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Dimensional analysis is a widely applicable and sometimes very powerful technique that is
demonstrated here in a study of the simple, viscous pendulum. The first and crucial step of
dimensional analysis is to define a suitably idealized representation of a phenomenon by listing the
relevant variables, called the physical model. The second step is to learn the consequences of the
physical model and the general principle that complete equations are independent of the choice of
units. The calculation that follows yields a basis set of nondimensional variables. The final step is
to interpret the nondimensional basis set in the light of observations or existing theory, and if
necessary to modify the basis set to maximize its utility. One strategy is to nondimensionalize the
dependent variable by a scaling estimate. The remaining nondimensional variables can then be
formed in ways that define aspect ratios or that correspond to the ratio of terms in a governing
equation. ©2003 American Association of Physics Teachers.
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I. ABOUT DIMENSIONAL ANALYSIS

Dimensional analysis is a remarkable tool insofar as it
be applied to virtually all quantitative models and data se
Topics in the recent literature include donuts, dinosaurs,1 and
the most fundamental theories of physics.2 In some instances
dimensional analysis is very powerful; results include
log-layer profile of a turbulent boundary layer and the sp
tral slope in the inertial subrange of isotropic turbulen
both landmarks in fluid mechanics.3 More often the result of
dimensional analysis is a hint at the form of a solution o
more effective way to display or correlate a large data
These kinds of results, though seldom complete if tak
alone, are an essential element of many investigations.

This paper is an introduction to dimensional analysis t
aims to make the method and the results as accessib
possible.3,4 The plan is to investigate the motion of a simp
pendulum while emphasizing the use of dimensional anal
as an adjunct to experimental, numerical, and theoret
methods.5 If the simple pendulum seems too familiar, sk
ahead to Sec. III. If the use of nondimensional variables
also familiar, skip ahead to Sec. IV, where a general met
of computing a basis set of nondimensional variables is p
sented. The effects of drag are considered in Sec. V,
concluding remarks are in Sec. VI.

II. MODELS OF A SIMPLE PENDULUM

Consider a pendulum that can be made and observed
simple tools; a small lead fishing sinker having a mass o
few tens of grams suspended on a thin monofilament lin
few meters in length. The motion of such a pendulum will
only lightly damped by drag with the surrounding air and c
be characterized by two distinct time scales—a regular,
time-scale oscillation having a period,P, and a slow, more-
or-less exponential decay with a time-scale,G21. Our goal
will be to learn how these time scales and some other v
ables, for example, tension in the line, vary with line leng
and the mass of the bob.

A. A physical model

To analyze the motion of the pendulum, we begin by li
ing the variables that are presumed to be relevant to
437 Am. J. Phys.71 ~5!, May 2003 http://ojps.aip.org/aj
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aspect of the motion that is of interest. To start, consider
fast time-scale, oscillatory motion. The line will be idealize
as rigid, so that the bob must swing along a constant rad
The motion of the bob is then defined by the angle of the l
to the vertical,f(t), and its time derivatives; the anglef is
the dependent variable of this physical model and the timt,
is the only independent variable. Several properties of
pendulum would seem to be important—the mass of the b
M, the length of the supporting line,L, and the acceleration
of gravity, g. To account for why there is motion at all, th
initial angle,f0 , or an initial angular velocity~here assumed
to be zero! must also be included. This list of relevant var
ables constitutes a physical model for the oscillatory mot
of a simple, inviscid pendulum:

~1! The angle of the line,f8nond, the dependent variable
~2! The time,t8m0l 0t1, the independent variable.
~3! The mass of the bob,M8m1l 0t0, a parameter.
~4! The length of the line,L8m0l 1t0, a parameter.
~5! The acceleration of gravity,g8m0l 1t22, a parameter.
~6! The initial angle,f08nond, a parameter.

The notation X8mal btc indicates the dimensions mas
length, and time~or nond if the variable is nondimensional!.
Parameters are variables that are constant during a parti
realization—M, L, g, andf0 in this list. The range of these
parameters defines the family of pendula and environme
that are of interest.

