; 1897. 
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while that of specific heat is slightly less than on our former simple 

assumption that the effect of was negligible. Stanton’s result 

would cause still less change in equation [39]. 

65 In the present confused state of the subject of heat trans- 

mission we have been obliged, for the sake of completing our illustra- 

tion, to make use of several admittedly rough approximations. 

But though equation [39], thus obtained, is certainly not exact, it is 

probably for most ordinary heat transmitting devices nearly enough 

correct to be worth a little further physical interpretation. If we 

notice that the whole mass of fluid M, which passes per second, is 

proportional to the product of cross section, speed, and density, i.e., 

to D?S p, we have by {39} 

H 
A =BM ( 

in which B is a constant shape factor; or in words: the rate of heat 

transmission per degree temperature head, in an apparatus of given 

design and with a given fluid, is directly proportional to the mass 

7T i 
flow M. Or if the fluid is not always the same, A proportional 

to the total thermal capacity M C of the fluid which passes through 

the apparatus in unit time. 

a 
66 Another way of putting it is, that since vo's the amount 

by which temperature of the fluid changes while flowing through 

H eas 
the apparatus, and since }7G@q =B =constant, the fluid will change 

its temperature by the same fraction of the temperature difference 

A, regardless of its speed, its nature, and the size of the apparatus, 

provided only that the shape factor B is constant. This rather 

startling statement is, at least, not altogether contradicted by 

experience. For it is known that by forced draught the steaming 

capacity of a boiler may be greatly increased without much increase 

in the percentage of heat lost in the flue gases, and this shows that 

with the increased speed through the flues, the gases have still fallen 

in temperature by about the same number of degrees, i.e., by about 

the same fraction of the difference A between their mean temperature 

and that of the tubes, which remains nearly constant. 

67 Since all the above relations are only rough approximations, 

there is no occasion to go farther with them here. But it is hoped 

that enough has been said to show that the application of dimen- 
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sional reasoning to the planning of experiments and the interpreta- 

tion of observed data may sometimes be well worth while in view of 

the fact that the only labor involved, is at most, the solution of a few 

simple linear algebraic equations. 

CONCLUSION 

68 It would be an easy matter to extend this paper in- 

definitely by treating other problems as, for instance, the static 

strength of built up structures, the mechanical efficiency of engines 

or transmission mechanisms, the flow of water in open channels, 

or the heating of electric generators. The intention has been to 

select for treatment illustrative examples which had some intrinsic 

interest and where some tangible result might be obtained. In 

many cases, the application of the principle of dimensional homo- 

geneity leads to results which are worthless because they merely 

suggest that we ought to do something which we know is impracti- 

cable. But to offset this chance of failure there is the fact that 

whatever information or suggestions we do get are free, because the 

application of the theorem is so very simple. 

69 The method is not 2 theoretical one in the ordinary sense, 

there is nothing hypothetical about it. It is purely algebraic and 

tells us with certainty, that 7f certain quantities and no others are 

connected by a physical relation, the equation which deseribes the 

relation must be reducible to a certain form: the only chance of 

mistake is in overlooking some essential factor in the problem. 

Since the process of reasoning is purely mathematical, we cannot, 

of course, get out at the end any more than we put in at the be- 

ginning when we use our physical common-sense and experience to 

write down the original list of variables for the problem in hand. 

But we get out what we put in in a form which often makes it much ee RUN eo 

more available than when it went in. 

70 ~Finally, it may be stated again that the foregoing develop- 

ments make no claim to essential newness, the purpose having been 

to call attention to and possibly arouse interest in a very useful kind 

of reasoning which is by no means so familiarly used as it deserves 

to be. 
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APPENDIX 

THE DEDUCTION OF THE II THEOREM 

I. Let Qi, Q:, Q, be a number of physical quantities of different 
kinds, e.g., a length, a force, a density, ete., which are involved in some physical 
phenomenon such as the operation of a machine under its working conditions. 
If these n quantities suffice for describing the phenomenon completely, the value 
of any one of them is completely determined when the values of the others are 
given, and this mutual dependence may be stated symbolically by writing the 
equation 

Pp 

An equation of this sort, containing symbols which stand for measured numerical 

(Q:,Q:, . . . Qa.) =0 (1) 

values of physical quantities, is a physical equation. 
The equations used in engineering are of two kinds. They may be thevretical, 

i.e., based on general principles, like the equation for the energy of a fly wheel or 
St. Venant’s equation for the flow of gases; or they may be empirical, i.e., de- 
duced directly from experiments on some particular machine or phenomenon 
without regard to anything else; formulas for the windage of fly wheels or the 
loss of head in water mains are empirical equations. But in either case, unless 
they are mere mathematical formulas such as those of trigonometry, the equa- 
tions are physical equations and are amenable to the same rules as all other 
physical equations. 

