Dimensional analysis of models and data sets
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Dimensional analysis is a widely applicable and sometimes very powerful technique that is
demonstrated here in a study of the simple, viscous pendulum. The first and crucial step of
dimensional analysis is to define a suitably idealized representation of a phenomenon by listing the
relevant variables, called the physical model. The second step is to learn the consequences of the
physical model and the general principle that complete equations are independent of the choice of
units. The calculation that follows yields a basis set of nondimensional variables. The final step is
to interpret the nondimensional basis set in the light of observations or existing theory, and if
necessary to modify the basis set to maximize its utility. One strategy is to nondimensionalize the
dependent variable by a scaling estimate. The remaining nondimensional variables can then be
formed in ways that define aspect ratios or that correspond to the ratio of terms in a governing
equation. ©2003 American Association of Physics Teachers.
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I. ABOUT DIMENSIONAL ANALYSIS aspect of the motion that is of interest. To start, consider the
. . . , , fast time-scale, oscillatory motion. The line will be idealized
Dlmensmnal _anaIyS|s IS a renjar}(able tool insofar as it cang rigid, so that the bob must swing along a constant radius.
be applied to virtually all quantitative models and data setsTne motion of the bob is then defined by the angle of the line
Topics in the recent literature include donuts, dinosawansg to the vertical,(t), and its time derivatives; the angleis

the most fundamental theories of phys%c.la. some Instances o qanendent variable of this physical model and the time,
dimensional analysis is very powerful; results include the,

: is the only independent variable. Several properties of the
log-layer profile of a turbulent boundary layer and the Spec'pendulum would seem to be important—the mass of the bob
tral slope in the inertial subrange of isotropic turbulence '

both landmarks in fluid mechaniésviore often the result of M, the length of the supporting liné, and the acceleration

dimensional analysis is a hint at the form of a solution or a,Of gravity, g. To account for why there is motion at all, the

more effective way to display or correlate a large data se&mtéal angle, o, O: antllmt.lal Fr&gtéla;_\é_elolqt%ferel assumed__

These kinds of results, though seldom complete if take Obl € zero must asohe'lnclu ed'lf IS ASt 0 r.ﬁ evant vari

alone, are an essential element of many investigations. 2P €S constitutes a physical model for the oscillatory motion
This paper is an introduction to dimensional analysis thaf)f a simple, inviscid pendulum:

aims_ to Take the methqd anq the results as acces'sible @ The angle of the lineg=nond, the dependent variable.

possible® The plan is to investigate the motion of a simple (2) The time,t=m°l°?, the independent variable.

pendulum while emphasizing the use of dimensional analysi ) The mass of the botM =m?I°°, a parameter.

as an adjunct to experimental, numerical, and theoretic 4) The length of the IineLﬁmolltd a parameter

methods. If the simple pendulum seems too familiar, skip 5 Th lerati f —_— b|1t_2 ' i

ahead to Sec. lll. If the use of nondimensional variables ié ) The acceleration o .graV| g=m » @ parameter.

also familiar, skip ahead to Sec. IV, where a general methot®) The initial angle,¢o=nond, a parameter.

of computing a basis set of nondimensional variables is pre-

sented. The effects of drag are considered in Sec. V, an§€ notation X= m*°t° indicates the dimensions mass,
concluding remarks are in Sec. VI. "~ length, and timeéor nond if the variable is nondimensiohal

Parameters are variables that are constant during a particular

realization—M, L, g, and ¢ in this list. The range of these

parameters defines the family of pendula and environments
Consider a pendulum that can be made and observed withat are of interest.

simple tools; a small lead fishing sinker having a mass of a

few tens of grams suspended on a thin monofilament line % .

few meters in length. The motion of such a pendulum will be®™- A mathematical model

only lightly damped by drag with the surrounding air and can  pimensional analysis is most useful when a mathematical
be characterized by two distinct time scales—a regular, fasfpdel is not known. Mathematical models of the simple pen-
time-scale oscillation having a perioB, and a slow, more-  gylum are well known, and we will use them to generate
or-less exponential decay with a time-scdle,. Our goal  numerical data and to show how dimensional analysis can be
will be to learn how these time scales and some other varigpplied to a mathematical model. For an inviscid pendulum
ables, for example, tension in the line, vary with line lengththe rate of change of angular momentum of the bob is due

[I. MODELS OF A SIMPLE PENDULUM

and the mass of the bob. solely to the torque associated with the downward force of
A. A physical model gravity acting on the bob,
2
To analyze the motion of the pendulum, we begin by list- 2\ d_: —LMgsing )
ing the variables that are presumed to be relevant to the dt? '
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If we divide by L?M, the equation of motion becomes tension, Eq(4), although not in the physical model E@®).
2 Even if we were aware that the mathematical model of ten-
d_f: — gsind;. (2)  sion depends upod¢/dt, we should still omit this second
dt L dependent variable in E¢8) becausal¢/dt must itself de-

For experimental purposes it is preferable to start from #@end uport, g, L, M and ¢, and should not be written into
state of rest and so the initial conditionstatO are taken to the physical model again.

be Relations(6)—(9) could be written in one of several forms,
do for example,
$=do, ;=0 3 IF(1,9,L,M, ) =1, (10
It may also be of interest to compute the tension in the Iine,Or reusing yet again,
T, from the radial equation of motiomr/dt=0, and thus F(¢.t,9,L,M,¢o)=1. (13)
de)\? What is most important is the assertion that the physical
T=gMcos¢+LM a) (4)  model is complete, meaning that it includes all of the vari-

ables required to construct a mathematical model that could
The appropriate solution method to Ed8) and (3) de- in principle yield a unique solution. If we do not know the

pends upon the initial angles,. If ¢, is restricted to values corresponding mathematical model, then completeness can

less than about 0.1 rad, then ginin Eq. (2) can be well only be a hypothesis.

approximated byg and the resulting linear model has the Although it is essential that the physical model be com-

well-known solution plete, it is also highly desirable that the physical model be as
concise as possible, that is, it include only those variables
¢=¢ocogt/\L/g). (5 that have a significant effect on the dependent variable. The

selection of variables for the physical model thus requires

In the general case whetg, may take any value from 7 to ’ :
g #® may y - considerable judgment.

m, EQ. (2) is nonlinear and a solution cannot be given in
elementary functions. Numerical integration of E(®. and
(3) is straightforward, however, and yielgsumerica) data |||, AN INFORMAL DIMENSIONAL ANALYSIS
(see Fig. 1 that we will treat as an intermediary between

experiment and theory; we know exactly the physical modelA. Invariance to a change of units

but not the specific parameter dependence. ) . )
We take it for granted that every equation must be dimen-

sionally consistent, or homogenedu®&ut how about the

units used to measure length, time, etc.? The premise of di-
Model equations are a relation between a dependent varimensional analysis is that the physical relationship expressed

able, the anglep or the tensionT, and the independent vari- by a complete equation does not depend on the choice of

ables and parameters that make up the physical model. Evemits, that is, whether Sl, British engineering, or any other.

