Bank Runs, Deposit Insurance, and Liquidity

Diamond and Dybvig (1983)

October 2011

Diamond and Dybvig (1983) Bank Runs, Deposit Insurance, and Liquidity

Introduction

- This paper gives explicit analysis of the demand for liquidity and the transformation of illiquid assets into liquid liabilities provided by banks.
- Uninsured demand deposit contracts are able to provide liquidity but leave banks vulnerable to runs: there are multiple equilibria with differing levels of confidence.

Introduction: main results

- Banks issuing demand deposits can improve on a competitive market by providing better risk sharing among people who need to consume at different random times.
- The demand deposit contract providing this improvement has multiple equilibria.
 - If confidence is maintained, there can be efficient risk sharing.
 - If agents panic, there is a bank run and incentives are distorted.
- Bank runs cause real economic problems because even "healthy" banks can fail.

Model: production

- One good, 3 periods. (t = 0, 1, 2)
- ► A continuum of ex ante identical agents, each of whom receives 1 unit of endowment at period 0.
- Production technology:

$$t = 0 \qquad t = 1 \quad t = 2$$

$$\begin{array}{ccc} -1 \\ 1 \end{array} \left\{ \begin{array}{ccc} 0 \\ 1 \end{array} \right. R \qquad \text{(long-term illiquid investment)} \\ \text{(short-term liquid investment)} \end{array}$$

Model: liquidity shocks

- iid liquidity shocks: an agent wants to consume in period 1 with probability ρ, and wants to consume in period 2 with probability 1 - ρ.
- Ex ante all agents have the same utility (we do not consider discounting):

$$U = \rho u(c_1) + (1 - \rho)u(c_2)$$

$$u' > 0; u'' < 0.$$

Model: liquidity shocks (con't)

Ex post agents can be of two types:

- Type 1 agents care only about consumption at t = 1.
 - Due to the law of large number, a fraction ρ of agents are type 1 agents, and a fraction (1ρ) of agents are type 2 agents.
- Type 2 agents care only about consumption at t = 2.

Market allocation

The allocation obtained when a financial market is opened.

► Consider a bond market opened at t = 1, whereby q units of good at t = 1 are exchanged against the promise to receive 1 unit of good at t = 2.

Market allocation (con't)

- ► At t = 1:
 - each agent chooses to invest x units of endowed good in the long-term technology.
 - ► Type 1 sold Rx units of bonds, and received Rxq units of goods at t = 1.
 - ► Type 2 bought ^{1-x}/_q units of bonds, that promised ^{1-x}/_q units of goods at t = 2.

$$c_1 = (1-x) + Rxq$$

$$c_2 = Rx + \frac{1-x}{q}$$

 \triangleright $c_1 = qc_2$

Market allocation: $c_1 = 1; c_2 = R$

▶
$$q = \frac{1}{R}$$
. Why?

- If qR > 1, then $x \uparrow \Rightarrow c_1 \uparrow, c_2 \uparrow$.
- If qR < 1, then $x \uparrow \Rightarrow c_1 \downarrow, c_2 \downarrow$.

► To have an interior maximum, we need qR = 1, and the only (interior) equilibrium price of bonds is q = ¹/_R.

•
$$q = \frac{1}{R} \Rightarrow c_1 = 1, c_2 = R$$

Agents can do no better or worse than if they produced only for their consumption.

This market allocation is not Pareto-optimal in general, because liquidity risk is not properly allocated.

Optimal insurance contracts under publicly observable types

The optimal consumption for type i in period k, {c_k^{i*}}, satisfies

(1)
$$c_1^{2^*} = c_2^{1^*} = 0$$

(2) $u'(c_1^{1^*}) = Ru'(c_2^{2^*})$ (MRS=MRT).
(3) $\rho c_1^{1^*} + \frac{(1-\rho)c_2^{2^*}}{R} = 1$ (Resources constraint)
• $R > 1$ and relative risk aversion > 1
 \Rightarrow (1),(2),(3) imply $c_1^{1^*} > 1$, $c_2^{2^*} < R$.
• (2) $\Rightarrow c_2^{2^*} > c_1^{1^*}$ because $R > 1$ and $u'' < 0$.

Optimal outcome is implementable

- The optimal outcome is implementable (e.g. under demand deposits contracts) as a Nash equilibrium, since it satisfies self-selection constraints.
 - c₁^{1*} > 1 and c₁^{2*} = 0
 ⇒ type 1 does not envy type 2.
 c₁^{2*} + c₂^{2*} = c₂^{2*} > c₁^{1*} = c₁^{1*} + c₁^{1*}
 ⇒ type 2 does not envy type 1.
- The optimal insurance contract insures agents against the unlucky outcome of being a type 1 agent.

Bank's role in providing liquidity

deposits	withdrawal	withdrawal
t = 0	t = 1	t = 2
-1 f	0	r_2
ĺ	r_1	0

- The demand deposit contract satisfies a sequential service constraint.
- ▶ Bank is mutually owned and liquidated in period 2, so that agents not withdrawing in period 1 get a pro rata share of the bank's assets in period 2.

Equilibrium: optimal outcome

 The demand deposit contract with r₁ = c₁^{1*} can achieve the full-information optimal risk sharing as an equilibrium (pure strategy Nash equilibrium) in which type 1 withdraws at t = 1 and type 2 waits till t = 2 to get c₂^{2*}.

Equilibrium: bank runs

Another equilibrium has all agents panicking and trying to withdraw their deposits at t = 1, and if this is anticipated, all agents will prefer to withdraw at t = 1.

Why are "bank runs" an equilibrium?

- For all r₁ > 1, runs are an equilibrium, because the face value of deposits is larger than the liquidation value of the bank's assets. (Recall the "first-come-first-serve" constraint.)
- If r₁ = 1, a bank is not susceptible to runs; but then, there is no improvement on competitive market allocation; i.e. banks provides no liquidity services.
- Bank run equilibrium reduces production efficiency, and allocation are worse than what would be obtained without the bank (e.g. trading in the competitive claims market).

Self-fulfilling equilibrium

- In this model, the investment is riskless. There is no moral hazard. Bank runs occur even though there is nothing wrong with the bank's investment.
- Banks runs is a self-fulfilling prophecy (a crisis of confidence).

Regulatory responses: suspension of convertibility

- If liquidity shocks are perfectly diversifiable, and if the proportion ρ of type 1 agents is known ex ante, suspension of convertibility contract achieves optimal risk sharing.
- e.g. the bank announces it will not serve more than $\rho c_1^{1^*}$ withdrawals at t = 1.
- In equilibrium, suspension never occurs, and the bank can follow the optimal asset liquidation policy.

Bank contracts (which must obey the sequential service constraint) cannot achieve optimal risk sharing when ρ is stochastic and has a nondegenerate distribution.

- No bank contract, including suspension convertibility, can achieve the full-information optimum.
- Suspension can generally improve on the uninsured demand deposit contracts by preventing runs.

Demand deposit contracts with government deposit insurance achieve the unconstrained optimum as a unique Nash equilibrium if the government imposes an optimal tax to finance the deposit insurance.

- As the government can impose a tax on an agent after he has withdrawn, it can base its tax on the realized total value of t = 1 withdrawals.
- This is in contrast to privately provided deposit insurance. Because insurance companies do not have the power of taxation, they must hold reserves to make their promise credible.