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S ection  I.

Introduction.

1. T h e  equations of motion of viscous fluid (obtained by grafting on certain terms to 
the abstract equations of the Eulerian form so as to adapt these equations to the case 
of fluids subject to stresses depending in some hypothetical manner on the rates of 
distortion, which equations N a v ie r # seems to have first introduced in 1822, and 
which were much studied by C a u c h y + and P oisson^) were finally shown by 
St. V e n a n t § and Sir G a b r ie l  S t o k es ,|| in 1845, to involve no other assumption than 
that the stresses, other than that of pressure uniform in all directions, are linear 
functions of the rates of distortion, with a co-efficient depending on the physical state 
of the fluid.

By obtaining a singular solution of these equations as applied to the case of 
pendulums in steady periodic motion, Sir G. S to k esI  was able to compare the 
theoretical results with the numerous experiments that had been recorded, with the 
result that the theoretical calculations agreed so closely with the experimental 
determinations as seemingly to prove the truth of the assumption involved. This 
was also the result of comparing the flow of water through uniform tubes with the 
flow calculated from a singular solution of the equations so long as the tubes were 
small and the velocities slow. On the other hand, these results, both theoretical and 
practical, were directly at variance with common experience as to the resistance * * * §

* ‘Mem. de 1’Academie,’ vol. 6. p. 389.
f  ‘ Mem. des Savants Strangers,’ vol. 1, p. 40.
J ‘Mem. de 1’Academic,’ vol. 10, p. 345.
§ ‘ B.A. Report,’ 1846.
|| ‘ Cambridge Phil. Trans.,’ 1845.
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encountered by larger bodies moving with higher velocities through water, or by 
water moving with greater velocities through larger tubes. This discrepancy 
Sir G. Stokes considered as probably resulting from eddies which rendered the 
actual motion other than that to which the singular solution referred and not as 
disproving the assumption.

In 1850, after J oule’s discovery of the Mechanical Equivalent of Heat, Stokes 
showed, by transforming the equations of motion—with arbitrary stresses—so as to 
obtain the equations of (“ Vis-viva”) energy, that this equation contained a definite 
function, which represented the difference between the work done on the fluid by the 
stresses and the rate of increase of the energy, per unit of volume, which function, 
he concluded, must, according to J oule, represent the Vis-viva converted into heat.

This conclusion was obtained from the equations irrespective of any particular 
relation between the stresses and the rates of distortion. Sir G. Stokes, however, 
translated the function into an expression in terms of the rates of distortion, which 
expression has since been named by Lord R ayleigh the Dissipation-Function.

2. In 1883 I succeeded in proving, by means of experiments with colour bands—
the results of which were communicated to the Society*—that when water is caused 
by pressure to flow through a uniform smooth pipe, the motion of the water is ,
i.e., parallel to the sides of the pipe, or sinuous, crossing and re-crossing the pipe, 
according as Uw, the mean velocity of the water, as measured by dividing Q, the 
discharge, by A, the area of the section of the pipe, is below or above a certain value 
given by

Kp/Dp,

where D is the diameter of the pipe, p the density of the water, and K a numerical 
constant, the value of which according to my experiments and, as I was able to show, 
to all the experiments by P oiseuille and Darcy, is for pipes of circular section 
between

1900 and 2000,

oi, in other words, steady direct motion in round tubes is stable or unstable according 
as

DU
P — -<1900 or >2000,u

the number K being thus a criterion of the possible maintenance of sinuous or 
eddying motion.

3. The experiments also showed that K was equally a criterion of the law of the 
es stance to be overcome which changes from a resistance proportional to the
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velocity and in exact accordance with the theoretical results obtained from the 
singular solution of the equation, when direct motion changes to sinuous, when

4. In the same paper I pointed out that the existence of this sudden change in the 
law of motion of fluids between solid surfaces when

DU„ =  —K
P

proved the dependence of the manner of motion of the fluid on a relation between 
the product of the dimensions of the pipe multiplied by the velocity of the fluid and 
the product of the molecular dimensions multiplied by the molecular velocities which 
determine the value of

/*

for the fluid, also that the equations of motion for viscous fluid contained evidence of 
this relation.

These experimental results completely removed the discrepancy previously noticed, 
showing that, whatever may be the cause, in those cases in which the experimental 
results do not accord with those obtained by the singular solution of the equations, 
the actual motions of the water are different. But in this there is only a partial 
explanation, for there remains the mechanical or physical significance of the existence 
of the criterion to be explained.

5. [My object in this paper is to show that the theoretical existence of an inferior 
limit to the criterion follows from the equations of motion as a consequence :—

(1) Of a more rigorous examination and definition of the geometrical basis on 
which the analytical method of distinguishing between molar-motions and heat- 
motions in the kinetic theory of matter is founded ; and

(2) Of the application of the same method of analysis, thus definitely founded, to 
distinguish between raean-molar-motions and relative-molar-motions where, as in the 
case of steady-mean-flow along a pipe, the more rigorous definition of the geometrical 
basis shows the method to be strictly applicable, and in other cases where it is 
approximately applicable.

The geometrical relation of the motions respectively indicated by the terms 
mean-molar-, or Mean-Mean-Motion, and relative-molar or Kelative-Mean-Motion 
being essentially the same as the relation of the respective motions indicated by the 
terms molar-, or Mean-Motion, and relative-, or H eat-Motion, as used in the theory 
of gases.

I also show that the limit to the criterion obtained by this method of analysis and 
by integrating the equations of motion in space, appears as a geometrical to the



possible simultaneous distribution of certain quantities in space, and in no wise 
depends on the physical significance of these quantities. Yet the physical significance 
of these quantities, as defined in the equations, becomes so clearly exposed as to 
indicate that further study of the equations would elucidate the properties of matter 
and mechanical principles involved, and so be the means of explaining what has 
hitherto been obscure in the connection between thermodynamics and the principles 
of mechanics.

The geometrical basis of the method of analysis used in the kinetic theory of gases 
has hitherto consisted :—

(1) Of the geometrical principle that the motion of any point of a mechanical 
system may, at any instant, be abstracted into the mean motion of the whole system 
at that instant, and the motion of the point relative to the mean-motion; and

(2) Of the assumption that the component, in any particular direction, of the
velocity of a molecule may be abstracted into a mean-component-velocity (say u) 
which is the mean-component velocity of all the molecules in the immediate 
neighbourhood, and a relative velocity (say f), which is the difference between u 
and the component-velocity of the molecule a and being so related that. M being 
the mass of the molecule, the integrals of (M£), and (M &c., over all the molecules 
in the immediate neighbourhood are zero, and % [M ( +  ^)2] =  2 [M ( +  £2)].+

The geometrical principle (l) has only been used to distinguish between the energy 
of the mean-motion of the molecule and the energy of its internal motions taken 
relatively to its mean motion ; and so to eliminate the internal motions from all 
further geometrical considerations which rest on the assumption (2).

That this assumption (2) is purely geometrical, becomes at once obvious, when it is 
noticed that the argument relates solely to the distribution in space of certain 
quantities at a particular instant of time. And it appears that the questions as to 
whether the assumed distinctions are possible under any distributions, and, if so, 
under what distribution, are proper subjects for geometrical solution.

On putting aside the apparent obviousness of the assumption (2), and considering 
definitely what it implies, the necessity for further definition at once appears.

llie mean component-velocity {u) of all the molecules in the immediate neighbour­
hood of a point, say P, can only be the mean component-velocity of all the molecules in 
some space (S) enclosing P. u is then the mean-component velocity of the mechanical 
system enclosed in S, and, for this system, is the mean velocity at every point within 
S, and multiplied by the entiie mass within S is the whole component momentum 
of the system. Bu ̂ according to the assumption (2), u with its derivatives are to be 
continuous functions of the position of P, which functions may vary from point to 
point even within S ; so that uis not taken to represent the mean component-velocity 
of the system within S, but the mean-velocity at the point P. Although there seems 
to have been no specific statement to that effect, it is presumable that the space S has

-  “ Dynamical Theory of Gases," ‘ Phil. Trans.,’ 1866, pp. 67. t  ‘ Phil. Trans.,’ 1866, p. 71.
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been assumed to be so taken that P is the centre of gravity of the system within S. 
The relative positions of P and S being so defined, the shape and size of the space S 
requires to be further defined, so that u, &c., may vary continuously with the position 
of P, which is a condition that can always be satisfied if the size and shape of S may 
vary continuously with the position of P.

Having thus defined the relation of P to S and the shape and size of the latter, 
expressions may be obtained for the conditions of distribution of u, for which 2 (M£) 
taken over S will be zero, i.e., for which the condition of mean-momentum shall be 
satisfied.

Taking Sx, u1}&c., as relating to a point P1 and S, u, &e., as relating to P, another 
point of which the component distances from P x are x, y, P x is the C.G. of Sx, and 
by however much or little S may overlap Sx, S has its centre of gravity at x, y, 
and is so chosen that u, &c., may be continuous functions of x, , u may, 
therefore, differ from ux even if P is within Sx. Let u be taken for every molecule of 
the system Sx. Then according to assumption (2), t  (Mw) over Sx must represent the 
component of momentum of the system within Sl9 that is, in order to satisfy the 
condition of mean momentum, the mean-value of the variable quantity u over the 
system Sx must be equal to u1 the mean-component velocity of the system Sx, and 
this is a condition which in consequence the geometrical definition already mentioned 
can only be satisfied under certain distributions of For since u is a continuous 
function of x, y, z, M (u — wx) may be expressed as a function of the derivatives of u at P x 
multiplied by corresponding powers and products of x, y, , and again by M ; and by 
equating the integral of this function over the space Sx to zero, a definite expression 
is obtained, in terms of the limits imposed on x, , z, by the already defined space Sx 
for the geometrical condition as to the distribution of u under which the condition of 
mean momentum can be satisfied.