if we had no idea of the mathematical model, we could stilllnvariance to the choice of units implies a constraint on the

assert that a complete physical model could be used to defirfferm that the dimensional variables can take in a complete

C. Models generally

a relation equation, and dimensional analysis is a systematic procedure
B for learning what that form is.
$=F(.9,L,M, o), 6) Angles are an interesting and relevant case. An angle is the

whereF will be used to indicate an unknown function. If our ratio of two lengths, an arclength and a radius, and is thus
goal were to solve for the period of the oscillation, then weinherently nondimensionalAngles may be specified in units
would evaluate the time at sontarbitrary) repeated value of of radians or degrees, among othgtswe compute an angle

¢ to find ¢ by measurements of arclength and radius in units of
P=F(g.L.M, ép) ) meters, we will get a certain numbe_r. If we the_n use feet to
1o 07 measure these same lengths, we will get precisely the same
For the tensionT, and the maximum tension during an os- number, that is, the same angle. Thus the left-hand side of
cillation, T sy, We could similarly write Eq. (6) is invariant to a change in the units of length. How
about the right-hand side of E¢6)? For invariance to the
T=F(t,9,L,M, o), ) choice of units to hold, the length and the acceleration of
and gravity must appear in the ratig/L (or any power of the

T = F(g.L,M, o) 0 ratio, for example,/L/g), and not ag or L separately, be-
max o cause the latter would imply a changefofvith a change in
It will often happen that the list of variables for the physi- the units of length. Thus, we already know something about
cal model will include one or more parameters that do nothe invariant form of Eq.(6). Consider the masdyl. A
appear in the mathematical model. If we compare Ef5. change in the units of mass should also leBvenchanged,
and (2), the physical model includes the mas4, while in  and yet it is impossible to see how that could hold becatise
the mathematical model, the mass appeared as a coefficieigtthe only variable in the physical model having dimensions
in the gravitational forcéright-hand side of Eq(1)) and in  of mass. This informal analysis leads to the conclusion that
the inertial force(left-hand sidg and cancels. In this regard, an equation fokp that is invariant to a change of units cannot
the mathematical model, EQ), is a considerable advance depend upon the mass of the bob alone. This conclusion is an
over the physical model, Eq6). Note too that the angular obvious result of the mathematical model, E(®. and (3),
velocity, d¢/dt, appears in the mathematical model for thebut can be deduced by dimensional analysis in the absence of
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Fig. 1. Numerical solutions of the simple, inviscid pendulum for two values Fig. 2. The numerical solutions of Fig.(iwo values each of, M, g, and
each ofL (1, 1.9 m, M (1, 2) kg, g (9.8, § m?s, ande, (0.2, 1.0 rad or 16 ) plotted in a nondimensional format. The time is nondimensionalized by
solutions in total.(a) The angle,. The mathematical model, Eg&) and JL7g. In (a) the angles is normalized by the initial anglep,. This helps
(3), does not depend updv, and so there are 8 distinct solutions het®. s to compare the period of the two solutions, but obscures the important
Tension(Newtons for the same set of solutions. Here there are 16 distinct gifference in amplitude. The eight distinct solutions of Figa)Icollapse to
so!utions, though_ some are difficu.lt to distinguish: As these dgta were aGyst two curves that correspond to the caggs=0.2 (solid curvé and &,
quired it was noticed that the maximum tension did not vary with =1.0 (dashed curve In (b) the tension is nondimensionalized Mg. The

16 separate curves of Fig(l) collapse to just two curves that have tihg

as in(a).
the mathematical model. A similar consideration of the units
used to measure time indicates thaindg must also appear
together in a nondimensional variable, sdy/L/g. Again,
any power of this variable is possible, but we might as well A complementary way to come to the same result is to
leave the independent variali¢o the first power. The up- consider the units used to measure time in the mathematical
shot of this reasoning is that the dimensional variables ap-
pear in combinations that are nondimensional. The simplest
(but not the only form for Eq. (6) is !

d=F(t/\LIg, o). (12)

The essential result is that in place of a dependence on on $
independent dimensional variable and four parameters as il
the original Eq.(6), we now have a dependence on one non-
dimensional independent variablg,/L/g, and one nondi-
mensional parameter. When the data of Fig. 1 are plottec(a
using this nondimensional format in Fig. 2, there is a very
significant reduction in the volume of data required to dis- numerical
play and define the data set, an important benefit of dimen- — analytic
sional analysis applied to a presentation of data.

The period of the motion can be written in a way analo-
gous to Eq(7) as

P/\LIg=F (). (13 o . . .

If ¢ is small, say less than about 0.1 rad, the dependence o) 0 ! inm; angle, ¢ ,rag’ians 4 °
0

¢o is found experimentally to be negligib[€&ig. 3(a)], and
F(¢o<1)=constant. The period of a simple pendulum un-Fig. 3. (8 The period of a simple pendulum as determined from a series of
dergoing small amplitude oscillations thus increases in pI,0[1umerical solutiongdoty, computed from energy conservation, which leads

f . . to an elliptic integral that is evaluated numericafolid line), and obser-
portion to the square root of the length of the supporting IInevations (crosses The observations were acquired by measuring the time

divided by the I_Ocal a_C(:eIeratl(_)n of graviy, The mea_SL_”e' required for ten oscillations of a nearly conservative pendulum using an
ment of the period of just one linear pendulum is sufficient tOglectronic stopwatclithe observed period is accurate to about 0.3%he

fix the constantF(¢y<1)= 2, for all such pendula. Itp; flexible line of this pendulum and the initial conditiahp/dt=0 limit the

is not small, then from dimensional analysis and @@) itis  initial angle to about— 7/2<¢o<m/2. The period goes to infinity ag,
evident that the nondimensional period will depend on the”7 because the initial condition id¢(t=0)/dt=0. From dimensional

; : analysis we expect that this resuft(¢,) from the right-hand side of Eq.
smgle paramete‘%' The funCtlonF(¢0)’ often referred to (13), holds for all simple, inviscid penduléb) The maximum tensioidur-

as a_3|m|lamy_ IaV\?’ mlght be determ'_ned by eXpe”me(r_aS' ing an oscillation, T,,.x, determined from a series of numerical solutions
suming that_WSCOl_JS effects are negllgD_bIby the analysis of  (dotg and as computed from energy conservation and the radial equation of
numerical simulations, or from theoffig. 3a)]. motion (solid line); we had no means to observe this variable.