B. A mathematical model

Dimensional analysis is most useful when a mathemat
model is not known. Mathematical models of the simple pe
dulum are well known, and we will use them to genera
numerical data and to show how dimensional analysis can
applied to a mathematical model. For an inviscid pendul
the rate of change of angular momentum of the bob is
solely to the torque associated with the downward force
gravity acting on the bob,

L2M
d2f

dt2
52LMg sinf. ~1!
437p/ © 2003 American Association of Physics Teachers
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If we divide by L2M , the equation of motion becomes

d2f

dt2
52

g

L
sinf. ~2!

For experimental purposes it is preferable to start from
state of rest and so the initial conditions att50 are taken to
be

f5f0 ,
df

dt
50. ~3!

It may also be of interest to compute the tension in the li
T, from the radial equation of motion,dr/dt50, and thus

T5gM cosf1LM S df

dt D
2

. ~4!

The appropriate solution method to Eqs.~2! and ~3! de-
pends upon the initial angle,f0 . If f0 is restricted to values
less than about 0.1 rad, then sinf in Eq. ~2! can be well
approximated byf and the resulting linear model has th
well-known solution

f5f0 cos~ t/AL/g!. ~5!

In the general case wheref0 may take any value from2p to
p, Eq. ~2! is nonlinear and a solution cannot be given
elementary functions. Numerical integration of Eqs.~2! and
~3! is straightforward, however, and yields~numerical! data
~see Fig. 1! that we will treat as an intermediary betwee
experiment and theory; we know exactly the physical mod
but not the specific parameter dependence.

C. Models generally

Model equations are a relation between a dependent v
able, the anglef or the tensionT, and the independent var
ables and parameters that make up the physical model. E
if we had no idea of the mathematical model, we could s
assert that a complete physical model could be used to de
a relation

f5F~ t,g,L,M ,f0!, ~6!

whereF will be used to indicate an unknown function. If ou
goal were to solve for the period of the oscillation, then
would evaluate the time at some~arbitrary! repeated value o
f to find

P5F~g,L,M ,f0!. ~7!

For the tension,T, and the maximum tension during an o
cillation, Tmax, we could similarly write

T5F~ t,g,L,M ,f0!, ~8!

and

Tmax5F~g,L,M ,f0!. ~9!

It will often happen that the list of variables for the phys
cal model will include one or more parameters that do
appear in the mathematical model. If we compare Eqs.~6!
and ~2!, the physical model includes the mass,M, while in
the mathematical model, the mass appeared as a coeffi
in the gravitational force~right-hand side of Eq.~1!! and in
the inertial force~left-hand side! and cancels. In this regard
the mathematical model, Eq.~2!, is a considerable advanc
over the physical model, Eq.~6!. Note too that the angula
velocity, df/dt, appears in the mathematical model for t
438 Am. J. Phys., Vol. 71, No. 5, May 2003
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tension, Eq.~4!, although not in the physical model Eq.~8!.
Even if we were aware that the mathematical model of t
sion depends upondf/dt, we should still omit this second
dependent variable in Eq.~8! becausedf/dt must itself de-
pend upont, g, L, M andf0 and should not be written into
the physical model again.

Relations~6!–~9! could be written in one of several forms
for example,

f/F~ t,g,L,M ,f0!51, ~10!

or reusingF yet again,

F~f,t,g,L,M ,f0!51. ~11!

What is most important is the assertion that the phys
model is complete, meaning that it includes all of the va
ables required to construct a mathematical model that co
in principle yield a unique solution. If we do not know th
corresponding mathematical model, then completeness
only be a hypothesis.

Although it is essential that the physical model be co
plete, it is also highly desirable that the physical model be
concise as possible, that is, it include only those variab
that have a significant effect on the dependent variable.
selection of variables for the physical model thus requi
considerable judgment.

III. AN INFORMAL DIMENSIONAL ANALYSIS

A. Invariance to a change of units

We take it for granted that every equation must be dim
sionally consistent, or homogeneous.6 But how about the
units used to measure length, time, etc.? The premise o
mensional analysis is that the physical relationship expres
by a complete equation does not depend on the choic
units, that is, whether SI, British engineering, or any othe5

Invariance to the choice of units implies a constraint on
form that the dimensional variables can take in a comp
equation, and dimensional analysis is a systematic proce
for learning what that form is.

