Journals

  1. W.-J. Su* and Z.-S. Wang, 2021, Development of a Non-Linear Bi-Directional Vortex-Induced Piezoelectric Energy Harvester with Magnetic Interaction, Sensors, Vol. 21, No. 7, 2299, doi:10.3390/s21072299
  2. M.-H. Liao*, P.-Y. Lu, W.-J. Su, S.-C. Chen, H.-T. Hung, C.-R. Kao, W.-C. Pu, C.-C. A. Chen, and M.-H. Lee, 2020, The demonstration of Carbon Nano-Tubes (CNTs) as flip chip connections in three-dimensional integrated circuits with an ultra-low connection resistance, IEEE Transactions on Electron Devices, Accepted
  3. W.-J. Su*, J.-H. Lin, W.-C. Li, 2020, Analysis of a cantilevered piezoelectric energy harvester in different orientations for rotational motion, Sensors, Vol. 20, No. 4, 1206, doi:10.3390/s20041206
  4. W.-J. Su* and W.-Y. Lin, 2020, Design and analysis of a vortex-induced bi-directional piezoelectric energy harvester, International Journal of Mechanical Sciences, Vol. 173, 105457, doi:10.1016/j.ijmecsci.2020.105457
  5. F.-C. Wang*, J.-F. Lu, W.-J. Su, and J.-Y. Yen, 2020, Precision positioning control of a long-stroke stage employing multiple switching control, Microsystem Technologies, doi:10.1007/s00542-020-04759-z
  6. W.-J. Su*, 2020, Impact-driven broadband piezoelectric energy harvesting using a two-degrees-of-freedom structure, Microsystem Technologies, Vol. 26, pp.1915–1924, doi:10.1007/s00542-019-04744-1
  7. M.-H. Liao*, K.-C. Huang, W.-J. Su, S.-C. Chen, and M.-H. Lee, 2019, The Demonstration of 3-D Bi2.0Te2.7Se0.3/Bi0.4Te3.0SB1.6 Thermoelectric Devices by Ionized Sputter System, IEEE Transactions on Electron Devices, Vol. 67, issue 1, pp. 406-408, doi:10.1109/TED.2019.2950981
  8. S.-T. Liu and W.-J. Su*, 2019, Design and analysis of a stopper-engaged two-degrees-of-freedom nonlinear piezoelectric energy harvester, Engineering Research Express, Vol. 1, 025032, doi:10.1088/2631-8695/ab5515
  9. J.-S. Chen*, W.-J. Su, Y. Cheng, W.-C. Li, and C.-Y. Lin, 2019, A metamaterial structure capable of wave attenuation and concurrent energy harvesting, Journal of Intelligent Material Systems and Structures, Vol. 30, no. 20, pp.2973-2981, doi:10.1177/1045389X19880023
  10. M.-H. Liao*, C.-C. Wu, W.-J. Su, S.-C. Chen, and M.-H. Lee, 2019, The development of a dynamic model to investigate the dielectric layer thickness effect for the device performance in triboelectric nano-generators, IEEE Transactions on Electron Devices, Vol. 66, issue 10, pp. 4478-4480, doi:10.1109/TED.2019.2933697
  11. H.-A. Shih and W.-J. Su*, 2019, Theoretical analysis and experimental study of a nonlinear U-shaped bi-directional piezoelectric energy harvester, Smart Materials and Structures, Vol. 28, no. 1, 015017, doi:10.1088/1361-665X/aaee97
  12. W.-J. Su* and H.-A. Shih, 2018, A U-shaped multi-modal bi-directional piezoelectric energy harvester, Applied Physics Letters, Vol. 113, 071905, doi:10.1063/1.5040066
  13. H.-J. Chen, W.-J. Su, and F.-C. Wang*, 2017, Modelling and analyses of a connected multi-car train system employing the inerter, Advances in Mechanical Engineering, Vol. 9, no. 8, pp. 1-13, doi:10.1177/1687814017701703
  14. W.-J. Su* and J. Zu, 2014, Design and development of a novel bi-directional piezoelectric energy harvester, Smart Materials and Structures, Vol. 23, no. 9, 095012, doi:10.1088/0964-1726/23/9/095012
  15. W.-J. Su*, J. Zu, and Y. Zhu, 2014, Design and Development of a Broadband Magnet-induced Dual-cantilever Piezoelectric Energy Harvester, Journal of Intelligent Material Systems and Structures, Vol. 25, issue 4, pp.430-442, doi:10.1177/1045389X13498315
  16. E. Fleurent-Wilson, T. E. Pollock, W.-J. Su, D. Warrier, and A. Salehian*, 2014, Wrinkle localization in membrane structures patched with Macro-Fiber Composite actuators; inflatable space antenna applications, Journal of Intelligent Material Systems and Structures, Vol. 25, no. 15, pp. 1978-2009, doi: 10.1177/1045389X13512908
  17. W.-J. Su* and J. Zu, 2013, An Innovative Tri-directional Broadband Piezoelectric Energy Harvester, Applied Physics Letters, Vol. 103, no. 20, 203901 (2013), doi:10.1063/1.4830371
  18. Y. Zhu*, J. Zu, and W. Su, 2013, broadband energy harvesting through a piezoelectric beam subjected to dynamic compressive loading, Smart Materials and Structures, Vol. 22, no. 4, doi:10.1088/0964-1726/22/4/045007
  19. F.-C. Wang*, M.-K. Liao, B.-H. Liao, W.-J. Su and H.-A. Chan, 2009, The performance improvements of train suspension systems with mechanical networks employing inerters, Vehicle System Dynamics, Vol. 47, no. 7, pp. 805-830
  20. F.-C. Wang* and W.-J. Su, 2008, The impact of inerter nonlinearities on vehicle suspension control, Vehicle System Dynamics, Vol. 46, no. 7, pp. 575-595