B. Natural units

T
+ observed
numerical

— analytic

=

o

Tmax/Mg
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model, Eqs(2) and(3). There is no compelling reason to use able. For example, if we had included the bob diamdgr,
seconds, aside from the practical convenience that clocks aig the physical model of the inviscid pendulum, it would
calibrated in this unit. But suppose that our aim was to simhave been carried through to a nondimensional variable,
plify the mathematical model by choosing a unit of time thatD, /L. If we had access to an experiment, we would soon
is natural to the problem itself. The natural time scale of thejng thatD, /L was of no evident importance in determining
pendulum is, of course, th@inean period, which can be ihg period of a nearly conservative pendulum, and would
used to define a nondimensional ti@mitting the factor drop it from the final result.
2m), We may ask whether the omission of a relevant variable
t* =t/(P/27r)=t/\/m. (14) would bga Qetecteq. The answer is yes, rarely, if the omission
makes it impossible to nondimensionalize the dependent
The variable* is a pure number that has the same numericalariable. For example, if we analyzed tension under the as-
value regardless of the units used to meadugs andL, a  sumption that the mass would be irrelevant as it was for the
hint that there might be something useful here. period, then it would not be possible to find a nondimen-
Nondimensional time may sound a little esoteric, butsional tension. That would be a clear signal that something
amounts to nothing more than counting time in units of theimportant had been omitted from the physical model. How-
linear period while taking explicit account of théL/g de-  ever, if the dependent variable can be nondimensionalized
pendence of the period. If we were to consider only onewith the variables that are included, then the purely formal
pendulum, then the whole exercise would amount to dividingorocedure of dimensional analysis is not able to identify an
the time by a constant. But if we were to consider all pos-incomplete modef.
sible penduldall possiblel andg), then there is real merit in
this. To see why, let’s follow through by rewriting the equa-

tion of motion, Eq.(2), using the nondimensional tim&;. IV.ABASIS SET OF NONDIMENSIONAL

Time derivatives transform adt=dt*(L/g) and so the VARIABLES

equation of motion becomes Once a preliminary physical model has been defined, the
g2 second and mathematical step of a dimensional analysis is to
W=—sin b, (15 find a complete set of nondimensional variables for that

model. With a little experience and for small problems such
with the initial conditions as before. The solution will be of as the simple, inviscid pendulum, this can be done by inspec-

the form tion. For larger problems it may be helpful to use the follow-
. ing techniqué that relies on the matrix methods of linear
$=F (", ¢o), (16) algebra. Elements of linear algebra are commonly used in
which is just like Eq.(12). If the amplitude of the motion is dimensional analysi$> and an exhaustive exposition of
small, then the linear solution of E¢L5) is just matrix methods can be found in Ref. 8. Bkmer and
. colleague$ have shown how matrix methods can be applied
¢= ¢ cost™. 17D 4 very large problems. The following development differs

The dependence updnandg has not been omitted, but is from most others in that it does not rely on the Buckingham

rather subsumed into the nondimensional tirtfe, so that  Pitheorem, although it comes to the same result, and utilizes

Eq. (17) suffices for allL andg. the null s(g)ace basis to find a basis set of nondimensional
Recall that the linear pendulum has the solutign variables:

= ¢, cost/\/L/g), and note that the argument of that cosine .
fur?c?tion g thegr)mndimensional time—?t was there all along!”- The mathematical problem

(because the arguments of trigonometric and exponential what can we infer about a function given only that it is
functions are nondimensionalThe difference between EQs. inyariant to a change of units? An arbitrary change of units
(5) and (17) is in how you look at them; do you see the o the dimensional variabl; can be written as
dimensional timet, as the independent variable, or do you o oo o0

see instead the nondimensional timie=t/\/L/g? The an- X{=a;Ma,? ayVX, (18

swer will probably depend on the stage of an investigationWhere is the scale change associated with massthe
(and no doubt on our familiarity with dimensional analysis 1 9 ass

experimental data are almost always recorded in dimensiongFalé change associated with lengtis for time and so on
units, and it may be helpful to carry out a numerical integra-UP t0J fundamental units* For pendulum problems and for
tion using dimensional units. But when it comes time to re-mechanics generally,=3 (mass, length, and timewhich is
port a mass of data from many experiments or integrations2ssumed to simplify later expressions. The doubly indexed
there is often a great advantage to the use of nondimension@bject,Dj; , is the dimensionality of thith dimensional vari-
variables defined by dimensional analysis. able with respect to thgh fundamental unit, and when writ-
ten as a matrix is called the dimensional matbx,We have
already listed the elements @ as part of the physical
model. If we assume a physical model withldimensional

Dimensional analysis revealed that the period of a simplevariables, invariance fa¥=3 may be written as
inviscid pendulum did not depend on the mass of the bbb, _ D1 Dy Dap
This result might suggest that the inclusion of extra or super- F(X0 Xz, X)) =F g Mg Bag Xy,

C. Extra and omitted variables

fluous variables in a physical model will not spoil the result. 2124022, P32 ... , P11 o D21 . Pary )
However, in most cases an extra variable will not be detected e e T e
in this way and will lead to an extra nondimensional vari- (29
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for all a (all possible changes of unjtsThus for «;, for  supplying boundary or initial data; thus we learn something

example, we can write that about the argument of an otherwise arbitrary function.
We find that the dimensional variables can appeaF in
ﬁ _ ﬁ ‘9_X1 n ﬁ ‘9_X2 L. i ’9_XI:0 (20) only in certain combinations that correspond one-to-one with
daj Xy daj  IX; da; X, daj the solution vectors, ,

If we multiply Eq. (20) by «;/F [assuming- to be nonzero SteuSy s
as in Eq.(10)], and use ITj = XX 26 - X Ptk= X, (28
| ‘9_X' (21) where X=[ XX, --X,] is a vector of the dimensional vari-
X day” ables in the order they were entered into the dimensional

which follows from Eq.(18), we obtainJ=3 equations, one matrix, D. As anticipated in Sec. I, these Pi-variables are
q-29), q ' nondimensional. The relationship among the Pi-variables can

for eacha be written as
X, oF X, 9F X, dF
Pug g%, TP o TP E % 0 B9 =R, ) @)
X, dF X, dF X, oF with no loss of generality. In the uncommon case tKat