: II. Any complete physical equation has the general form 

=MQ*,Q .. . Q",=0 [2] 

in which the = represents summation of a number of terms of the form indicated. 
. lhe exponents a, ), n are constants for each term, though they may 
‘ differ from term to term. ‘There may be any number of terms but the coefficient 
a VM of each term is a pure or dimensionless number—such as 7 or V 2—the value 

of which does not depend on the sizes of the units used in measuring the Q’s, so 
a long as the interrelations of the units among themselves are unchanged. 

No purely arithmetical operator such as log or sin can be applied to an 
operand which is not a pure number. When such expressions appear to occur 
n physical equations, as they often do, it is always found on closer examina- 
ion that the things operated on are in fact only ratios or other dimensionless 

quantities. The results of the indicated operations are therefore themselves 
limensionless numbers independent of the sizes of the units of the Q’s, and 
hey may be included in the dimensionless coefficients M. 

III. Upon dividing equation [2] through by any one term, we have 

= N Q4, QB. Q’,+1=0 [3] 

Now all the terms of any physical equation must have the same dimensions, 
nd the coefficients N have no dimensions because they are merely ratios of the 
limensionless coefficients M. It follows that the exponents of each term of 
juation [3] must have some such set of values that a dimensional equation of the 
rm 
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is satisfied when the known dimensions of the Q’s are inserted. 
Let I], represent any dimensionless product of powers of the Q’s of the form 

indicated by (4); and let II., Hs, I]; be all the other such expressions 
which can be made up independently by using different sets of values for the ex- 
ponents. Then the expression (I],*! I].* [I ,*i) is also dimensionless, no 
matter what the exponents z may be. Consequently equation [3] will satisfy 
the dimensional requirement of having all its terms of the same dimensions-—of 
zero dimensions in this case—if it has the form 

= N I,* I.™ I;*i'+1=0 [5 

Since the number of terms, the values of the coefficients N, and the value 
of the exponents 2 may be anything whatever without affecting the dimensions 
of any term, the first member of equation [5] is merely some entirely indeterminate 
funetion of the II’s Hence the most general and unrestricted form which the 
physical equation [I] can have, subject only to the requirement of dimensional 
homogeneity, 1S 

IT, Il,, II,) =0 \6 

in which f represents some completely unknown function of which the form 
remains to be found, either empirically by direct experiment, or theoretically 
from such general physical principles as may be applicable. In more ordinary 
language, this means that the statement that a number of physical quantities 
@ are mutually related as symbolized by equation [1], is equivalent to the state 
ment that all the independent dimensionless products II] which can be formed 

from the Q’s, are also mutually related in some definite manner symbolized 
by equation [6]. 

To illustrate what is meant by independent dimensionless products we may 
consider the two expressions 

DG 
ll, = a = DG p—' S- ps 

lL 
I] "DpS =u D)—p-S§-! 

which occur in section 3, on the flow of liquids. In the first place, if we raise 
DS p \’ 

either of these to any power, we get a new dimensionless quantity; e.g., Li 

has no dimensions; but it is not independent of I], because its numerical value 
is fixed when that of II, is given. Furthermore, any such combination as 

DG a", I (fp 
I, TI-*,= ax (252) - PGe ps lh lu 

is a new dimensionless product, but it is not independent of I; and II; because its 
value is fixed by theirs On the other hand, II, and Il, are themselves inde- 
pendent because neither can be obtained from the other. 

IV. To measure n kinds of quantity we require n units,{but"these need 
not all be adopted arbitrarily for they can in general be derived from, i.e., de- 
scribed or defined in terms of, some smaller number of fundamental units. Let 
k be the number of fundamental units required for fixing the n kinds of unit 
needed in measuring the quantities Q:, Qe, Q,. In mechanics all the neces- 
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sary units can be derived from only three, such as force, length, time, or work, 
speed, density. Even in the most general problems, dealing with thermal and 
electromagnetic as well as mechanical quantities £ is never greater than five. 