From this definite expression it appears, as has been obvious all through the 
argument, that the condition is satisfied if u is constant. I t  also appears that there 
are certain other well-defined systems of distribution for which the condition is 
strictly satisfied, and that for all other distributions of u the condition of mean- 
momentum can only be approximately satisfied to a degree for which definite 
expressions appear.

Having obtained the expression for the condition of distribution of u, so as to 
satisfy the condition of mean momentum, by means of the expression for M (u —
&c., expressions are obtained for the conditions as to the distribution of £, &c., in 
order that the integrals over the space Sx of the products M (u£), &c. may be zero when 
% [M (u — tq)] =  0, and the conditions of mean energy satisfied as well as those of 
mean-momentum. I t then appears that in some particular cases of distribution of u, 
under which the condition of mean momentum is strictly satisfied, certain conditions 
as to the distribution of £, &c., must be satisfied in order that the energies of mean-



and relative-motion may be distinct. These conditions as to the distribution of £ &c., 
are, however, obviously satisfied in the case of heat motion, and do not present 
themselves otherwise in this paper.

From the definite geometrical basis thus obtained, and the definite expressions 
which follow for the condition of distribution of u, See., under which the method of 
analysis is strictly applicable, it appears that this method may be rendered generally 
applicable to any system of motion by a slight adaptation of the meaning of the 
symbols, and that it does not necessitate the elimination of the internal motion of 
the molecules, as has been the custom in the theory of gases.

Taking u, v, w to represent the motions (continuous or discontinuous) of the matter
passing a point, and p to represent the density at the point, and putting u, &c., for 
the mean-motion (instead of u as above), and u\ &c., for the relative-motion (instead
of £ as before), the geometrical conditions as to the distribution of u, &c., to satisfy 
the conditions of mean-momentum and mean-energy are, substituting p for M, of 
precisely the same form as before, and as thus expressed, the theorem is applicable to 
any mechanical system however abstract.

(1) In order to obtain the conditions of distribution of molar-motion, under which 
the condition of mean-momentum will be satisfied so that the energy of molar-motion 
may be separated from that of the heat-motion, u, &c., and p are taken as referring to 
the actual motion and density at a point in a molecule, and Sx is taken of such 
dimensions as may correspond to the scale, or periods in space, of the molecular
distances, then the conditions of distribution of u, under which the condition of mean- 
momentum is satisfied, become the conditions as to the distribution of molar-motion, 
under which it is possible to distinguish between the energies of molar-motions and 
heat-motions.

(2) And, when the conditions in (1) are satisfied to a sufficient degree of approxi­
mation by taking u to represent the molar-motion ( in (1)), and the dimensions of 
tne space S to coirespond with the period in space or scale of any possible periodic or
eddying motion. The conditions as to the distribution of u, &c. (the components of 
mean-mean-motion), which satisfy the condition of mean-momentum, show the 
conditions of mean-molar-motion, under which it is possible to separate the energy 
of mean-molar-motion from the energy of relative-molar-(or relative-mean-) motion ” 

Having thus placed the analytical method used in the kinetic theory on a definite 
geometrical basis, and adapted so as to render it applicable to all systems of motion,
by applying it to the dynamical theory of viscous fluid, I have been able to show 
Feb. 18, 1895.]
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(b) That as the result of this definition the equations are true, and are only true 
as applied to fluid in which the mean-motions of the matter, excluding the heat- 
motions, are steady;

( c)  That the evidence of the possible existence of such steady mean-motions, while 
at the same time the conversion of the energy of these mean-motions into heat is 
going on, proves the existence of some discriminative cause by which the periods in 
space and time of the mean-motion are prevented from approximating in magnitude 
to the corresponding periods of the heat-motions, and also proves the existence of 
some general action by which the energy of mean-motion is continually transformed 
into the energy of heat-motion without passing through any intermediate stage ;

(d) That as applied to fluid in unsteady mean-motion (excluding the heat-motions),
however steady the mean integral flow may be, the equations are approximately true 
in a degree which increases with the ratios of the magnitudes of the , in time
and space, of the mean-motion to the magnitude of the corresponding periods of the 
heat-motions;

(e) That if the discriminative cause and the action o f transformation are the result 
of general properties of matter, and not of properties which affect only the ultimate 
motions, there must exist evidence of similar actions as between the mean-mean- 
motion, in directions of mean flow, and the periodic mean-motions taken relative to 
the mean-mean-motion but excluding heat-motions. And that such evidence must be 
of a general and important kind, such as the unexplained laws of the resistance of 
fluid motions, the law of the universal dissipation of energy and the second law of 
thermodynamics ;

( f )  That the generality of the effects of the properties on which the action o f trans­
formation depends is proved by the fact that resistance, other than proportional to 
the velocity, is caused by the relative (eddying) mean-motion.

(g) That the existence of the discriminative cause is directly proved by the 
existence of the criterion", the dependence of which on circumstances which limit the 
magnitudes of the periods of relative mean-motion, as compared with the heat-motion, 
also proves the generality of the effects of the properties on which it depends.

(Ji) That the proof of the generality of the effects of the properties on which the 
discriminative cause, and the action of transformation depend, shows that—if in the 
equations of motion the mean-mean-motion is distinguished from the relative-mean- 
motion in the same way as the mean-motion is distinguished from the heat-motions— 
(1) the equations must contain expressions for the transformation of the energy of 
mean-mean-motion to energy of relative-mean-motion ; and (2) that the equations, 
when integrated over a complete system, must show that the possibility of relative- 
mean-motion depends on the ratio of the possible magnitudes of the periods of relative- 
mean-motion, as compared with the corresponding magnitude of the periods of the 
heat-motions.

(«) That when the equations are transformed so as to distinguish between the 
MDCCCXCV.----A. S



mean-mean-motions, of infinite periods, and the relative-mean-motions of finite periods, 
there result two distinct systems of equations, one system for mean-mean-motion, as 
affected by relative-mean-motion and heat-motion, the other system for relative-mean- 
motion as affected by mean-mean-motion and heat-motions.

{j) That the equation of energy of mean-mean-motion, as obtained from the first 
system, shows that the rate of increase of energy is diminished by conversion into 
heat, and by transformation of energy of mean-mean-motion in consequence of the 
relative-mean-motion, which transformation is expressed by a function identical in 
form with that which expresses the conversion into heat; and that the equation of 
energy of relative-mean-motion, obtained from the second system, shows that this 
energy is increased only by transformation of eneigy from mean-mean-motion 
expressed by the same function, and diminished only by the conversion of energy 
of relative-mean-motion into heat.

(k) That the difference of the two rates (l) transformation of energy of mean-mean- 
motion into energy of relative-mean-motion as expressed by the transformation 
function, (2) the conversion of energy of relative-mean-motion into heat, as expressed 
by the function expressing dissipation of the energy of relative-mean-motion, affords 
a discriminating equation as to the conditions under which relative-mean-motion 
can be maintained.

(/) That this discriminating equation is independent of the energy of relative-mean - 
motion, and expresses a relation between variations of mean-mean-motion of the first 
order, the space periods of relative-mean-motion and j i / p  such that any circumstances 
which determine the maximum periods of the relative-mean-motion determine the 
conditions of mean-mean-motion under which relative mean-motion will be maintained 
—determine the criterion.

(m) That as applied to water in steady mean flow between parallel plane surfaces, 
the boundary conditions and the equation of continuity impose limits to the maximum 
space periods of relative-mean-motion such that the discriminating equation affords 
definite proof that when an indefinitely small sinuous or relative disturbance exists 
it must fade away if

is less than a certain number, which depends on the shape of the section of the 
boundaries, and is constant as long as there is geometrical similarity. While for 
gieatei values of this function, in so far as the discriminating equation shows, the
energy of sinuous motion may increase until it reaches to a definite limit, and rules 
the resistance.

(n) ' That besides thus affording a mechanical explanation of the existence of the 
criterion K, the discriminating equation shows the purely geometrical circumstances

the \ alue ol K depends, and although these circumstances must satisfy 
geometrical conditions required for steady mean-motion other than those imposed by
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the conservations of mean energy and momentum, the theory admits of the determi­
nation of an inferior limit to the value of K under any definite boundary conditions, 
which, as determined for the particular case, is

517.

This is below the experimental value for round pipes, and is about half what might 
be expected to be the experimental value for aflat pipe, which leaves a margin to meet 
the other kinematical conditions for steady mean-mean-motion.

(o) That the discriminating equation also affords a definite expression for the 
resistance, which proves that, with smooth fixed boundaries, the conditions of 
dynamical similarity under any geometrical similar circumstances depend only on the 
value of

JLL} l  ip
/.T d x

where b is one of the lateral dimensions of the pipe ; and that the expression for this 
resistance is complex, but shows that above the critical velocity the relative-mean- 
motion is limited, and that the resistances increase as a power of the velocity higher 
than the first.

Section II.

The Mean-motion and Heat-motions as distinguished by Periods.—Mean-mean- 
motion and Relative-mean-motion.—Discriminative Cause and Action o f Trans­
formation.— Two Systems of Equations.— A Discriminating Equation.

6. Taking the general equations of motion for incompressible fluid, subject to no 
external forces to be expressed by

(>~ +  Puu) +  Yy (P»* +  +  +  PUW'> }
f (f ff (f

(P*> + P0U) +  -dy (P »  +  PVV) +  di(P ’f +  pvw) \   ̂ • 0).

{ Hx pWl̂ "T iiJj (P*’ (p~ Pww)\

with the equation of continuity

0 =  dufdx +  dvjdy -|- d w jd z ...................................(2),

where pxxy &c., are arbitrary expressions for the component forces per unit of area, 
resulting from the stresses, acting on the negative faces of planes perpendicular to
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the direction indicated by the first suffix, in the direction indicated by the second

Then multiplying these equations respectively by u, v, w, integrating by parts, 
adding and putting

2E for p ( u3 +  'y2 +  w2) 

and transposing, the rate of increase of kinetic energy per unit of volume is given by

d d* d . d > -p,
+  u — +  v ~r d* w T" 'dt cloc dz

~lx (UP™) +  fh, (uPy*) +

dx
d
dx

dy

”  "I +  "t” dy +  fZz ^

(wp«) +  irAwPv) +

du
Pxx HZ “1"

dy

dn 
dy

+  P*y HZ +  Pyy ~fy
div

dz
d_
dz

d_
dz

dx
dv
dx
dw

dii
+
i clvi+ P=>T*  ̂ •

dw
+ p ™ t + p » ° i;+ P11 dz

(3).