+ (22b

=1 and there is only one nondimensional variable, the func-
tion F must be a constant whose value cannot be determined
X, dF X, dF X, oF from dimensional analysis alone. The period of the linear
DSl__+D32__+"'D3|__—O. (22C) . .
F 0X; F oX, F oX, pendulum is an example, and in that c&se 27 would be
. . ) . . . determined by experiment or thedyig. 3(a)]. Neither can
g;lri set of equations is best written and solved in MalXyimensional analysis determine anything further about the

form of F in the much more common case thé&t 1.
D;iS=0, (23

whereD is a knownJX| matrix, andS is an unknownl
X1 vector of the(logarithmig derivatives ofF with respect  B. The null space
to the dimensional variables that we seek to find:

21?(9_)(1+D22?¢9_X2 mDZ'Fa_X|=O’

Equation(23) is underdetermined in the usual case that
there are more unknown exponents than there are equations.
There will thus be many possible solution vectors that col-
I . . . lectively make up the null space of the matbXx To repre-

We will discuss a solution method in the following, but we gon¢'the nyil space we seek a basis set from which any solu-
anticipate here that there will usually be several solution vVecsi, vector can be constructed. The computation of a null
tors denoted by, , with k=1---K (a bold subscript denotes gn,ce hasis is readily automatehd so we will not delve
a particular vector, not an element of the vector as in EdQjnig the solution methodsee Ref. 12 It is essential, how-
(26)). For example, let's say that there dre4 dimensional  ever, to know the following two properties of null space
variables andK =2 solution vectorgwritten in row form bases.
that happened to b®,=[ 3,08,0] andS,=[08500], where (P1) The number of solution vectors, K, is the same for all
the B are usually small rational numbers. The first solutionbasis sets and is given by the number of dimensional vari-

_ dlogF

= Zlog X, (24

vector indicates that ables in the physical model minus the rank of the dimen-
sional matrix K=1—R. K is also the number of nondimen-
X, dF X, JF . ) . ;
— —=By, ———=0, sional variables and in that respect all basis sets are equally
F Xy F X, efficient. One particular basis set may be more useful than
X. JF X, JF (25 others, and so it is often necessary to transform from one
3 4

= —=8,, ——=0. basis to another. A transformation is easily accomplished be-
F X3 F X4 cause of the following.
(P2 The basis set vectors are orthogonal and span the
null space Any vector that is a solution of the homogeneous
szflx’jZ, (26) system(23) can be found as a linear combination of the
where it is useful to term the right-hand side a “Pi-variable,” \S/S;tcogsblgs?g y t?\?a?:stizti.r ﬁ%rez):a(r;%ﬁzgg? g;zngll !
that is, o NN L
+a,S,, with a; anda, any real number, is in the null space
I, =X51x22, (270  and is thus a solution. The corresponding nondimensional
variable isl13=I171152. If S;, S; andIl3, I1; are preferred
over, say,S,, Il,, then a revised basis set can be taken as

A solution for F is thus

The subscript ol refers to the subscript on the solution

vectorS;y. Any multiple of IT; is a solution to Eq(25), as S, II,, and$S,, T while omiting S,, TI,. The revised

IS anfy pot\'/ver r(])ﬂ_[.l’ af’h's any sur;tof.any polwtgr; et\/ldéntly basis set has the same number of vectors as the initial basis
any function having the argument, 1S a sSolulion 10 EQ. = get and it too spans the null space. An initial basis set of

(25). Another solution can be found fromﬁthe second solution,ngimensional variables can thus be transformed to another
vector S, and is some function ofl,=X5*. In effect, we  pasis set simply by multiplying or dividing thH's is any
have integrated a partial differential equation but withoutorder(an example is in Sec. )V
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C. A basis set for the simple, inviscid pendulum and the null space basis vectdegjain in matrix form are

An application to the fast time-scale oscillation of the 1 0 0
simple, inviscid pendulum may help clarify the use of the 0 1 0
null space basis. The dimensional matiixcan be read di-
rectly from the physical model: T 1 0 0
o 12 of 39
st MLO 1 122 0
mlO 0O 1 0 0 O
p=1 |0 0 01 1 0 (30) L0 0 1
tlo 100 -2 0 A basis set of nondimensional variables is thus
. . . . . I1,=T/Mg,
where the first row is the dimensionality for mass, the second 1=T/Mg (363
row is the dimensionality of length, and the third row is for H2=t/«/L/ , (36b)
time. The dependent variabl¢ is represented by the first
column 0 0 0, allzeros because angles are nondimensional; 113= ¢o. (360

the timet by the second columrd 0 1; themassM by the  The functional relationship for the tension and the maximum
third column 1 0 0,etc. The order of listing the dimensional tension can be written as

variables is important only insofar as the algorithm seeks to

make the first few dimensional variables appear in the non-  T/Mg=F(t/\L/g, o), (379
dimensional variables with exponents of 1. The calculation,,q

of a null space basis yields three vectors that are concat-

enated into a matrix whose columns are the solution vectors, Tmad/Mg=F(¢o). (37b)
S=[$1;%:S], Notice that the masdyl, has been retained in the nondimen-
M1 0 0 sional tension. That the mass must appear is evident when
one considers that the tension in the line will equal the
o 1 0 weight of the bob,T=Mg, in the absence of motiofthe
0 0 0 tension of a moving pendulum will exceed this value due to
S= , (31 centrifugal acceleration Note too that the lengthl., has
0 -12 0 been eliminated from the maximum tension. A little thought
0O 12 0 will reveal that a length cannot be made nondimensional
0 0 1 with T, g, andM in any combination, and thus dimensional
L . analysis reveals that the maximum tension of a simple, in-
and the corresponding basis set of nondimensional variablegscid pendulum started from rest must be independeit of
has three elements: This conclusion was suggested by inspection of a few nu-
merical solutiongsee Fig. 1b)] and dimensional analysis
M =X%=¢" t° M° L° ¢° ¢g=4, (328 assures us that it holds rigoroushy.
xS 40 +1 N0 | =12 (12 401 [} [
Mp=XZ=¢" - M7 L 97" ¢o=t/VL/g, (32h V. THE VISCOUS PENDULUM
—ywS— 40 +0 pO 1O L0 1
Mg=X%=¢% t* M® L? g¢° o= ¢o. (320 Now consider the decay rate defined by
The functional relationship among these may be written as 1 dd
I, =F(1I,,113), or FZEH’ (38
¢=F(t/yLIg, bo), (338 whered is the amplitude of the motion. We begin with ob-
and in analogy with Eqs6) and(7) servations of the amplitud® made by measuring the cord
length at intervals of 30 s to 2 mithe crosses of Fig.(4)].
P/\JLIg=F(d¢y), (33b For this purpose it was advantageous to use a longer pendu-