If & 

all the n units, at least one set of & which are independent of one another and 
s the number of fundamental units needed, there is always, among 

might themselves be used as fundamental units if we paid no attention to the 
question of representing and preserving the fundamental units by satisfactory 
primary standards. Let [Q;, Qs, . . . Q,] represent such a set and let the re- 
maining n—f# units be denoted by [P,, Ps, P,-i-] Then each of the P’s may 
be derived from the Q’s in accordance with a dimensional equation which may 
be written 

(27, QF, . . .Q*. P]=[1] (7] 

Since there are n—f of the P’s, there are n—f separate independent equatiors 
of the form [7], and no more. 

If in equation [7] we substitute for P and the Q’s their dimensional equiva- 
lents in terms of any convenient fundamental units (see equations [9] to [11] of 
Section 3 in the body of the paper), the requirement that the total exponent ol 
each fundamental unit shall vanish furnishes 4 independent linear equations 
which suffice for the determination of the ¢ xponents 4, £B, K of equation [7]. 
If, after determining these exponents for any particular P, we set 

IT =Q2, @8 C%, P 6] 

the quantity II satisfies the requirement of being a dimensionless product of the 
specified form. There are n—f independent equations of the form [7] and 
therefore the same number of II’s, hence t=n —f, and the number of inde pende nt 
II’s is & less than the whole number of different kinds of quantity Q 

V. We have hitherto confined our attention to a relation among quantities 
that are all of different kinds. If several quantities of any one kind are involved 
in the relation to be described, they may all be specified by the value of any one 
ind the ratios r’, r’’, ete., of the others to that one. Dimensional considerations 
cannot tell us anything about the manner in which these dimensionless ratios 7 
ippear in the equation which describes the relation, but their possible influence 
must be indicated, and this may be done in an entirely general way by intre- 
ducing them as additional independent arguments of the unknown function /f. 
Che limitation imposed by the requirement of dimensional homogeneity upon 
the possible forms of physical equations may, therefore be conveniently sum- 
marized in the following statement: 

Any complete physical equation which describes a relation subsisting among 
juantities of n different kinds, of which 4 kinds are independent and not de- 
rivable from one another, is reducible to the form 

f (II, Ts, . : Bank 059", F )=0 [9] 

n which the r’s represent all the independent ratios of quantities of the same 
kind, and each II is determinable from a dimensional equation of the form 

[IT] =[@2, Q8, Q*,. P]=[1] (10) 

VI. If equation [9] is solved for any one of the II’s, for instance I],, it may 
be written 

re P,=Q%,Q% . . .Qk& o (IIe, Ts, . ,-t, 7’, r’’, ) (14) 
in which 

a=—a,, b=— #, etc. 
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If it is desired to obtain an equation of the form [11] with a particular quantity 
P,; appearing separately and in the first member only, this quantity should, from 
the outset, be excluded from the list of quantities which are to be used as the Q’s 
in handling the n—£ equations of the form [10]. This precaution is not always 
necessary, but it is always sufficient to ensure that the quantity in question shall 
appear in only a single one of the II’s and shall therefore be separable. 

Equation [9] may also, of course, be put into the form 

r’=W (II, IT,, ie oe 

which is sometimes useful. 
VII. Since equation [11] contains an unknown function ¢, the form of 

which cannot be found by dimensional reasoning, the equation does not give us 
any definite information in the general case when all the quantities which appear 
in the second member are allowed to vary independently. But if all the r’s 
are held constant, and if the Q’s and P», P;, . P,—\, are allowed to vary, not 
arbitrarily but only in such ways as will keep the values of II», ITs, I] ,-x 
constant, then we do have a definite statement of the dependence of P; on the 
Q’s. For under these conditions, although its general form remains unknown 
the function ¢ degenerates into a dimensionless constant N, because all its 
arguments are constant. Hence under these conditions equation [11] assumes 
the definite form 

P,=N 4, Q?. Qk. [12] 

A single experimental measurement of a set of simultaneous values of P;, and the 
(2’s suffices to determine the numerical value of N; and by equation [12] with this 
experimental vaiue of N, the value of P; may be computed, without further ex- 
periment, for any other values of the Q’s which satisfy the requirement, noted 
above, of keeping II ’ IJ ’ im k and the r’s constant 

The chief utility of the principle of dimensional homogeneity is found in its 
application to problems in which it is practicable to arrange matters so that the 
r’s and II’s of equation [11] shall remain constant and the definite equation [12 
therefore be satisfied. This is what has to be done when we use model experi- 
ments for getting information about the behavior of the full sized originals, and 
the practicability or impracticability of satisfying the required conditions (which 
is evident upon inspection of the list of II’s and r’s) is what determines whether 
we can or cannot obtain reliable information from models 

DISCUSSION 

M. D. Hersery (written). The author has struck the keynote 

of a new development of technical physies, which will eventually 

play the same part in mechanical engineering that physical chem- 

istry has begun to play in the chemical industries. 