The left member of this equation expresses the of increase in the kinetic
energy of the fluid per unit of volume at a point moving with the fluid.

The first term on the right expresses the rate at which work is being done by the 
surrounding fluid per unit of volume at a point.

The second term on the right therefore, by the law of conservation of energy, 
expresses the difference between the rate of increase of kinetic energy and the rate 
at which work is being done by the stresses. This difference has, so far as I am 
aware, in the absence of other forces, or any changes of potential energy, been equated 
to the rate at which heat is being converted into energy of motion, Sir G a b r ie l  
Stokes having first indicated this * as resulting from the law of conservation of 
energy then just established by J oule.

7. This conclusion, that the second term on the right of (3) expresses the rate at 
which heat is being converted, as it is usually accepted, may be correct enough, but 
theie is a consequence of adopting this conclusion which enters largely into the 
method of leasoning in this paper, but which, so far as I know, has not previously 
received any definite notice.

* ‘ Cambridge Phil. Trans.,’ vol. 9, p. 57.
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The Component Velocities in the Equations o f Viscous Fluids.

In no case, that I am aware of, has any very strict definition of u, tv, as they 
occur in the equations of motion, been attempted. They are usually defined as the 
velocities of a particle at a point (x, y , z) of the fluid, which may mean that they are 
the actual component velocities of the point in the matter passing at the instant, or 
that they are the mean velocities of all the matter in some space englosing the point, 
or which passes the point in an interval of time. If the first view is taken, then the 
right hand member of the equation represents the rate of increase of kinetic energy, 
per unit of volume, in the matter at the point; and the integral of this expression 
over any finite space S, moving with the fluid, represents the total rate of increase 
of kinetic energy, including heat-motion, within that space; hence the difference 
between the rate at which work is done on the surface of S, and the rate at which 
kinetic energy is increasing can, by the law of conservation of energy, only represent 
the rate at which that part of the heat which does not consist in kinetic energy of 
matter is being produced, whence it follows :—

(a) That the adoption o f the conclusion that the second term in equation (3) ex­
presses the rate at which heat is being conver, defines v, w, as not representing 
the component velocities o f points in the passing matter.

Further, if it is understood that u, v, iv,represent the mean velocities of the matter 
in some space, enclosing x, y, z, the point considered, or the mean velocities at a point 
taken over a certain interval of time, so that 2 (pw), X (pv), 2 (pw) may express the 
components of momentum, and z% (pv) — y2 (pw), &c., &c., may express the com­
ponents of moments of momentum, of the matter over which the mean is taken; 
there still remains the question as to what spaces and what intervals of time ?

(b) Hence the conclusion that the second term expresses the rate o f conversion o f ,
defines the spaces and intervals of time over which the mean component velocities must 
be t a k e n , so that E may include all the energy of mean-motion, and exclude that o f
heat-motions.

Equations Approximate only except in Three Particular Cases.

8. According to the reasoning of the last article, if the second term on the right of 
equation (3) expresses the rate at which heat is being converted into energy of mean- 
motion, either pu,pv, pw express the mean components of momentum of the matter, 
taken at any instant over a space S0 enclosing the point x, y, z, to which u, v, w 
refer, so that this point is the centre of gravity of the matter within S0 and such 
that p represents the mean density of the matter within this space; or pu, pv, piv 
represent the mean components of momentum taken at x, y, z over an interval of time r, 
such that p is the mean density over the time r, and if t marks the instant to which 
u, v, w refer, and t! any other instant, %[ (t — t') p], in which p is the actual density, 
taken over the interval r is zero. The equations, however, require, that so obtained,



p u V wshall be continuous functions of space and time, and it can be shown that 
this’involves certain conditions between the distribution of the mean-motion and the 
dimensions ol S0 and r.
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Mean- and Relative-Motions of Matter.

Whatever the motions of matter within a fixed space S may be at any instant, it 
the component velocities at a point are expressed by u, v, w, the mean component 
velocities taken over S will be expressed by

u &c., &c. ...................................... (4).
2/>

If then u,v, w, are taken at each instant as the velocities of x, y, 2, the instantaneous 
centre of gravity of the matter within S, the component momentum at the centre of 
gravity may be put

p u  —  p u  -j- p u ..............................................(5),

where u is the motion of the matter, relative to axes moving with the mean velocity, 
at the centre of gravity of the matter within S. Since a space S of definite size and 
shape may be taken about any point x,y, in an indefinitely larger space, so that 
x, y,z is the centre of gravity of the matter within S, the motion in the larger space
may be divided into two distinct systems of motion, of which u, w represent a 
mean-motion at each point and u', v, w'a motion at the same point relative to the 
mean-motion at the point.

It, however, u,v, w are to represent the real mean-motion, it is necessary that 
X (pv'), S ( pv), % ( po)) summed over the space S, taken about any point, shall be 

severally zero; and in order that this may be so, certain conditions must be fulfilled, 
For taking x, y, z for G the centre of gravity of the matter within S and y', z 

for any other point within S, and putting a, h, c for the dimensions of S in
directions x, y, z, measured from the point x,, since , v, w are continuous functions 
oi x, y, z, by shifting S so that the centre of gravity of the m atter within it is at 
x > V5 z> the value of u for this point is given by

“ “  +  (*' X) 0 . + W ~  y) ( S # +  V  -  *) ( I i  +  K  -  ^  ( S i  +  &c-

where all the differential coefficients on the left refer to the point y, and in the 
same way for v and w.

Subtracting the value of zT thus obtained for the point x \ y , s' from that of at the
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same point the difference is the value of at this point, whence summing these 
differences over the space S about G at x, y, 2, since by definition when summed over 
the space S about G

X [p (u — ug)~\ =  0 and X [p (x — x)~] — ......(7)

( — \  -I- 1 X fn(pu) =  -  {i 2 [p(x-xj] +  i 2 [p m

+  i 2 |> ( * - * ? ] ( S ) f +  *c.} (8a).
That is

X {pu>)• f (d /cPu\ | lr / d~u\ c3 / d'hi\
Y o T  18 < "  l 2 W ) g  +  2 W / g  +  2 4- &c. |

In the same way if X ( ) be taken over the interval of time r including t ; and
for the instant t

-  X (pit) , -  , ,u =  , and pu =  pu -f- pu ;

then since for any other instant t’

u = u , + ( t -  n( ^ + £  (< -  *? + &c„

where X [p (t — 2')] =  0, and X [p (u( — u)~\ =  0. 
I t appears that

X ( p u ' ) = - i [ i p ( t - t J ] ^  + &c. ]

iB < _  1 ^  \ _  &c.
S(P) 2

. (8 b).

From equations (8 a) and (8b), and similar equations for X and X tv), it appears 
that if

X (pu') =  X (pv) =  X (pu/) =  0,

where the summation extends both over the space S and the interval r, all the terms 
on the right of equations (8a) and (8b) must be respectively and continuously zero, or,
what is the same thing, all the differential coefficients of , v, w with respect to 
.v, y, z and t of the first order must be respectively constant.

This condition will be satisfied if the mean-motion is steady, or uniformly varying



with the time, and is everywhere in the same direction, being subject to no variations 
in the direction of motion ; for suppose the direction of motion to be that of x, then 
since the periodic motion passes through a complete period within the distance 2a, 
2 (pu) will be zero within the space

2a dy
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however small dy dz may be, and since the only variations of the mean-motion are in 
directions y and 2, in which b and c may be taken zero, and is everywhere
constant, the conditions are perfectly satisfied.

The conditions are also satisfied if the mean-motion is that of uniform expansion or 
contraction, or is that of a rigid body.

These three cases, in which it may be noticed that variations of mean-motion 
are everywhere uniform in the direction of motion, and subject to steady variations 
in respect of time, are the only cases in which the conditions (8a), (8b), can be perfectly 
satisfied.

The conditions will, however, be approximately satisfied, when the variations of
u, v, wof the first order are approximately constant over the space S.

In such case the right-hand members of equations (8a), (8b), are neglected, and it 
appears that the closeness of the approximations will be measured by the relative 
magnitude of such terms as

a d2u/dx3, &c., r dhijdt3 as compared with , , &c.

Since frequent reference must be made to these relative values, and, as in periodic 
motion, the relative values of such terms are measured by the period (in space or time) 
as compared with a, b, c and r, which are, in a sense, the periods of u , , , I shall
use the term period in this sense, taking note of the fact that when the mean-motion 
is constant in the direction of motion, or varies uniformly in respect of time, it is not 
periodic, 1. e,, its periods are infinite.

.). It is thus seen that the closeness of the approximation with which the motion of 
any system can be expressed as a varying mean-motion together with a relative- 
motion, which, when integrated over a space of which the dimensions are a, b, c, has
no momentum, incieases as the magnitude of the periods of a, v, w in comparison with
the peiiods of u , v , w, and is measured by the ratio of the relative orders of magni­
tudes to which these periods belong.

Heat-motions in Matter are Approximately Relative to the Mean-motions.