which is beginning to look familiar. Notice that the madds lum, L=3.70_m, to minimize the consequence of the random
has an exponent of zero in all of the solution vectors, con€MOr of the visually measured cord, about $Gn. This pen-
sistent with the informal analysis of Sec. Il that showed tha@ulum was supported on a needle bearfagishhook on a
there was no way to construct a nondimensional variabl@@rd metal surfageto minimize interactions with the pivot,
from a single parameter having dimensions of mass. Als@"d the line was a smooth monofilament having a diameter
note that the angles) and ¢, sailed into the null space DPi1=0-40<10"° m. The bob was a nearly spherical, more or

untouched because they were already nondimensional. /€SS smooth lead fishing sinker with a diamety,
Tension can be analyzed in the same manner; the dimer=0.0211 m and made! =0.055 kg. The observed amplitude
sional matrix is history, ®(t), was quite repeatable and can be roughly char-
acterized as an exponential decay with a time scale of about
t M L g & 10 min.
m{1 010 00 A. A physical model of the viscous pendulum
D= | 1001 1 0] (34) We presume that hydrodynamic drag with the surrounding
t|-2 100 -2 0 air is the primary damping proce¥and that the diameter of
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- ——— B. Drag on a moving sphere
o ‘ - numerieal A piecewise approach is tried next. Consider in isolation
é \ ” N T the hydrodynamic drag on a smooth sphéhe bob due to
g {I’H l“ WM M\H\M’Wﬂ JM W WMM WI WMW TR e e a steady motion through an infinite viscous flgar) that is
1 otherwise at rest. The physical model of drag is specified by
25 550 550 2000 (1) drag(a force, H=m't~2, the dependent variable;
a time/(Lig)'"2 (2) speed of the spherél=mPI't "1, a parameter;

(3) diameter of the spher®,=mClt°, a parameter;
(4) density of air,p=m*l"3t°, a parameter;

(5) kinematic viscosity of airp=m°l%t"1, a parameter.

Despite the highly idealized configuration of this problem, it
is very difficult to compute the drag in the common case that
the flow around the sphere is turbulent. However, dimen-
sional analysis combined with laboratory measurement leads

- - analytic
— numerical

0 X
-1 4
«
S-2r  + observed
—
0

0.05 01 015 02 to a useful result. The initial basis set of nondimensional
b o, radians X L .
variables for this physical model comes out to be
Fig. 4. (a) Observationgcrossesand a numerical solutiofthe thin solid H "
line) of the motion of a simple, viscous pendulum. The crosses are obser- - m,=—— (40)
- - . 1 2012 2 )
vations of the amplitude at intervals of 30 s to 2 mih) The decay rate D ) UDy,

computed directly from the observatiofosses, from three repetitions of
the experiment as estimated from an approximate analytical solution Eq.where we recognize thdi, is the inverse of an important

(53) (dashed ling and as determined from the numerical model solution nondimensional variable called the Reynolds number:
(solid line). Drag that is linear in the angular velocity produces a constant

decay ratgsimple exponential decay in timeand drag that is quadratic in UDy
the angular velocity produces a decay rate that increases linearly with the Re= v (41)
amplitude, .

We know from P2 of the null spad&ec. lll) thatIl in Eq.
(40) is not uniquely determined by dimensional analysis, and

the bob,D,, and of the lineD,, are now relevant, as are the that a general basis set can be written as
density and kinematic viscosity of aip, and ». When we H UD,\" UDy
amend the inviscid model of Sec. Il to include these vari- nnlzm T) M=
ables, we have a physical model for the decay rate of a b

simple, viscous pendulum: wheren is any real constant. In writing this equation we are
assuming thatH and II,=Re should remain to the first
power. The functional relation between these nondimen-
sional variables could be written a$l,=F(Re), whereF

: (42)

14

(1) the decay ratel'=m° %!, the dependent variable;
(2) mass of the bobM=m!%° a parameter;

(3) length of the lineL=mC° a parameter; depends om.

(4) acceleration of gravityg=m°l't"?, a parameter; We will next consider how to choose the valuerothat

(5) the amplitude of the motionp=nond, a parameter; gives the best or most useful fofRegardless of the form

(6) diameter of the lineD,=m°t°, a parameter; finally chosen, an essential result is that the nondimensional

(7) diameter of the spher®,=m°lt° a parameter; drag, ,I1;, is expected to be a function of the Reynolds

(8) density of air,p=m?"3t°, a parameter1.2 kgm 3,  number alone(more on Re in the following Laboratory
nomina); measurements can thus be used to defi{®e) which

(9) kinematic viscosity of air,y=m°?t"!, a parameter should hold for all steadily moving spheres, just the way that
(1.5x10 ° m?s %, nomina). the functionF (¢,) [see Fig. 8)] sufficed to define the pe-

riod for all inviscid, simple pendula.
(For the purpose of defining the amplitude of the motion we
might have usedp, in place of®.) Dimensional analysis,
from here on omitting all of the intermediate steps, indicates The crucial(and in this case the onlghoice is that of the
six nhondimensional variables, dependent nondimensional variablé;. One strategy is to
_ 3 U2 302 form I1, so that it reflects a physically meaningful, even if
IVLIg=F(®,Dy/L,Di/L,pDy/M,g"2L %% v). (39 highly idealized, solution for the dependent variable. This
The first five nondimensional variables have an obvious infprocedure is often termed a scaling analysie Ref. 3, Lin
terpretation, but the last one involving the viscositydoes and Segel, Chap.)6
not. In any event, we are not ready to make use of such a A scaling analysis requires some sense of the physics of
comprehensive model. We may still be thinking of the nearlythe problem. Visual observations of the flow around a sphere
conservative pendulum of Sec. I, but the nine-variableprovide hints that drag can arise from two distinct processes.
physical model includes all possible pendula and fluid mediif the sphere is moving very slowly so that the wake behind
ums. Before we can expect a useful result from dimensionahe sphere is nearly undisturbed, then the drag will be mainly
analysis, we will have to identify the most relevant param-viscous, that is, due to the shear of the flow around the
eters for the kind of nearly conservative pendulum that wesphere and directly proportional to the viscosity of the fluid.
have in mind. The shear can be estimated UyD,,, and the viscous stress