The importance of technical physics, as a branch of subject 

matter, is already so clearly recognized in Germany that laboratories 

are being established devoted exclusively to this field. But the 

development which I think we may now anticipate is something 

distinct from this, and a natural sequel to it: I refer to the develop- 
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ment of technical physies, not as a branch of subject matter, but 

as a method of reasoning. 

It 

analogous to physieal chemistry which is the planning and interpre- 

s from such a standpoint that technical physics becomes 

tation of chemical experiments in the light of thermodynamics and 

the phase rule; and the T-theorem is closely analogous to thermo- 

dynamies and the phase rule. Thermodynamies affords certain 

rigid eonnecting links between seemingly isolated experimental 

results, while the phase rule tells us the number of degrees of 

freedom of a chemical system. The T-theorem likewise affords 

rigid connecting links which not only serve as a check on the con- 

sisteney of our results, but may greatly eut down the labor of 

experimenting. Thus, on applying the TI-theorem to lubrication, ; 

we find, under certain conditions, that the coefficient of friction, f, 

must be some function or other of the two variables un/p and D*n/Q 

alone: in which » denotes viseosity, n revolutions per unit time, 

p bearing pressure, D journal diameter, and Q volume of oil pumped ’ 

through bearing in unit time. Henee, the same change in f will 

he produeed by a given change in the argument p»n/p, whether this 

change is, in turn, caused by varying » in one direction or by 

varying p in the other direction; and so on. These facts, all im- 

plicitly contained in the TI-theorem, ean, for the sake of emphasiz 

ing our analogy, be expressed by the equations 

df df df py df 
— whence ' 

du u dp Dp ap pP dy 

d} dt df . a df 
whenee 3 ; ete. 

dD* /D* dQ/O dD D dQ 

And, just as the phase rule tells us that the number of degrees of 

freedom in a chemical system is F = K — P + 2, K being the num- 

her of components which coexist in P phases, so also the II-theorem 

tells us that the number of degrees of freedom in a physical system 

is f = p — k — 1, k being the number of fundamental units needed 

to describe a relation subsisting among the p physical quantities. 

For it diminishes by & the number of factors which have to be varied 

experimentally. 

The author has himself stated that the paper contains nothing 

essentially new. Any illusion to the contrary would be an impedi- 

ment to the suecessful use of the methods presented. The kernel 

of the paper is a theorem which is merely a restatement of the 
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requirements of dimensional homogeneity, announced by Fourier 

nearly a hundred years ago, and extensively used by Rayleigh and 

others. But the fact that the paper contains nothing essentially 

new does not diminish its value. Gibbs’ phase rule, too, was new 

only in form, not in substance, yet it served as the erystallizing in. 

fluence which caused an immense number of latent ideas to fall into 

line, and we may expect the I-theorem to play a similar role. 

This inevitable development of technical physies into a unified 

branch of science, which will acquire the same fundamental place 

in the engineering curriculum that physical chemistry now holds 

in the chemical curriculum, can be facilitated if writers on the 

problems of hydro- and aerodynamics, heat transmission and the 

like will be as introspective as possible, explicitly calling attention 

not only to their results, but to their methods of reasoning as well 

For in every suecessful artifice of reasoning, there must be some 

element which is universal and eapable of being generalized and 

ade into a working tool. 

ME.LAcH I. Nustm (written). The conditions for similarity, dis 

eussed in the paper, have been noted and applied with great advan 

tage by designers of centrifugal compressors and pumps. Two cen 

trifugal compressors, if they are geometrically similar, have the 

same efficiency provided the following relation is maintained be 

tween the rated flow, Q, the peripheral speed of the impeller, S, 

and the impeller diameter, D 

Q,/S,D,? = Q./S.D.2 = eonstant 

The experimental data on one particular size of compressor can 

be utilized to predict with accuracy the performance of a number 

of sets, provided the compressors are made geometrically similar 

and rated according to the relation mentioned above. In terms of 

the mean effective pressure, P, the r.p.m., N, and the flow, Q (vol 

ume per unit of time), the relation is equivalent to 

QN?/P* = constant 

A. R. DopcGe said he had investigated the drop in pressure of 

superheated steam under similar conditions to those of Stanton’s 

and Pannel’s experiments on air and water illustrated in Fig. 1, 

using a 1-in. smooth drawn brass pipe, steam jacketed. Over the 

range covered (between ordinates of 3.8 to 5.6) the results coin- 

cided exactly with those shown in this curve, showing that the 

curve applies for steam, in addition to air, water and oil. It ought, 

hil eet ei aly es 
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therefore, to apply for any fluid, and simplify existing formulae 

for pressure drop. 