The general experience that heat in no way affects the momentum of matter, shows 
that the heat-motions are relative to the mean-motions of matter taken over spaces of
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sensible size. But, as heat is by no means the only state of relative-motion of matter, 
if the heat-motions are relative to all mean-motions of matter, whatsoever their periods 
may be, it follows—that there must be some discriminative cause which prevents the 
existence of relative-motions of matter other than heat, except mean-motions with 
periods in time and space of greatly higher orders of magnitude than the corres­
ponding periods of the heat-motions—otherwise, by equations (8a ), (8b), heat-motions 
could not be to a high degree of approximation relative to all other motions, and we 
could not have to a high degree of approximation,

du du
HZ "t" Pvx f j  Pzxdx 

dv
P**dx

dw
+  p» t  +  p

+ p-  % + p

dz
dv 

sy dz
dw 

zs dz

> = - Z w (9).

where the expression on the right stands for the rate at which heat is converted into 
energy of mean-motion.

Transformation o f Energy o f Relative-mean-motion to Energy of Heat-motion.

10. The recognition of the existence of a discriminative , which prevents the 
existence of relative-mean-motions with periods of the same order of magnitude as 
heat-motions, proves the existence of another general action by which the energy of 
relative-mean-motion, of which the periods are of another and higher order of 
magnitude than those of the heat-motions, is transformed to energy of heat-motion.

For if relative-mean-motions cannot exist with periods approximating to those of 
heat, the conversion of energy of mean-motion into energy of heat, proved by J oule, 
cannot proceed by the gradual degradation of the periods of mean-motion until these 
periods coincide with those of heat, but must, in its final stages, at all events, be the 
result of some action which causes the energy of relative-mean-motion to be trans­
formed into the energy of heat-motions without intermediate existence in states of 
relative-motion with intermediate and gradually diminishing periods.

That such change of energy of mean-motion to energy of heat may be properly 
called transformation becomes apparent when it is remembered that neither mean- 
motion nor relative-motion have any separate existence, but are only abstract 
quantities, determined by the particular process of abstraction, and so changes in the 
actual-motion may, by the process of abstraction, cause transformation of the 
abstract energy of the one abstract-motion, to abstract energy of the other abstract- 
motion.

All such transformation must depend on the changes in the actual-motions, and so 
MDCCCXCV.—A. T
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must depend on mechanical principles and the properties of matter, and hence the 
direct passage of energy of relative-mean-motion to energy of heat-motions is evidence 
of a general cause of the condition of actual-motion which results in transformation— 
which may be called the cause of transformation.

The Discriminative Cause, and the Cause o f .

11. The only known characteristic of heat-motions, besides that of being relative 
to the mean-motion, already mentioned, is that the motions of matter which result 
from heat are an ultimate form of motion which does not alter so long as the mean- 
motion is uniform over the space, and so long as no change of state occurs in the 
matter. In respect of this characteristic, heat-motions are, so far as we know, 
unique, and it would appear that heat-motions are distinguished from the mean- 
motions by some ultimate properties of matter.

It does not, however, follow that the cause of transformation, or even the 
discriminative cause, are determined by these properties. Whether this is so or not 
can only be ascertained by experience. If either or both these causes depend solely 
on properties of matter which only affect the heat-motions, then no similar effect 
would result as between the variations of mean-mean-motion and relative-mean- 
motion, whatever might be the difference in magnitude of their respective periods. 
Whereas, if these causes depend on properties of matter which affect all modes of 
motion, distinctions in periods must exist between mean-mean-motion and relative- 
mean-motion, and transformation of energy take place from one to the other, as 
between the mean-motion and the heat-motions.

The mean-mean-motion cannot, however, under any circumstances stand to the 
relative-mean-motion in the same relation as the mean-motion stands to the heat- 
motions, because the heat-motions cannot be absent, and in addition to any trans­
formation from mean-mean-motion to relative-mean-motion, there are transformations 
both from mean- and relative-mean-motion to heat-motions, which transformation 
may have impoitant effects on both the transformation of energy from mean- to 
i elative-mean-motion, and on the discriminative cause of distinction in their periods.

In spite of the confusing effect of the ever present heat-motions, it would, however, 
seem that evidence as to the character of the properties on which the cause of trans- 
foimation and the discriminative cause depend should be forthcoming as the result of 
observing the mean- and relative-mean-motions of matter.

To prove by expeiimental evidence that the effects of these properties of 
matter are confined to the heat-motions, would be to prove a negative; but if these 
properties are in any degree common to all modes of matter, then at first sight it 
must seem in the highest degree improbable that the effects of these causes on the 
mean- and relatrve-mean-motions would be obscure, and only to be observed by 

e mate tests. For properties which can cause distinctions between the mean- and
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heat-motions of matter so fundamental and general, that from the time these motions 
were first recognized the distinction has been accepted as part of the order of nature, 
and has been so familiar to us that its cause has excited no curiosity, cannot, if they 
have any effect at all, but cause effects which are general and important on the 
mean-motions of matter. I t would thus seem that evidence of the general effects of 
such properties should be sought in those laws and phenomena known to us as the 
result of experience, but of which no rational explanation has hitherto been found ; 
such as the law that the resistance of fluids moving between solid surfaces and of 
solids moving through fluids, in such a manner that the general-motion is not 
periodic, is as the square of the velocities, the evidence covered by the law of the 
universal tendency of all energy to dissipation and the second lav/ of thermo­
dynamics.

13. In considering the first of the instances mentioned, it will be seen that the 
evidence it affords as to the general effect of the properties, on which depends transforma­
tion of energy from mean- to relative-motion, is very direct. For, since my experiments 
with colour bands have shown that when the resistance of fluids, in steady mean flow, 
varies with a power of the velocity higher than the first the fluid is always in a state 
of sinuous motion, it appears that the prevalence of such resistance is evidence of the 
existence of a general action by which energy of mean-mean-motion with infinite 
periods is directly transformed to the energy of relative-mean-motion, with finite 
periods, represented by the eddying motion, which renders the general mean-motion 
sinuous, by which transformation the state of eddying-motion is maintained, not­
withstanding the continual transformation of its energy into heat-motions.

We have thus direct evidence that properties of matter which determine the cause 
of transformation, produce general and important effects which are not confined to the 
heat-motions.

In the same way, the experimental demonstration I was able to obtain, that 
relative-mean-motion in the form of eddies pf finite periods, both as shown by colour 
bands and as shown by the law of resistances, cannot be maintained except under 
circumstances depending on the conditions which determine the superior limits to the 
velocity of the mean-mean-motion, of infinite periods, and the periods of the relative- 
mean-motion, as defined in the criterion

DU m/ii =  K,

is not only a direct experimental proof of the existence of a discriminative cause which 
prevents the maintenance of periodic mean-motion except with periods greatly in excess 
of the periods of the heat-motions, but also indicates that the discriminative cause 
depends on properties of matter which affect the mean-motions as well as the heat- 
motions.
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Expressions for the Rate of Transformation and the Discriminative Cause.

14. It has already been shown (Art. 8) that the equations of motion approximate 
to a true expression of the relations between the mean-motions and stresses, when the 
ratio of the periods of mean-motions to the periods of the heat-motions approximates 
to infinity. Hence it follows that these equations must of necessity include whatever 
mechanical or kinematical principles are involved in the transformation of energy of 
mean-mean-motion to energy of relative-mean-motion. I t has also been shown that 
the properties of matter on which depends the transformation of energy of varying 
mean-motion to relative-motion are common to the relative-mean-motion as well as to 
the heat-motion. Hence, if the equations of motion are applied to a condition in 
which the mean-motion consists of two components, the one component being a mean- 
mean-motion, as obtained by integrating the mean-motion over spaces S2 taken about 
the point x, y, z, as centre of gravity, and the other component being a relative-mean- 
motion, of which the mean components of momentum taken over the space Sx every­
where vanish, it follows :—

(1) Tha t the resulting equations of motion must contain an expression for the rate 
of transformation from energy of mean-mean-motion to energy o f
m o t i o n , as well as the expressions for the transformation of the energies o f
mean- and relative-mean-motion to energy of heat-motion

(2) That,when integrated over a complete system these equations must show that the
possibility of the maintenance of the energy of relative-mean-motion , whatsoever
may be the conditions, on the possible order of magnitudes of the periods o f the relative- 
mean-motion, as compared with the periods of the heat-motions.

Ike Equations of Mean- and Relative Mean-Motion.

15. These last conclusions, besides bringing the general results of the previous 
argument to the test point, suggest the manner of adaptation of the equations 
of motion, by which the test may be applied.

Put

u — u ^- v', v = v +  v\ w =  w + w' .................... (11),
where

u ~ ^  (pu)/X ( p ),&c., &c................ (12),

the summation extending over the space 8, of which the centre of gravity is at the
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point x , y, z. Then since u, v, iv are continuous functions of , 2, therefore
u, v, iv, and u , v,  iv, are continuous functions of x, y, z. And as is assumed
constant, the equations of continuity for the two systems of motion are :

die
dx

dv d w _ q
dx dx

, du' , dv' , dv/
and & + ^ + & = 0 (13 );

also both systems of motions must satisfy the boundary conditions, whatever they 
may be.

Further putting pxx, &c., for the mean values of the stresses taken over the space 
Sx and

P XX    ] ? X X  ~~~ P x x ..................................... ......... • • • ( i d )

and defining Sx to be such that the space variations of u, w are approximately
constant over this space, we have, putting &c., for the mean values of the squares 
and products of the components of relative-mean-motion, for the equations of mean- 
mean-motion,

du
P dt (Pxx + puu + pu'u) + ^  + +dx

d , —
( P z x  + puiv + j

&c. =  
&c. =

&c.
&c.

• (15).

which equations are approximately true at every ]5oinfc in the same sense as that in 
which the equations (1) of mean-motion are true.

Subtracting these equations of mean-mean-motion from the equations of mean- 
motion, we have

r {p'xx +  P (uit +  u'u)-f- P —

du' 
^ dt = ~ ^  [Pyx + P {UV  + 11V)  -f p { U V  — U V ' ) }* &c., &c. (16),

+  -  {p'zx +  P {uw +  +  P —  }

which are the equations of momentum of relative-mean-motion at each point.