1. Scaling analysis
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by prU/Dy, . If this viscous stress acts over an area propor- 10

tional to D2, then the viscous drag on the sphere would be sphere
HopvDyU. This is the basis sat=1 of Eq. (42). If we 10° |
expe(_:ted that this was thg dominant (_jrag—p_roduping process, — C=H/(p AU?2) ’
then it would be appropriate to nondimensionalize the drag £ ol -- C:,= Hi( pv D, U) ’/
as 3] [
2
— — o 2
DU =F(Re=C,(Re), (43 2 10
o
because the Re-dependence @f, the so-called viscous 10° |

drag coefficient, would then be minimized.
Even if the fluid were nearly inviscid, there would still be
drag because fluid must be accelerated as it is displaced by 10

the moving sphere. If the displaced fluid is carried along in a a 10 10
highly disturbed wake, as is more or less observed behind a Re = UD /v
rapidly moving sphergwe will clarify what is meant by
rapidly), then the drag would be roughly proportional to the 10°
density of the fluid times the speed squafadmomentum cylinder
flux) multiplied by the frontal areah= erﬁ/4. Thus the in- 6
ertial drag would be estimated &< pAU?. If we expected 10T 5 s’
that this inertial drag process was dominant, then the initial 2 — C=H/ApAUTR) . 4
basis set corresponding to=0 would be appropriate: o' f = -G pval)y
WZF(RG):Q(RG), (44) %102 ,//
o

and the Re-dependence of the inertial drag coefficient 10° — —ant®
would show the departures from inertial drag due to viscous \
effects. Either form of the drag coefficient effectively con- 3/2 + Re/3
veys the laboratory data and in that regard there is nothing to 107 — —
choose between them. b 10 10

Re = UD/v
2. The other nondimensional variables: The Reynolds Fig. 5. Drag coefficients of a sphefe) and a cylinder(b) moving at a

steady speed) through viscous fluid. Two forms of drag coefficient are
shown here, the viscous drag coefficient is denote€pythe dashed ling
Once the dependent nondimensional variath,, has and the inertial drag coefficient denoted 8y (the solid line, usually de-
been selected, the remaining nondimensional variables cdl§t€dCa. and by far the most commonly encountered fprivtote thatC,
be formed in ways that most clearly define the geometry o 0O(1) if Re is very small, and tha_ﬂ:i is O(1) if the Reynolds number is
. .~ Very large. The inertial drag coefficients were read from Muresioal. (Ref.
the problem, that reflect a balance of terms in a governing, fig. 7.3, and RouseRef. 16, Figs. 125 and 126
equation, or that follow conventions in the field. This pre-
scription is necessarily vague because the possibilities are
limitless, however, the task is often easier than might besery roughly constant within subrangtsWe can anticipate
expected. For the example of drag on a moving sphere, thet@at the motion of our pendulum is in an intermediate Re
is only one remaining nondimensional variable, the Reynoldsange in which both viscous and inertial drag will be impor-
number or its inverse. There are many other such ratios, otant.
ten termed nondimensional “numbers,” that succinctly char-
acterize the balances among terms in mathematical mode¢s A numerical simulation
and thus are the natural terminology of theoretical mechan-
ics. To model the decay process we will include hydrodynamic
Recall that for the purpose of modeling drag, a slowlydrag on the line and the bob in the angular momentum bal-
moving sphere is one that has a nearly undisturbed wak&nce. Drag will be estimated by means of the steady drag
Observational evidence shows that this kind of flow occurdaws discussed above, and so it is implicitly assumed that the
when Re<1, regardless of speed per se; dimensional analysi§istantaneous speed of the bob or line gives the same drag as
tells us as much in that the drag coefficient depends only o#/ould a steady motion of the same speed. Whether this as-
Re. The small Re range is that of a very small bug swimmingumption is appropriate remains to be seen.
slowly through water, for example. Note that in this very The main task is to account for the Re-dependence of the
small Re range the viscous drag coefficiéntis O(1) and drag coeff|C|ents_. Because the line is quite thin, the Reynolds
roughly constanfFig. 5@)]. For creatures and objects any- Numbers of the line are rather small, R&ID, /»=<20, where
where near our size, Reynolds numbe®@0%) and greater U=rd¢/dt, ris the distance from the pivot, and arpriori
are the norm, and inertial drdgften termed “form drag}is  estimate ofd/dt is ¢o/+L/g. In that small Re range the
generally more important for runners and bicyclers than isviscous drag coefficient on a cylinder can be approximated
viscous drag. Notice that for moderately large values of Rewell by C,=3/2+ Re/3 (the heavy dotted line of Fig.(8)).
10°<Re<10, the inertial drag coefficien€; is O(1) and The drag per unit length of the line§=dr, can then be

number
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computed by the drag law corresponding to E43) asH 1 do a

=mprC,U dr, and the(dimensional torque due to drag ddr- 2 (51)
over the length of the line is then )
and the quadratic term causes decay at a rate
L T 1 ,|dg|\ de
T.=f rHdr=p EVL3+1—2D|L St g (45) 1dd 8b¢) 5
° T (52

The absolute value operator ensures that the drag force al- N . .
ways opposes the motion. The bob has a much larger dianf!nere again® is the slowly varying amplitude. For small
eter and a Reynolds number Ret(d/d)D, /v in the range damping, 'ghes%e ﬁan be atdded together and evaluated to give
Rg,=<1000 where no simple formula for a drag coefficient is an approximate decay rate,

highly accurate. Thus we will allow an arbitra@(Re,) and
compute the drag-induced torque on the bob as

do| d

PVTG= 5 o =~ 5.2¢1074— 1.6 10" 2 53
g—aw'v— 22X —1.0X , ( )
¢ 46 shown as the dashed line of Fig(b#4 This approximate
dtl dt’ (46 model shows very clearly how the decay rate is expected to
) vary with the parameters that characterize the pendulum and
where Rg and C; are evaluated at each time step of thethe fluid medium(and gives an excellent account even for
numerical integration using the data of Fig(ab The  quite strong dampingAll of the pieces of this model were
amended angular momentum balarize dimensional vari-  present in our first attempt at dimensional analysis of the

TP
=g Ci(Rey)D{L®

ables, viscous pendulum, Eq39), though we had no way to rec-
d2¢ g n+ ognize them at the time.
e ESin( ¢)— KR (47) The decay rate can be estimated from the observations and

from the numerical solution by a dire¢ho smoothing re-

together with Eqs(53) and (54) and the data of Fig.(@  quired first differencing[Fig. 4(b)]. A comparison of decay
plus the initial condition3) make a complete if rather cum- rates makes a much more sensitive test of the drag formula-
bersome model that can be integrated numerically. tion than does the amplitude its¢tfee Fig. 4a)] and reveals
With drag terms included, the period of the oscillation isthat the decay is not a simple exponential as it first appears.
nearly unchanged, while the amplitude slowly decfisig.  There is a significant dependence of the decay rate upon the
4(a)]. The decay simulated by the numerical solution looksamplitude, which in the approximate model follows from the
plausible when compared with the observations, suggestinguadratic drag term, Eq58). Thus the hydrodynamic drag

that the steady drag laws have the gist ofaitmore critical ~ on this pendulum appears to be mainly inertigec. IV),
appraisal is given below though viscous drag is important too, especially at smaller
amplitudes.
Although the modeled decay rate is fairly accurate, there is
at least a hint that the appropriate drag law for this pendulum
D. An approximate model of the decay rate overall (that is, the entire system, including the supporting
. . . structure has a somewhat greater linear drag than is found in
Numerical solutions are not revealing of parameter depene models, and slightly less quadratic drag. This behavior is
dence, but given two modest approximations we can deducgnd consistently over a range of conditions, but further
a model of the viscous pendulum that has transparent solydy of drag phenomena is outside the scope of this paper.
tions. First, the anglé is small enough in the case shown in

