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Introduction

I This paper gives explicit analysis of the demand for
liquidity and the transformation of illiquid assets into liquid
liabilities provided by banks.

I Uninsured demand deposit contracts are able to provide
liquidity but leave banks vulnerable to runs:
there are multiple equilibria with differing levels of
confidence.
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Introduction: main results

I Banks issuing demand deposits can improve on a
competitive market by providing better risk sharing among
people who need to consume at different random times.

I The demand deposit contract providing this improvement
has multiple equilibria.

I If confidence is maintained, there can be efficient risk
sharing.

I If agents panic, there is a bank run and incentives are
distorted.

I Bank runs cause real economic problems because even
”healthy” banks can fail.
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Model: production

I One good, 3 periods. (t = 0, 1, 2)

I A continuum of ex ante identical agents, each of whom
receives 1 unit of endowment at period 0.

I Production technology:

t = 0 t = 1 t = 2
−1 0 R (long-term illiquid investment)} 1 0 (short-term liquid investment)

Diamond and Dybvig (1983) Bank Runs, Deposit Insurance, and Liquidity



Model: liquidity shocks

I iid liquidity shocks: an agent wants to consume in period 1
with probability ρ, and wants to consume in period 2 with
probability 1− ρ.

I Ex ante all agents have the same utility (we do not
consider discounting):

U = ρu(c1) + (1− ρ)u(c2)
u′ > 0;u′′ < 0.
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Model: liquidity shocks (con’t)

Ex post agents can be of two types:

I Type 1 agents care only about consumption at t = 1.
I Due to the law of large number, a fraction ρ of agents are

type 1 agents, and a fraction (1− ρ) of agents are type 2
agents.

I Type 2 agents care only about consumption at t = 2.
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Market allocation

The allocation obtained when a financial market is opened.

I Consider a bond market opened at t = 1, whereby q units
of good at t = 1 are exchanged against the promise to
receive 1 unit of good at t = 2.
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Market allocation (con’t)

I At t = 1:
I each agent chooses to invest x units of endowed good in

the long-term technology.
I Type 1 sold Rx units of bonds, and received Rxq units of

goods at t = 1.
I Type 2 bought 1−x

q units of bonds, that promised 1−x
q

units of goods at t = 2.

I

c1 = (1− x) +Rxq

c2 = Rx+
1− x
q

I c1 = qc2
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Market allocation: c1 = 1; c2 = R

I q = 1
R

. Why?
I If qR > 1, then x↑⇒ c1↑, c2↑.
I If qR < 1, then x↑⇒ c1↓, c2↓.
I To have an interior maximum, we need qR = 1, and the

only (interior) equilibrium price of bonds is q = 1
R .

I q = 1
R
⇒ c1 = 1, c2 = R

Agents can do no better or worse than if they produced
only for their consumption.

I This market allocation is not Pareto-optimal in general,
because liquidity risk is not properly allocated.

Diamond and Dybvig (1983) Bank Runs, Deposit Insurance, and Liquidity



Optimal insurance contracts under publicly

observable types

I The optimal consumption for type i in period k, {ci∗k },
satisfies

(1) c2
∗

1 = c1
∗

2 = 0
(2) u′(c1

∗
1 ) = Ru′(c2

∗
2 ) (MRS=MRT).

(3) ρc1
∗

1 + (1−ρ)c2∗2
R = 1 (Resources constraint)

I R > 1 and relative risk aversion > 1
⇒ (1),(2),(3) imply c1

∗
1 > 1, c2

∗
2 < R.

I (2) ⇒ c2
∗

2 > c1
∗

1 because R > 1 and u′′ < 0.

Diamond and Dybvig (1983) Bank Runs, Deposit Insurance, and Liquidity



Optimal outcome is implementable

I The optimal outcome is implementable (e.g. under
demand deposits contracts) as a Nash equilibrium, since it
satisfies self-selection constraints.

I c1
∗

1 > 1 and c2
∗

1 = 0
⇒ type 1 does not envy type 2.

I c2
∗

1 + c2
∗

2 = c2
∗

2 > c1
∗

1 = c1
∗

1 + c1
∗

2

⇒ type 2 does not envy type 1.

I The optimal insurance contract insures agents against the
unlucky outcome of being a type 1 agent.
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Bank’s role in providing liquidity

deposits withdrawal withdrawal
t = 0 t = 1 t = 2
−1 0 r2} r1 0

I The demand deposit contract satisfies a sequential service
constraint.

I Bank is mutually owned and liquidated in period 2, so that
agents not withdrawing in period 1 get a pro rata share of
the bank’s assets in period 2.
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Equilibrium: optimal outcome

I The demand deposit contract with r1 = c1
∗

1 can achieve
the full-information optimal risk sharing as an equilibrium
(pure strategy Nash equilibrium) in which type 1 withdraws
at t = 1 and type 2 waits till t = 2 to get c2

∗
2 .
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Equilibrium: bank runs

I Another equilibrium has all agents panicking and trying to
withdraw their deposits at t = 1, and if this is anticipated,
all agents will prefer to withdraw at t = 1.
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Why are “bank runs” an equilibrium?

I For all r1 > 1, runs are an equilibrium, because the face
value of deposits is larger than the liquidation value of the
bank’s assets. (Recall the “first-come-first-serve”
constraint.)

I If r1 = 1, a bank is not susceptible to runs; but then, there
is no improvement on competitive market allocation; i.e.
banks provides no liquidity services.

I Bank run equilibrium reduces production efficiency, and
allocation are worse than what would be obtained without
the bank (e.g. trading in the competitive claims market).
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Self-fulfilling equilibrium

I In this model, the investment is riskless. There is no moral
hazard. Bank runs occur even though there is nothing
wrong with the bank’s investment.

I Banks runs is a self-fulfilling prophecy (a crisis of
confidence).
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Regulatory responses: suspension of convertibility

I If liquidity shocks are perfectly diversifiable, and if the
proportion ρ of type 1 agents is known ex ante, suspension
of convertibility contract achieves optimal risk sharing.

I e.g. the bank announces it will not serve more than ρc1
∗

1

withdrawals at t = 1.

I In equilibrium, suspension never occurs, and the bank can
follow the optimal asset liquidation policy.

Diamond and Dybvig (1983) Bank Runs, Deposit Insurance, and Liquidity



Proposition 1: suspension of convertibility

Bank contracts (which must obey the sequential service
constraint) cannot achieve optimal risk sharing when ρ is
stochastic and has a nondegenerate distribution.

I No bank contract, including suspension convertibility, can
achieve the full-information optimum.

I Suspension can generally improve on the uninsured demand
deposit contracts by preventing runs.
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Proposition 2: deposit insurance

Demand deposit contracts with government deposit insurance
achieve the unconstrained optimum as a unique Nash
equilibrium if the government imposes an optimal tax to
finance the deposit insurance.

I As the government can impose a tax on an agent after he
has withdrawn, it can base its tax on the realized total
value of t = 1 withdrawals.

I This is in contrast to privately provided deposit insurance.
Because insurance companies do not have the power of
taxation, they must hold reserves to make their promise
credible.
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