Again, multiplying the equations of mean-mean-motion by u, v, to respectively, 

adding and putting 2E =  p(«2 +  ^  +  5*), we obtain
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i  +  = r .  +  « X + « l ) E =

£  [ufa,+ w ) ]  +  £  [5 f a ,  + « " ) ]  +  £ [ «  + « '* ) ]dy

— <j +  — [v (p*y +  ^ ' )  ] +  ^  l> (Pyy +  v'v') ] +  dz ^   ̂ I"

+ £ [ « ’& « + «^ ')i +  £ [ « » & + w ) ]  +  £ [ “, ( p » + w V )]

—

V

—

■** dx +  P)’ + P
— du 

zx

+  ^ + p

+  P*’ dx

•> dx 

— dw

dv
dy“l- Vyy rin, V~y

dv
dy  ̂ +

— dw —
+ Pr-dy + P * d7

—7—r du , —t—r du —t— 7 duuu  — +  u v — +  u wdx dy

—7— 7 d.V / ~ dv ,
+  VW 7 x + V V  dy +  VW

--T— dW --t— 7 (fo #  .  7 ,
• f  f t t - r  - f  IOV -----1ax a^

dz

7 dv 
dz

, dw

(17)

which is the approximate equation of energy of mean-mean-motion in the same sense 
as the equation (3) of energy of mean-motion is approximate.

In a similar manner multiplying the equations (16) for the momentum of relative- 
mean-motion respectively by u, v', w, and adding, the result would be the equation 
for energy of relative-mean-motion at a point, but this would include terms of 
which the mean values taken over the space Si are zero, and, since all corresponding 
terms in the energy of heat are excluded, by summation over the space S0 in the 
expression for the rate at which mean-motion is transformed into heat, there is no 
reason to include them for the space Sx; so that, omitting all such terms and putting

2E' =  p[u'~ -f- v'2 -f . ...............................(18),

we obtain
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d , * d (I - d \  yi f
I t  +  u f a  +  v d^ +  w c k ) T‘ -

l  [«' <p'« +  pw'u')] + Jy [«' (PV, +  «V)] +  I  [»' (p V. +  «V)]
d
dx
d_
dx

+ iV (pV. + »'«')] + 1  [>' (p'* + *01 + 1 [</ (p', + «V)]

+  t, O ' (p« +  wV)] +  ^  O' ( / ,* + wV)l + O' (p« +  w'w')]

dz

d_
dz
d_

dz

, did, , did
P "  fa  +  P y ’ Jy + P = * dz

+  • ! + „ '  O' +  O  +  , /
+  ^ * J' fa  +  P n  dy +  p '-y dz I I

, , did , , , dw'
+  P "  f a  + P ”  dy + P *~f a

— 7— 7 d u  , — 7— 7- d l l  — 7 7 d upun Ix +  pnv

~ /— T  d v  * 7— r d/V 7 7 dw+  pyu Tx +  pvv Ty +  pvw -

— -—  ̂ (I w  — t— 7 dfa/J — 'f— 7 d w
+ p w u -  +  pwv ^  +  pww -

k w )

where only the mean values, over the space Sl5 of the expressions in the right member 
are taken into account.

This is the equation for the mean rate, over the space ST, of change in the energy 
of relative-mean-motion per unit of volume.

I t  may be noticed that the rate of change in the energy of mean-mean-motion, 
together with the mean rate of change in the energy of relative-mean-motion, must 
be the total mean-rate of change in the energy of mean-motion, and that by adding 
the equations (17) and (19) the result is the same as is obtained from the equation (3) 
of energy of mean-motion by omitting all terms which have no mean value as summed 
over the space Sj.

/

The Expressions from Transformation o f Energy from Mean - mean-mo tion to Relative-
mean-motion.

16. When equations (17) and (19) are added together, the only expressions that 
do not appear in the equation of mean* energy of mean-motion are the last terms on 
the right of each of the equations, which are identical in form and opposite in sign.

These terms which thus represent no change in the total energy of mean-motion 
can only represent a transformation from energy of mean-mean-motion to energy of 
relative-mean-motion. And as they are the only expressions which do not form part 
of the general expression for the rate of change of the mean energy of mean-motion, 
they represent the total exchange of energy between the mean-mean-motion and the 
relative-mean-motion.

It is also seen that the action, of which these terms express the effect, is purely



kinematical, depending simply on the instantaneous characters of the mean- and 
relative-mean-motion, whatever may be the properties of the matter involved, or the 
mechanical actions which have taken part in determining these characters. The 
terms, therefore, express the entire result of transformation from energy of mean- 
mean-motion to energy of relative-mean-motion, and of nothing but the transforma­
tion. Their existence thus completely verifies the first of the general conclusions 
in Art. 14.

The term last but one in the right member of the equation (17) for energy of 
mean-mean-motion expresses the rate of transformation of energy of heat-motions 
to that of energy of mean-mean-motion, and is entirely independent of the relative- 
mean-motion.

In the same way, the term last but one on the right of the equation (1.9) for 
energy of relative-mean-motion expresses the rate of transformation from energy of 
heat-motions to energy of relative-mean-motion, and is quite independent of the 
mean -mean-motion.

17. In both equations (17) and (19) the first terms on the right express the rates 
at which the respective energy of mean- and relative-mean-motion are increasing 
on account of work done by the stresses on the mean- and relative-motion 
respectively, and by the additions of momentum caused by convections of relative- 
mean-motion by relative-mean-motion to the mean- and relative-mean-motions 
respectively.

It may also be noticed that while the first term on the right in the equation (19) 
of energy of relative-mean-motion is independent of mean-mean-motion, the corre­
sponding term in equation (17) for mean-mean-motion is not independent of relative- 
mean-motion.
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A Discriminating .

18. In integrating the equations over a space moving with the mean-mean-motion 
of the fluid the first terms on the right may be expressed as surface integrals, which 
integrals respectively express the rates at which work is being done on, and energy
is being leceived across, the surface by the mean-mean-motion, and by the relative- 
mean-motion.

If the space ovei which the integration extends includes the whole system, or such 
pait that the total eneigy conveyed across the surface by the relative-mean-motion is 
zeio, then the late of change in the total energy of relative-mean-motion within the 
space is the difference of the integral, over the space, of the rate of increase of this 
energy by transformation from energy of mean-mean-motion, less the integral rate 
at w  ic eneigy of relative-mean-motion is being converted into heat, or integrating
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-j- d_
dy

E' dx dydz =

—7—r du . —}—— d ii> —7—r dll "4
puu Tx + pwv ^  +  Puw  T. \dy dz

f(f 1 + ^  I  + />- I  + p̂ ~ fz  ̂**dy*dy

, —7— 7 dw 7 dw —7—> div
+ PWU f a +pWV dz

, did , , du' ^
I

+  Iff < d'n , do r 1 7  1 1
* * j : + P n l Z  + V*y rdx

dw'
dx

dy
dw'

dz
dw'/ dw' , ,

P ”  +  P » * +  V « ,7,

• (20).

This equation expresses the fundamental relations :—
(1) That the only integral effect o f the mean-mean-motion on the relative-mean- 

motion is the integral of the rate o f transformation from energy of mean-mean- 
motion to energy of relative-mean-motion.

(2) That, unless relative energy is altered by actions across the surface within
the integration extends, the integral energy o f relative-mean-motion will be increasing 
or diminishing according as the integral rate of transformation from mean-mean- 
motion to relative-mean-motion is greater or less than the rate o f conversion o f the 
energy of relative-mean-motion into heat.

19. For f f xx, See., are substituted their values as determined according to the 
theory of viscosity, the approximate truth of which has been verified, as already 
explained. ✓

Putting

we have, substituting in the last term of equation (20), as the expression for the 
rate of conversion of energy of relative-mean-motion into heat,
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in which p. is a function of temperature only ; or since p is here considered as constant,

+  ( £ +  £ ) ' + (  £  +  ! ) > * *  (28),

whence substituting for the last term in equation (20) we have, if the energy of 
relative-mean-motion is maintained, neither increasing or diminishing,

du . —7—T du . — 7 Tu u-j— +  n v  —- +  v:dx dy dz

+  —  1- d x d y d z
' dx dy

_ r_/ dw7 7
+  wu  +  w v +

dz

dw
dz

m

( ( ^ \ z j_  ( d v V  ■ /d iv 'V
\dx ) +  \ ^ )

/  dwf dv'\2 (du' 3

+  W  +  m  +  v +  '"S 
/<&/

+  +  dy )

dx dy dz =  0 (24),

which is a discriminating equation as to the conditions under wbich relative-mean- 
motion can be sustained.

20. Since this equation is homogeneous in respect to the component velocities of 
the relative-mean-motion, it at once appears that it is independent of the energy of 
relative-mean-motion divided by the p. So that if p/p is constant, the condition it 
expresses depends only on the relation between variations of the mean-mean-motion 
and the directional, or angular, distribution of the relative-mean-motion, and on the 
squares and products of the space periods of the relative-mean-motion.

And since the second term expressing the rate of conversion of heat into energy of 
relative-mean-motion is always negative, it is seen at once that, whatsoever may be 
the distribution and angular distribution of the relative-mean-motion and the varia­
tions of the mean-mean-motion, this equation must give an inferior limit for the rates 
of variation of the components of mean-mean-motion, in terms of the limits to the 
perio s of relative mean-motion, and p/p, within which the maintenance of relative- 
mean motion is impossible. And that, so long as the limits to the periods of relative- 
mean-motion are not infinite, this inferior limit to the rates of variation of the mean- 
mean-motion will be greater than zero.
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Thus the second conclusion of Art. 14, and the whole of the previous argument is 
verified, and the properties of matter which prevent the maintenance of mean-motion 
with periods of the same order of magnitude as those of the heat-motion are shown to 
be amongst those properties of matter which are included in the equations of motion 
of which the truth has been verified by experience.

The Cause o f Transformation.