He had also made a number of steam tests with commercial iron 

pipe 2 to 8 in. in diameter, and found that the curves were parallel 

to and above that shown in Fig. 1, the distance above depending 

on the roughness of the pipe 

1 
JOHN R. FREEMAN said that he possessed data of his own expe 

riments with ordinary rough pipes, which might be of value in 

solving the problems presented. He said he had conducted a very 

extended range of experiments, in 1893, on pipes of all degrees of 

smoothness, from seamless brass pipe to exceedingly rough pipe. 

L. W. WALLACE said that in connection with investigations to 

determine certain facts in reference to locomotive sparks, it became 

necessary to know to what height sparks are ejected from locomo- 

tives under various operating conditions, and he asked whether 

experiments with a specially designed model locomotive would give 

data that would be comparable with the actual height the sparks 

would be thrown, the size of the sparks, etc. 

THe AutHor. In reply to Mr. Wallace, it is conceivable that 

model experiments might be so devised as to furnish the desired 

information, but the difficulties appear, at first sight, rather formid- 

’ able. It is impossible to say off-hand, before examining the problem 

earefully, whether an attempt to solve it in this way would have 

any prospect of success. It would seem much simpler to study the 

actual emission of sparks from a locomotive by making runs at 

night and taking photographs—possibly kinematograph records— 

from two points on the train, one close to the locomotive and one 

much farther back. 

In reply to Mr. Freeman, while Stanton and Pannell’s experi- 

ments on smooth brass pipes were possibly somewhat more accurate 

than Saph and Schoder’s, the latter had also worked with gal- 

vanized pipes. In trying to get an equation which could be made 

to represent the resistance of both smooth and rough pipes by 

varying only a single quantity—representing the roughness—the 

author had therefore used Saph and Schoder’s results exclusively, 

because in a preliminary study consistency was more important 

than accuracy. He had found, however, that the data were not 

sufficient for his purpose, and it would be a matter of great interest 
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to him if he were priviledged to examine Mr. Freeman’s experi- 

mental results. 

In reply to Mr. Dodge, it must be a satisfaction to all concerned 

with the subject of pipe resistance that the results of his wide expe- 

rience with steam agrees so well with those obtained by Saph and 

Schoder for water, and by Stanton and Pannell for both water and 

air. We may safely conclude that the basis of physical ideas from 

which the dimensional treatment starts is sensibly correct, and that 

no important element in the problem has been overlooked. The 

results obtained by dimensional reasoning are so instructive and 

the problem of pipe resistance so important, that the confirmation 

which Mr. Dodge has given is a valuable contribution to the subject. 

The example, brought forward by Mr. Nusim, of the practical 

utilization of the notion of dynamical similarity is very interesting. 

The author’s object in presenting his paper was to call attention 

to the method which, he is convineed, will in time come to be one 

of the engineer’s handy tools, like the two laws of thermodynamies. 

But since he is aware that his opinion of the value of the method 

may be received somewhat sceptically by professional engineers, 

testimony in its favor from one engaged in practical designing work 

is doubly welcome. 

In reply to Mr. Hersey, mechanical engineering is an art, not 

a science ; and the ability and imagination of the individual engineer 

will always be its most important element. But common sense tells 

the engineer to get as much outside help as he can in solving his 

problems, and one souree of such help is physics. As Mr. Hersey 

points out, the aid to be got from physies does not consist merely in 

new determinations of physical constants or in experimental investi- 

gations of physical problems which are of special interest to engi- 

neers. It consists also in the systematic use of the scientific method 

of physics in analyzing problems, planning experiments, and coodrdi- 

nating known facts so as to bring to bear on any new problem all 

the available knowledge, of whatever sort and wherever obtained, 

which may seem to be pertinent. This is the technical physics 

which is destined not only to work in its laboratories on problems 

presented by engineers, but to be recognized as an inseparable com- 

panion of sound and progressive mechanical engineering. 