Fig. 4(a) that sin¢ of Eq. (55) can be well approximated by

¢. Second, the drag overall is due most§85%, to the line, VI. CONCLUDING REMARKS

and so it should be acceptable to make the approximation The claim was made in Sec. | that dimensional analysis

that the inertial drag coefficient for the bob is a constantyas occasionally quite powerful. With some experience we

Ci=0.7, an average for the Reange of the bob in the can see that dimensional analysis is most useful in cases
present case. With these approximations we obtain a solvabighere the mathematical model is either not known or cannot

model for the simple, viscous pendulumow in nondimen-  be solved usefully. Dimensional analysis can always make a

sional variables little progress toward a solution merely by showing the form
a2 deb de| deb that variables _must take_in an equation that is inyarian_t to a
= —¢—a——— ’_*_* (48)  change of units. That, in a nutshell, is what dimensional
dt dt dt*|dt analysis does. In the case that there are only two or three
where the coefficient in the linear drag term is nondimensional variables in a problem, dimensional analysis
a can be an immensely powerful tool leading almost directly to
T prL 49) a solution (the inviscid pendulumor an efficient way to
T2 Mgﬂ?' ( correlate a large data s&rag on a moving spherelf the

problem has many variablgshe viscous pendulum then
dimensional analysis alone will probably not suffice, and fur-
p 21 ther analysis or simplification will be required.

=M 3 : (50) We have emphasized that an equation written in nondi-
mensional variables, for example E4.7), is more efficient

Approximate solutions for small damping are given in Ref.than its dimensional counterpart, E§). There is something

14; linear drag causes the amplitude to decay at a(rete-  to keep in mind, however. An equation written in nondimen-

dimensional sional variables must be accompanied by a definition of the

and the coefficient in the quadratic term is

b D,L?

<0.7D§L+
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nondimensional variables. Better yet is an explanation of just Similarity and Dimensional Methods in Mechanigeademic, New York,
Why a particular definition was used, and what its advantage31959. Stl_II more advanped is G.. l. Barenblaﬁcalmg, Self-Similarity and
and limitations may be. The thoughtful use of dimensional ,"ermediate Asymptotia€ambridge U.P., Cambridge, 1996 .
lvsis is a hallmark of insiahtful analvsis. while the cava- An excellent_dlscu_ssmn of phy_su_:al r_neasurement and_ much else that is

ajnay : ' g_ ySIS, : relevant to dimensional analysis is given by A. A. Sonin, “The physical
lier use of nondimensional variables can obscure what mightpasis of dimensional analysis,” 2001. This unpublished manuscript is
otherwise have been a valuable message. available from(http://me.mit.edu/people/sonin/html

The mathematical steps that produce a nondimensional baWhat would be the result if the acceleration of gravifywas omitted, that
sis set are certain and quiq‘iﬂdeed, automatj¢ and the is, _what phenomen_on would thqt entail? Whay |_f/v_ere omitted, but an
physical model is a finite list of variables. The ease with initial angular velocityd ¢/dt was mcluded’?@\/%llzhat if in pla%eogﬁive used

; ; : : ; the acceleration due to the earth’s rotatiéd;R? (Q=m"I"t" " is the
WhIC_h a dimensional analySIS .Can. be do_ne mlght generaterotation rate of the earth arilis the distance normal to the rotation axis.
cpnﬂdepce that the _pr(_)cedur? is without risk of grror. WhenST. Szirtes,Applied Dimensional Analysis and ModelirilylcGraw—Hill,
d|m(_an3|onal anaIyS|s is applied to a mathemat_(ccal nu- Englewood Cliffs, NJ, 1997
merica) model, this may well be true. But when dimensional °S. Brickner and the University of Stuttgart Pi-Groughttp:/
analysis is meant to describe a real, physical system, that isvww.pigroup.de), is an excellent resource for advanced applications of
not the case. Though the mathematical analysis is certain, ij"me”S'O”a'_a”a'YS'S- o _
remains that the definition of an appropriate physical model he calculation of a null space basis is, in effect, what all computational

. Id traightf d th les h ight methods accomplish, and was noted by E. A. Bendar|ntroduction to
IS seldom as straightiorward as the examples here might SUgy,iematical ModellingDover, New York, 197Y. We delegate the cal-

gest. The absolute requirement that the physical model begyjation to the computer, and emphasize those properties of the null space
complete is always at odds with the practical need to keephbasis that are essential for the present purpose.

the physical model concise. The success of a dimension&iFor example, suppose tha; is a speed in British engineering units,
analysis depends upon finding a satisfactory compromise;feet/second, and we wish to computg in SI units, meters/second. This
this requires judgment that comes with experience and fromVvariable has dimensionalit),5=0 (Xs does not have units of mass

continual reference to relevant observations and numericalP2s=1 for length, andDs=—1 for time. The appropriate scale change
integrations factors area;=0.435 (pounds to kilograms for nominaj), a,=0.3048

(feet to meters anda;=1 (seconds to secondsThusX;=0.304&;.

12G. strang,Introduction to Linear AlgebraWellesley—Cambridge Press,
ACKNOWLEDGMENTS Wellesley, MA, 1998.