2 1 .  The transformation function, which appears in the equations of mean-energy of 
mean- and relative-mean-motion, does not indicate the cause of transformation, but 
only expresses a kinematical principle as to the effect of the variations of mean-mean- 
motion, and the distribution of relative-mean-motion. In order to determine the 
properties of matter and the mechanical principles on which the effect of the variations 
of the mean-mean-motion on the distribution and angular distribution of relative-mean- 
motion depends, it is necessary to go back to the equations (16) of relative-momentum 
at a point; and even then the cause is only to be found by considering the effects of 
the actions which these equations express in detail. The determination of this cause, 
though it in no way affects the proofs of the existence of the criterion as deduced from 
the equations, may be the means of explaining what has been hitherto obscure in the 
connection between thermodynamics and the principles of mechanics. That such may 
be the case, is suggested by the recognition of the separate equations of mean- and 
relative-mean-motion of matter.

The Equation o f Energy o f Relative-mean-motion and the Equation of
Thermodynamics.

22. On consideration, it will at once be seen that there is more than an accidental 
correspondence between the equations of energy of mean- and relative-mean-motion 
respectively and the respective equations of energy of mean-motion and of heat in 
thermodynamics.

If instead of including only the effects of the heat-motion on the mean-momentum 
as expressed by pXX) &c., the effects of relative-mean-motion are also included by
putting pxx for p xx -f- puu,&c., and pyz for pyz -f- ', &c., in equations (15) and (17),
the equations (15) of mean-mean-motion become identical in form with the equations 
(1) of mean-motion, and the equation (17) of energy of mean-mean-motion becomes 
identical in form with the equation (3) of energy of mean-motion.

These equations, obtained from (15) and (17) being equally true with equations (l) 
and (3), the mean-mean-motion in the former being taken over the space Sj_ instead of 
S0 as in the latter, then, instead of equation (9), we should have for the value of the 
last term—

u 2
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p.CX
clu

dx
-j- ( t ’C. ,  ——

d ( P H) 
dt

— 7----7 UUj , 0
•4- UU “T- 4" &c.

d x
( 25)

in which the right member expresses the rate at which heat is converted into energy 
of mean-mean-motion, together with the rate at which energy of relative-mean-motion 
is transformed into energy of mean-mean-motion ; while equation (19) shows whence 
the transformed energy is derived.

The similarity of the parts taken by the transformation of mean-mean-motion into 
relative-mean-motion, and the conversion of mean-motion into heat, indicates that 
these parts are identical in form ; or that the conversion of mean-motion into heat is 
the result of transformation, and is expressible by a transformation function similar 
in form to that for relative-mean-motion, but in wdiich the components of relative 
motion are the components of the heat-motions and the density is the actual density 
at each point. Whence it would appear that the general equations, of which equations 
(19) and (16) are respectively the adaptations to the special condition of uniform 
density, must, by indicating the properties of matter involved, afford mechanical 
explanations of the law of universal dissipation of energy and of the second law of 
thermodynamics.

The proof of the existence of a criterion as obtained from the equations is quite 
independent of the properties and mechanical principles on which the effect of the 
variations of mean-mean-motion on the distribution of relative mean-motion depends. 
And as the study of these properties and principles requires the inclusion of condi­
tions which are not included in the equations of mean-motion of incompressible fluid, 
it does not come within the purpose of this paper. I t is therefore reserved for 
separate investigation by a more general method.

The Criterion of Steady Mean-motion.

23. As already pointed out, it appears from the discriminating equation that the 
possibility of the maintenance of a state of relative-mean-motion depends on m/p, the 
variation of mean-mean-motion and the periods of the relative-mean-motion.

Thus, if the mean-mean-motion is in direction only, and varies in direction y 
only, if u , v , ware periodic in directions x, , z, a being the largest period in space,
so that their integrals over a distance a in direction x are zero, and if the co-efficients 
of all the periodic factors are a, then putting

dt du/dy — ;

taking the integrals, over the space a3 of the 18 squares and products in the last 
term on the left of the discriminating equation (24) to be
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— 18/xC3 (27r/a)3 CL1 a?

the integral of the first term over the same space cannot be greater than

pC2a2C1%3.

Then, by the discriminating equation, if the mean-energy of relative-mean-motion is 
to be maintained,

or
pQi is greater than 700 /x/a2,

is a condition under which relative-mean-motion cannot be maintained in a fluid of 
which the mean-mean-motion is constant in the direction of mean-mean-motion, and 
subject to a uniform variation at right angles to the direction of mean-mean-motion. 
It is not the actual limit, to obtain which it would be necessary to determine the actual 
forms of the periodic function for u, v,  which would satisfy the equations of 
motion (15), (16), as well as the equation of continuity (13), and to do this the 
functions would be of the form

where r has the values 1, 2, 3, &c. It may be shown, however, that the retention of 
the terms in the periodic series in which r is greater than unity would increase the 
numerical value of the limit.

24. It thus appears that the existence of the condition (26) within which no 
relative-mean-motion, completely periodic in the distance , can be maintained, is a 
proof of the existence, for the same variation of mean-mean-motion, of an actual 
limit of which the numerical value is between 700 and infinity.

In viscous fluids, experience shows that the further kinematical conditions imposed 
by the equations of motion do not prevent such relative-mean-motion. Hence for 
such fluids equation (26) proves the actual limit, which discriminates between the 
possibility and impossibility of relative-mean-motion completely periodic in a space a, 
is greater than 700.

Putting equation (26) in the form

/̂(idu/dy)3 =  700 /x/pa3,

it at once appears that this condition does not furnish a criterion as to the possibility 
of the maintenance of relative-mean-motion, irrespective of its periods, for a certain 
condition of variation of mean-mean-motion. For by taking 3 large enough, such 
relative-mean-motion would be rendered possible whatever might be the variation of 
the mean-mean-motion.



The existence of a criterion is thus seen to depend on the existence of certain 
restrictions to the value of the periods of relative-mean-motion on the existence of 
conditions which impose superior limits on the values of a.

Such limits to the maximum values of a may arise trom various causes. If 
is periodic, the period would impose such a limit, but the only restrictions which it is 
my purpose to consider in this paper, are those which arise from the solid surfaces 
between which the fluid flows. These restrictions are of two kinds—restrictions to 
the motions normal to the surfaces, and restrictions tangential to the suifaces the 
former are easily defined, the latter depend for their definition on the evidence to be 
obtained from experiments such as those of P oiseuille, and I shall proceed to show 
that these restrictions impose a limit to the value of which is proportional to I), 
the dimension between the surfaces. In which case, if

^'{dujdyf  U/D,

equation (2G) affords a proof of the existence of a criterion

p D U / z x ^ K .......................................  (27 )

of the conditions of mean-mean-motion under which relative or sinuous-motion can 
continuously exist in the case of a viscous fluid between two continuous surfaces 
perpendicular to the direction y , one of which is maintained at rest, and the other in 
uniform tangential-motion in the direction x with velocity U.
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Section III.

The Criterion of the Conditions under which Relative-mean-motion cannot he main­
tained in the case of Incompressible Fluid in Uniform Symmetrical Mean-fow 
between Parallel Solid Surfaces.—Expression for the Resistance.

25. The only conditions under which definite experimental evidence as to the value 
of the ciiterion has as yet been obtained are those of steady flow through a straight 
lound tube of uniform bore ; and for this reason it would seem desirable to choose 
foi theoietical application the case of a round tube. But inasmuch as the application 
of the theory is only carried to the point of affording a proof of the existence of an 
inferioi limit to the value of the criterion which shall be greater than a certain 
quantity deteimined by the density and viscosity of the fluid and the conditions of 
flow, and as the necessary expressions for the round tube are much more complex
than those foi paiallel plane surfaces, the conditions here considered are those defined 
by such surfaces.
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Case I. Conditions.

26. The fluid is of constant density p and viscosity /x, and is caused to flow, by
a uniform variation of pressure dpjdx, in direction x  between parallel surfaces, 
given by

y =  -  K  y — \......(28),

the surfaces being of indefinite extent in directions 2 and

The Boundary Conditions.

(1.) There, can be no motion normal to the solid surfaces, therefore

v =  0 when =  +  ................................... (29).

(2.) That there shall he no tangential motion at the surface, therefore

u — iv — 0 when =  .............................. (30);
m

whence by equation (21), putting u for u , p — — 
By the equation of continuity dujdx +  +  =  0, therefore at the

boundaries we have the further conditions, that when ±

dujdx —- dvjdy =  dwjdz = 0 .(31).

Singular Solution.

27. If the mean-motion is everywhere in direction x, then, by the equation of 
continuity, it is constant in this direction, and as shown (Art. 8) the periods of mean- 
motion are infinite, and the equations (1), (3), and (9) are strictly true. Hence if

v — w =  u! =  v — w =  0 ...(32),

we have conditions under which a singular solution of the equations, applied, to this 
case, is possible whatsoever may be the value of b0, p and p.

Substituting for p xxypyz, &c., in equations (l) from equations (21), and substituting 
u for u', &c., these become

dp/ dhi 
l x  +  ^  \ d f  +  dz*)

du 
^ dt (33).
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This equation does not admit of solution from a state of re s t;5(1 but assuming a 
condition of steady motion such that du/dt is everywhere zero, and constant,
the solution of

if

is

/a fdhb 1W  __ 1 ^  q

+  p dx

u =  du/dz =  0 when =  ±  &0, 1*

1  dp y* — b02% = J
. . (34).

This is a possible condition of steady motion in which the periods of u according to 
Art. 8 are infinite; so that the equations for mean-motion as affected by heat- 
motion, by Art. 8, are exact, whatever may be the values of

u, b0, p, p, and

The last of equations (34) is thus seen to be a singular solution of the equations (15) 
for steady mean-flow, or steady mean-mean-motion, when u', v , , p', &c., have 
severally the values zero, and so the equations (16) of relative-mean-motion are 
identically satisfied.

In order to distinguish the singular values of u, I  put

whence
=  U, f udy — 26 0UW;

J -  6

dp
dx

— §£ u  u, 3 KJ
u0

A n  V - y1
2 m b*

(35).

