Homework 3

1. A scalar function is given as $f\left(x_{1}, x_{2}, x_{3}\right)=2 x_{1} x_{3}^{2}-x_{2}^{3}$ find $\frac{\partial f}{\partial x_{i}}$ and $\frac{\partial^{2} f}{\partial x_{i} \partial x_{i}}$.
2. Show that $\nabla \times(\nabla \phi)=0$ and $\nabla \cdot(\nabla \times \boldsymbol{\psi})=0$, where ϕ is a scalar function and $\boldsymbol{\psi}$ is a vector function.
3. Write down the tensor forms of $\nabla \phi, \nabla \cdot \boldsymbol{v}$ and $\nabla \times \boldsymbol{v}$.
4. If $A_{i j}=B_{m n} e_{i m} e_{j n}$, write down terms A_{13} and A_{32}.
5. (a) Write down all the components of tensor notations $\frac{\partial}{x_{j}}\left(\frac{\partial u_{i}}{\partial x_{i}}\right)$ and $u_{i} \frac{\partial u_{j}}{\partial x_{i}}$.
(b) What are their vector forms?
6. Show that if $B_{i j}$ is a symmetrical tensor and $C_{i j}$ is an anti-symmetrical tensor, then
(a) $B_{i j} C_{j i}=0$,
(b) if $A_{i j}=B_{i j}+C_{i j}$ then $A_{i j}+A_{j i}=2 B_{i j}$.