. . BThere is no doubt that dimensional analysis has just added something

The author was supported primarily by the Seward significant to what we knew from numerical integratidtisat is, the maxi-

Johnson Chair in Physical Oceanography, administered bymum tension is independent &f). Does this result from dimensional
the Massachusetts Institute of Technology—Woods Hole analysis constitute a satisfactoexplanatior? This is clearly a matter of
Oceanographic Institution Joint Program in Oceanography. d_egree_and opinion_, but my opinion is that it does not. On the one han(_j,
Additional support during the period of manuscript prepara- dimensional analysis has deduced a very clear statement of the observation

. h . from a general principldinvariance to the choice of unjtand a set of
tion was prOWdEd by the U.S. Office of Naval Research. specific conditiongthe physical modeél This is a form of explanation, but

Thanks to James Girton, Eric Kunze and Andy Solo for their gne that seems shallow and unsatisfying; there is no connection to a physi-
comments on a draft manuscript, and to Jim Hansen for cal principle, and not the slightest hint of quantitative limits. In this in-
comments and suggestions that have helped to clarify thisstance and frequently, we will have to look beyond the immediate problem
manuscript. at hand or use something more than dimensional analysis when we seek
explanations with enough depth to confer a useful understanding. Consider
the following: The period of a simpléinviscid) pendulum undergoing
small amplitude motion is independent of the amplitude, and yet increases
with the square root of the length. Can you explain these facts? One
approach might be to use dimensional analysis to analyze oscillators that
have a restoring force that is proportional to some arbitrary power of the

¥present address: Office of Naval Research, Code 3220M, 800 N. Quincy
St., Arlington, VA 22217-5660; electronic mail: jprice@whoi.edu

!E. Thurairajasingam, E. Shayan, and S. Masood, “Modeling of a continu-
ous food pressing process by dimensional analysis,” Comput. Ind.(Eng.

press; J. R. Hutchinson and M. Garcia, “Tyrannosaurus was not a fast . . . ) . ;
runner,” Nature(London 415, 1018—10222002. displacement. A salient fact for the maximum tension shown in Fig.i8

%k Wilczek, “Getting its from bits,” Nature(London) 397, 303—306 that the maximum value is exactly(Bondimensional unijsand occurs at
(1'999 ' ’ ’ ¢o=. Is dimensional analysis of any further use for explaining this?

3This essay builds upon the introduction to dimensional analysis that can bgConSAder energy conservation.

found in most comprehensive fluid mechanics textbooks. Recent examplesg'et‘r’“l.ed t"riatmjenltjﬁf dsimgg:rg ggolcisnsges ar;z rgyAP I\T ISquwe,d l:/lencc;iulum
include P. K. Kundu and I. C. Cohefjuid Mechanics(Academic, New ampmgl,l m. J. Fhys e (. § an - A Nelson anad M. ©.
York, 2002); B. R. Munson, D. F. Young, and T. H. Okiisltundamentals Olsson, “The pendulum: Rich physics from a simple systeihid. 54,

of Fluid MechanicgWiley, New York, 1998, 3rd ed.; D. C. WilcoxBasic 1%12_1.21(.198.3' ) ) . )

Fluid Mechanics(DCW Industries, La Canada, CA, 200G, M. White, ne criterion is to follow conventions of the field. In this ca$eis a drag
Fluid Mechanics(McGraw—Hill, New York, 1994, 3rd ed. An older but coefficient, usually defined &8,= H/%pAUZ, whereA is the frontal area
very useful reference is by H. RousElementary Mechanics of Fluids  of the object. For the purpose of this essay we will consider other possible
(Dover, New York, 1948 A particularly good discussion of the relation-  forms forIl; .

ship between dimensional analysis and other analysis methods is by C. G3More recent textbooké&Ref. 3, like this article, show only the curve that
Lin and L. A. Segel,Mathematics Applied to Deterministic Problems in  runs through the middle of a tight cloud of data points that have accumu-
the Natural ScienceéMacMillan, New York, 1974. lated from many laboratory experiments, see for example, R@vske 3.

4An algorithm for computing nondimensional variables has been imple- What is most important, but not evident from this kind of presentation, is
mented inmaTLAB and can be downloaded from the author’'s web page, that drag coefficients inferred from experiments made using a very wide
(http://mwww.whoi.edu/science/PO/people/jprice/misc/Danalysis.m or range of spheres and cylinders moving at widely differing speeds and
from themaTLAB archive(the file name is Danalysis)mAlso available is through many different viscous fluiddNewtonian fluid$ do indeed col-

a manuscript that treats aspects of dimensional analysis that are notlapse to a well-defined function of Reynolds number alone, just as dimen-
touched on here (http://www.whoi.edu/science/PO/people/jprice/class/  sional analysis had indicated. This is a result, characteristic of dimensional

ND.pdf). analysis generally, that is at once profound and trivial. One might say
5The simple pendulum is the starting point for most discussion of dimen- trivial because, after all, dimensional analysis told us that the drag coeffi-
sional analysis including the classic text by P. W. Bridgniaimensional cient must depend upon Re alone. From this perspective, an effective

Analysis(Yale U.P., New Haven, CT, 19372nd ed., which is an excellent collapse of the data verifies that carefully controlled laboratory conditions
introduction to the topic, and the more advanced treatment by L. |. Sedov, can indeed approximate the idealized physical model. It is profound in that
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dimensional analysis has shown the way to a useful réBigt 5), where on these phenomenon see S. Vogiéfk in Moving Fluids(Princeton U.P.,
there would otherwise have been be an unwieldy mass of highly specific New York, 1994, and P. Timmerman and J. P. van der Weele, “On the rise
data(as in going from Fig. 1 to Fig.)2An open question of considerable  and fall of a ball with linear and quadratic drag,” Am. J. Phgg, 538—
practical importance is whether the steady drag laws are robust in the 546 (1999.

sense of giving useful estimates in practical problems, say our pendulum,gCan you calculate a Reynolds number for the bob and the line from the
in which the idealized conditions are inevitably violated. Other data sets

have been developed to define the effects of idealized surface roughness?”g,Inal S_'X nond|m§n3|onal varlable§ of E@9)? Which nondimensional
for example, but our pendulum has a long list of violations—time- variable is present in Eq39) but not in Eqs(57) and(58)? How or why

dependence, a nearby solid boundéhe floop, slight surface roughness, ~ Was it omitted? Under what conditioi@hat parameter rangevould you

etc., all present at once, so that we are on our own. About all that can be €Xpect to see a Significant effect of the time-dependent motion? How could

said is that it is important to understand the full set of assumptions under you test(in principle and in practicethat the steady drag formulations

which a similarity law has been defined, and to be skeptical of applications really are appropriate for modeling the damping of a simple pendulum?
17outside of those bounds. ‘ o o You might, for example, consider that the fluid medium was water in place

Even at very large Reit does not follqu that viscosity is entirely irrelevant. ot 4ir (the approximate density and kinematic viscosity of water @are

Significant qhanges in the drag coefficient occur at f';\rounvelﬁelo5 due _ =1.0x10° kgm 3 and »=1.8< 10" m?/s at a temperature0°C, and

to changes in the viscous boundary layer and the width of the wake behind 0 3 B 6 2 o

a moving sphere. This is the Re range of a well-hit golf ball or tennis ball, p__1'0><1 kgm™* and »=0.7x _10 m/s at a temperature40 (?)'

and is part of the reason that aerodynamic drag on these objects has £>1Ven these results, can you think of a name more apt than “viscous”

surprising sensitivity to surface roughness or spin. For much more detail Pendulum?
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