According to the equations such a singular solution is always possible where the 
conditions can be realized, but the manner in which this solution of the equation (1) 
of mean-motion is obtained affords no indication as to whether or not it is the only 
solution as to whether or not the conditions can be realised. This can only be 
ascertained either by comparing the results as given by such solutions with the results 
obtained by experiment, or by observing the manner of motion of the fluid, as in my 
experiments with colour bands.

n a PaPer °n the “ Equations of Motion and the Boundary Conditions of Viscous F lu id /’ read 
before Section A at the meeting of the B.A., 1883, I pointed out the significance of this disability to be 
m egra e , as in mating the necessity of the retention of terms of higher orders to complete the 
equations, and advanced certain confirmatory evidence as deduced from the theory of gases. The paper 
was not published, as I hoped to be able to obtain evidence of a more definite character, such as that

: r t r s l l dUCe m 1 C r  and 8 °f * *  paper> equations are incomplete,
r ^ ta L d  r / , i  \ a i to render them integrawe fr°m rest <* or*®be retained, and thus conhrms the argument I advanced, and completely explains the anomaly.
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The fact that these conditions are realized, under certain circumstances, has afforded 
the only means of verifying the truth of the assumptions as to the boundary con­
ditions, that there shall be no slipping, and as to being independent of the 
variations of mean-motion.

Verification o f the Assumptions in the Equation Viscous Fluid.

28. As applied to the conditions of P oiseuille’s experiments and similar experi­
ments made since, the results obtained from the theory are found to agree throughout 
the entire range so long as u, v,tv' are zero, showing that if there were any slipping
it must have been less than the thousandth part of the mean flow, although the 
tangential force at the boundary was 0’2 gr. per square centimetre, or over 6 lbs. per 
square foot, the mean flow 376 millims. (1*23 feet) per second, and

du/dr =  215,000,

the diameter of this tube being 0'014 millim., the length 1 25 millims., and the 
head 30 inches of mercury.

Considering that the skin resistance of a steamer going at 25 knots is not 6 lbs. 
per square foot, it appears that the assumptions as to the boundary conditions and 
the constancy of p have been verified under more exigent circumstances, both as 
regards tangential resistance and rate of variation of tangential stress, than occur in 
anything but exceptional cases.

Evidence that other Solutions are 'possible.

29. The fact that steady mean-motion is almost confined to capillary tubes—and 
that in larger tubes, except when the motion is almost insensibly slow, the mean- 
motion is sinuous and full of eddies, is abundant evidence of the possibility, under 
certain conditions, of solutions other than the singular solutions.

In such solutions u\ v', id have values, which are maintained, not as a system of 
steady periodic motion, but such as has a steady effect on the mean flow through the 
tube ; and equations (1) are only approximately true.

The Application of the Equations of the - and Relative-mean-motion.

30. Since the components of mean-mean-motion in directions y and z are zero, and 
the mean flow is steady, v

v = 0, w =  0, dujdt — 0, dujdx =  0
MDCCCXCV.— A. X

(36),
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and as the mean values of functions of n',v, w are constant in the direction of flow,

PEPP _  o i  =  0 _  ^
dx ’ dx ’

By equations (21) and (37) the. equations (15) of mean-motion become

• (37).

da
9 dt ~

dv 
9 dt

dvj
9 H

dp (dhc
~  + iJ’ W  +dx

dp
dy
dp
dz

d£ )
d /—r~7\ i , 7 ,
* ( “ • ) - *-Td uw)

p {!,<?*)+£<?*>}

• (38).

The equation of energy of mean-mean-motion (17) becomes

d(E) —dp, \ d . d
- 5 - = - “ * + < * {  d i { y di )  +  ^ lu

I du Y
9   ̂ \ d y j \dz

du V
+ />{ dy

dy
. — — 7 du 1+  u w Ydz J

1

—t—x du . “t—j 
U V

I- (39).

Similarly the equation of mean-energy of relative-mean-motion (19) becomes

dK'
dt Jy [_u\v'y* +uv') + V(pyy -f -f- IV ( p yx +

d 
dz

d

— Jz \-U’(P  «  +  u ™) +  v' (p'sy +  v'w-f  ( +  WW'Y\

[■ m  *  m + (f)  v  ( % + s i + ( f + s ) ‘+ & + du'\Z~

—t 7 du —, duP \U V  ~  - fdy dz (40).

Integrating in directions y and z between the boundaries and taking note of the
boundary conditions by which u} u , v , iv vanish at the boundaries together with the 
integrals, in direction 2, of

d (— die \  d r~  7—7— r  d ___
d i [ U d ^ )’ dz (uw')idz [«' +  &C.,

the integral equation of energy of mean-mean-motion becomes

\ ^ d y d z = - \ \ dp
dxu t ~f- p du \ 3 

dy
, du \ 5

+  ( } ~ p {“v %  + w'w'
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The integral equation of energy of relative-mean-motion becomes

I f f  dVdg = - I f [--T -rd u  ~r~r  
p ^ U V ^ + U W

du
dz .* j

dy dz — p, j j /  du'\~
2 [ j*)  + [ & )  +

dv'Y

/dw' dv'\* idu' / dv' dv /fi 
+  \~dji +  T z )  +  \ f z  +  T x ) + \d^  +  d i ) _

dy dz

div'\% 
dz

(42).

If the mean-mean-motion is steady it appears from equation (41) that

-  |  \dy

the work done on the mean-mean-motion per unit of length of the tube, by the 
constant variation of pressure, is in part transformed into energy of relative-mean- 
motion at a rate expressed by the transformation function

-|- u7 dw 
dy

and in part transformed into heat at the rate

While the equation (42) for the integral energy of relative-mean-motion show's 
that the only energy received by the relative-mean-motion is that transformed from 
mean-mean-motion, and the only energy lost by relative-mean-motion is that 
converted into heat by the relative-mean-motion at the rate expressed by the last 
term.

And hence if the integral of E' is maintained constant, the rate of transformation 
from energy of mean-mean-motion must be equal to the rate at which energy of 
relative-mean-motion is converted into heat, and the discriminating equation becomes

The Conditions to he Satisfied hy u and v , w.

31. If the mean-mean-motion is steady u must satisfy :—
x 2



(1) The boundary conditions

u =  0 when =  ±  & o .......................
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(44);

(2 ) The equation of continuity
du/dx =  0 (45);

(3) The first of the equations of motion (38)

#  _  (?If + _  p \d- luV) + 7 («?) 1 (40);

or putting
u — U +  w — U and =  /x dPXJ/dy2

as in the singular solution, equation (46) becomes

/ # ( W - U )  , < P ( £ - U ) \  [  /—7~7\ , ^  / - 7 - > v l  / , *%

»*( “ V "  +  ~ 1 ^ )  =  'T % (“17) +  • • • (47);

(4) The integral of (47) over the section of which the left member is zero, and

the mean value of /x du[dy =  /x when =  dz • • • (48).

From the condition (3) it follows that if u is to be symmetrical with respect to the 
boundary surfaces, the relative-mean-motion must extend throughout the tube, so 
that

f00 (du'v du'iv'\7 . P „ 0 / , ,  \J ( ■  ̂ ) dz is a function of .......... (49).

And as this condition is necessary, in order that the equations (38) of mean-mean- 
motion and the equations (16) of relative-mean-motion may be satisfied for steady 
mean-motion, it is assumed as one of the conditions for which the criterion is souo-ht.

The components of relative-mean-motion must satisfy the periodic conditions as 
expressed in equations (1 2 ), which become, putting 2 c for the limit in direction

( 1 ) f V dx = (V dx = f V  dxJ0 Jo J0 == 0
1

P 0 p
u dy dz —- 0

J -  60 J -  c

(2 ) The equation of continuity

> (50).

J

du jdx -f- dv'jdy -|- div'fdz =  0 .
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(3 ) The boundary conditions which with the continuity give

u =  v — w' — du jdx — dv'Idy =  =  0 when =  ±  • * (51)-

(4 ) The condition imposed by symmetrical mean-motion

These conditions (1  to 4 ) must be satisfied if the effect on u is to be symmetrical 
however arbitrarily u, v', w may be superimposed on the mean-motion which results 
from a singular solution.

(5 ) If the mean-motion is to remain steady v , w' must also satisfy the kine-
matical conditions obtained by eliminating p from the equations of mean-mean-motion 
(38) and those obtained by eliminating p ' from the equations of relative-mean- 
motion (16).

32. The determination of the kinematic conditions (5) is, however, practically 
impossible ; but if they are satisfied, u', v', w must satisfy the more general conditions 
imposed by the discriminating equation. From which it appears that when , , w
are such as satisfy the conditions (1 to 4), however small their values relative to u 
may be, if they be such that the rate of conversion of energy of relative-mean-motion 
into heat is greater than the rate of transformation of energy of mean-mean-motion 
into relative-mean-motion, the energy of relative-mean-motion must be diminishing. 
Whence, when u,v', w are taken such periodic functions of , y, z, as under
conditions (1 to 4 ) render the value of the transformation function relative to the 
value of the conversion function a maximum, if this ratio is less than unity, the 
maintenance of any relative-mean-motion is impossible. And whatever further 
restrictions might be imposed by the kinematical conditions, the existence of an 
inferior limit to the criterion is proved.

3 3 . To satisfy the first three of the equations (50) the expressions for u , v , w , must 
be continuous periodic functions of x, with a maximum periodic distance ct, such as 
satisfy the conditions of continuity.

\ d z  =  2cf(y3) ...............................(52).

Conditions (1 to 4 ) determine an inferior Limit to the Criterion.

Expressions for the Components of possible Relative-mean-motion.