Refereed Conference Proceedings

  1. C. T. Chen, W. J. Su, W. J. Wu, D. Vasic and F. Costa, Meso-scale piezoelectric energy harvester for low-frequency rotational motion, Proc. SPIE 11382, Smart Structures and NDE for Industry 4.0, Smart Cities, and Energy Systems, 113820C (22 April 2020); https://doi.org/10.1117/12.2556335
  2. W.-P. Sun and W.-J. Su, 2019, July, Analysis of a Two-Degree-Of-Freedom Piezoelectric Energy Harvester from Vortex-Induced Vibrations, Proceedings of the 2019 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Hong Kong, China
  3. W.-J. Su and H.-C. Lu, 2018, September, Experimental and Theoretical Study of a Dual-beam Piezoelectric Energy Harvester with Misaligned Magnets, Proceedings of the ASME 2018 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS2018-8086, San Antonio, TX, USA
  4. W.-J. Su, 2017, September, Design and Modeling of a Bi-directional U-shaped Piezoelectric Energy Harvester, Proceedings of the ASME 2017 Conference on Smart Materials, Adaptive Structure and Intelligent Systems, SMASIS2017-3827, Snowbird, Utah, USA.
  5. W.-J. Su and J. Zu, 2012, November, Modeling of V-shaped Beam-mass Piezoelectric Energy Harvester: Impact of the Angle between the Beams, Proceedings of the ASME 2012 International Mechanical Engineering Congress & Exposition, IMECE2012-86587, Houston, Texas, USA.
  6. F.-C. Wang and W.-J. Su, 2008, June, Inerter Nonlinearities and the Impact on Suspension Control, Proceedings of the 2008 American Control Conference, pp. 3245-3250, Seattle, Washington, USA.

Patent

  1. 王富正, 徐茂盛, 蘇偉儁, 林子謙."螺桿式慣質機構", 中華民國專利, 發明第 I321620 (11/March/2010~25/Oct/2027)