Putting
l =  2tt/a ; and n for any number from 1 to 00 f



158 PROFESSOR 0. REYNOLDS ON INCOMPRESSIBLE VISCOUS

«' =  So" { ( ^  +  cos (*Z») +  +  * j  sin 1

v' — {nlu-n sin (nix) — cos (nix)} j
^  {nly„sin. (nix') — nl Su cos (nix)} _J

<  v', w' satisfy the equation of continuity. And, if

(la)dy =  =  dy/clz =  dS/dz =  0 when &o
and a/3, ay, a 8 are all functions of only

(53),

(54),

it would seem that the expressions are the most general possible for the components 
of relative-mean-motion.

Cylindrical-relative-motion.

3 4 . If the relative-mean-motion, like the mean-mean-motion, is restricted to 
motion parallel to the plane of xy,

y =  8 = iv =  0, everywhere,

and the equations (53) express the most general forms for u , in case of such 
cylindrical disturbance.

Such a restriction is perfectly arbitrary, and having regard to the kinematical 
restrictions, over and above those contained in the discriminating equation, would 
entirely change the character of the problem. But as no account of these extra 
kinematical restrictions is taken in determining the limit to the criterion, and as it 
appears from trial that the value found for this limit is essentially the same, whether 
the relative-mean-motion is general or cylindrical, I only give here the considerably 
simpler analyses for the cylindrical motion.

The Functions 

35. Putting

of Transformation of Energy and Conversion to Heat for Cylindrical
Motion.

for the rate at which energy of relative-mean-motion is converted to heat per unit of 
volume, expressed in the right-hand member of the discriminating equation (4 3 ),

dx dy dz

- f f f « ( £ ) ’ +
dd\* 
dy

(du’\* 
V+ ! v ) +

<̂ P\2 , did dv' 
dx ) dy dx dx dy dz • (56).
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Then substituting for the values of u\ v , w' from equations (53), and integrating in 
direction x  over 2 ir/l,and omitting terms the integral of which, in direction y, vanishes 
by the boundary conditions,

M H 4 ’*  ■  f  +»+2 w [ ( t ) ‘ + ( t
...........................(» > ■+  \W I  +

In a similar manner, substituting for u' v , integrating, and omitting terms which 
vanish on integration, the rate of transformation of energy from mean-mean-motion, 
as expressed by the left member in,the discriminating equation (43), becomes

7 / d/3„0 dun\ dy dz (58).

And, since by Art. 31, conditions (3) equation (47),

d̂  / t t \   d / / / \
=  P77.(u v )dy2 v

integrating and remembering the boundary conditions,

jx~~ (u — U) == p u v \ — U) =  p f dydy J _ &0

And since at the boundary u — U is zero,

p ((u'v*) 0 ..........J -b„

(59),

(60).

(61).

Whence, putting U-j- u —U for u in the right member of equation (58), substituting 
for u — U from (60), integrating by parts, and remembering that

•j -j =  — 3 which is constant. cty Oq .................... (62),
also that

=  .............................. <63>-

we have for the transformation function

f̂ ° ( - /■ ■/ du \ ,
\ A puv * ) * •

- t
*  - * % ! * )  •  ( 6 4 ) -
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If u',v are indefinitely small the last term, which is of the fourth degree, may be
neglected. - i p

Substituting in the discriminating equation (43) this may be put in the form
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2/3&0U„ _  J ~6q l_____________ ____-
+

[b°dy f tJ -i, J $ \ nil ft.

dOn V 
dyj 

duH 
'*~dy

dM F
d y  )

d W f .  (&§» y
d y 1 )  )

d(3n

d y

(65).

Limits to the Periods.

36. As functions of ythe variations of aHi fin are subject to the restrictions imposed 
by the boundary conditions, and in consequence their periodic distances are subject 
to superior limits determined by 2 bQtthe distance between the fixed surfaces.

In direction x, however, there is no such direct connection between the value of h0 
and the limits to the periodic distance, as expressed by Such limits necessarily
exist, and are related to the limits of att, and in consequence of the kinemetical 
conditions necessary to satisfy the equations of motion for steady mean-mean- 
motion ; these relations, however, cannot be exactly determined without obtaining a 
general solution of the equations.

But from the form of the discriminating equation (43) it appears that no such exact 
determination is necessary in order to prove the inferior limit to the criterion.

The boundaries impose the same limits on whatever may be the value of ;
so that if the values of a,,, (3n be determined so that the value of

2p&0U. •-------is a minimum

for every value of nl, the value of rl, which renders this minimum a minimum- 
minimum may then be determined, and so a limit found to which the value of the 
complete expiession approaches, as the series in both numerator and denominator 
become moie convergent for values of nl differing in both directions from rl.

Putting l, a, (3 foi rl,an fir respectively, and putting for the limiting value to be 
found for the criterion

when a and fi are such functions of ythat K, is a minimum whatever the value of 
and l is so determined as to render Kj a minimum-minimum.



Having regard to the boundary conditions, &c., and omitting all possible terms 
which increase the numerator without affecting the denominator, the most general 
form appears to be

a =  l Qn [<h,+i sin (2s +  l)_p], 'l

/3 =  2 0* [&<>* sin (2 ty?)], y .............................. (6 8 ).
where

V = Try/2bQ
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To satisfy the boundary conditions

s =  2 r, when s is even, =  2 r +  1 , when s is odd.
t =  2r  +  1 , when t is odd, =  2 (r +  1), when t is even.

Since a =  0, when p  — ±  r,

^0 (®4> + l —

and since dfifdy — 0 , when p =  i  i 77,
X0 { — (4f +  2 ) b4r+2 4 (?* +  1) b4r+t} — 0j

. (69).

From the form of Kj it is clear that every term in the series for a and f3 increases 
the value of Kx and to an extent depending on the value of r. Kx will therefore be 
minimum, when

a =  aj sin p  + a3 sin 3 
f i= b 2 sin 2 p +  &4 sin 4

• (70),

which satisfy the boundary conditions if

a3 *—■ dj
=  264

(71).

Therefore we have, as the values of a and /3, which render Kj a minimum for 
any value of l

a I =  sin p  +  sin 3 p,fi/b2 =  sin 2 +  \  sin 4 ^
And

—  ~  =  cos p  + 3 cos 3 p, — ■ dj -  =  2 cos 2p -j- 2 cos 4p > • (72)71-^ % 1 7ro3 dy

y- i  { — 3 sin p  — 3 sin Sp + sin 5p -j- sin } J
,rralb2 \  dy dy 

MDCCCXCV.— A.
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and integrating twice

i L ? y l l p % - ctt ) d y = ~ VZ 2 5 l ^ a A  • • • • (73)-
Putting

~~L for l,
2b0

3the denominator of -K l9 equation (67), becomes

— 1*325 Loq&g.

In a similar manner the numerator is found to be

V (^ 'Y { L * (2«i* +  1'25V ) +  2L® (1 0 a / +  86/) +  8 2 a /  +  806/},

and as the coefficients of aY and b2 are nearly equal in the numerator, no sensible error 
will be introduced by putting

\ =  —
then

3Tr L H 2 x  5*53L2 +  50 firY ^
2K > = ----------0*408L--------  .......................................... <74>

which is a minimum if
L =  1*62 .................... ..... (7 5 )

and
=  517 . . ......................................... (76).

Hence, for a flat tube of unlimited breadth, the criterion

p 2&0U„,/p, is greater than 5 1 7 .............................. (77).

37. This value must be less than that of the criterion for similar circumstances. 
How much less it is impossible to determine theoretically without effecting a general 
solution of the equations; and, as far as I am aware, no experiments have been made 
in a flat tube. Nor can the experimental value 1900, which I obtained for the round 
tube, be taken as indicative of the value for a flat tube, except that, both theoretically 
an piactically, the ciitical value of Uw is found to vary inversely as the hydraulic 
mean epth, which would indicate that, as the hydraulic mean depth in a flat tube is
,.0U. °̂r a rounc  ̂ the criterion would be half the value, in which case the
limit found for Kwould be about 0*61 K. This is sufficient to show that the 
a so ute theoretical limit found is of the same order of magnitude as the experimental
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value; so that the latter verifies the theory, which, in its turn, affords an explanation 
of the observed facts.

The State o f Steady Mean-motion above the Critical Value.

38. In order to arrive at the limit for the criterion it has been necessary to consider 
the smallest values of u , v', w ,and the terms in the discriminating equation of the 
fourth degree have been neglected. This, however, is only necessary for the limit, 
and, preserving these higher terms, the discriminating equation affords an expression 
for the resistance in the case of steady mean-mean-motion.

The complete value of the function of transformation as given in equation (64) is

zb0 J-b0 J-&0 dy (7 7a).

Whence putting U +  u — U, for it in the left member of equation (77), and inte­
grating by parts, remembering the conditions, this member becomes

3Uro [b°
V

( dy f ’p u V d y  + r  f(„y)a
J ~ 6 0 J -b0 ft J — &0

du . ■ ■ (78),

in which the first term corresponds with the first term in the right member of 
equation (64), which was all that was retained for the criterion, and the second term 
corresponds with the second term in equation (64), which was neglected.

Since by equation (35)
3Um  1
b({  fj, dx

(78a),

we have, substituting in the discriminating equation (43), either

— 3 P
503 dp 
pd dx — \ dy \ uv— b0 d — b0

Therefore, as long as

dr 'll dp  
^ d ip dx

6 03 dp

(79) .

(80) .
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is of constant value, there is dynamical similarity under geometrically similar circum­
stances.

The equation (79) shows that,

when — t  P "a %is greater than

u 7 must be finite, and such that the last term in the numerator limits the rate of
transformation, and thus prevents further increase of u'v ’

The last term in the numerator of equation (79) is of the order and degree

p2L4a4/p,2 as compared with L4a2

1 dthe order and degree of — — (pH7) the first term in the numerator.
fJO C IO

It is thus easy to see how the limit comes in. I t is also seen from equation (7 9 ) 
that, above the critical value, the law of resistance is very complex and difficult of 
interpretation, except in so far as showing that the resistance varies as a power of the 
velocity higher than the first.