Angles are an interesting and relevant case. An angle is
ratio of two lengths, an arclength and a radius, and is t
inherently nondimensional.~Angles may be specified in unit
of radians or degrees, among others.! If we compute an angle
f by measurements of arclength and radius in units
meters, we will get a certain number. If we then use fee
measure these same lengths, we will get precisely the s
number, that is, the same angle. Thus the left-hand sid
Eq. ~6! is invariant to a change in the units of length. Ho
about the right-hand side of Eq.~6!? For invariance to the
choice of units to hold, the length and the acceleration
gravity must appear in the ratiog/L ~or any power of the
ratio, for example,AL/g), and not asg or L separately, be-
cause the latter would imply a change ofF with a change in
the units of length. Thus, we already know something ab
the invariant form of Eq.~6!. Consider the mass,M. A
change in the units of mass should also leaveF unchanged,
and yet it is impossible to see how that could hold becausM
is the only variable in the physical model having dimensio
of mass. This informal analysis leads to the conclusion t
an equation forf that is invariant to a change of units cann
depend upon the mass of the bob alone. This conclusion i
obvious result of the mathematical model, Eqs.~2! and ~3!,
but can be deduced by dimensional analysis in the absenc
438James F. Price
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the mathematical model. A similar consideration of the un
used to measure time indicates thatt andg must also appea
together in a nondimensional variable, sayt/AL/g. Again,
any power of this variable is possible, but we might as w
leave the independent variablet to the first power. The up-
shot of this reasoning is that the dimensional variables
pear in combinations that are nondimensional. The simp
~but not the only! form for Eq. ~6! is

f5F~ t/AL/g,f0!. ~12!

The essential result is that in place of a dependence on
independent dimensional variable and four parameters a
the original Eq.~6!, we now have a dependence on one no
dimensional independent variable,t/AL/g, and one nondi-
mensional parameter. When the data of Fig. 1 are plo
using this nondimensional format in Fig. 2, there is a ve
significant reduction in the volume of data required to d
play and define the data set, an important benefit of dim
sional analysis applied to a presentation of data.

The period of the motion can be written in a way ana
gous to Eq.~7! as

P/AL/g5F~f0!. ~13!

If f0 is small, say less than about 0.1 rad, the dependenc
f0 is found experimentally to be negligible@Fig. 3~a!#, and
F(f0!1)5constant. The period of a simple pendulum u
dergoing small amplitude oscillations thus increases in p
portion to the square root of the length of the supporting l
divided by the local acceleration of gravity,g. The measure-
ment of the period of just one linear pendulum is sufficient
fix the constant,F(f0!1)52p, for all such pendula. Iff0
is not small, then from dimensional analysis and Eq.~13! it is
evident that the nondimensional period will depend on
single parameterf0 . The functionF(f0), often referred to
as a similarity law,6 might be determined by experiment~as-
suming that viscous effects are negligible!, by the analysis of
numerical simulations, or from theory@Fig. 3~a!#.

Fig. 1. Numerical solutions of the simple, inviscid pendulum for two valu
each ofL ~1, 1.8! m, M ~1, 2! kg, g ~9.8, 6! m2/s, andf0 ~0.2, 1.0! rad or 16
solutions in total.~a! The angle,f. The mathematical model, Eqs.~2! and
~3!, does not depend uponM, and so there are 8 distinct solutions here.~b!
Tension~Newtons! for the same set of solutions. Here there are 16 disti
solutions, though some are difficult to distinguish. As these data were
quired it was noticed that the maximum tension did not vary withL.
439 Am. J. Phys., Vol. 71, No. 5, May 2003
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B. Natural units

A complementary way to come to the same result is
consider the units used to measure time in the mathema

t
c-

Fig. 2. The numerical solutions of Fig. 1~two values each ofL, M, g, and
f0) plotted in a nondimensional format. The time is nondimensionalized
AL/g. In ~a! the anglef is normalized by the initial angle,f0 . This helps
us to compare the period of the two solutions, but obscures the impo
difference in amplitude. The eight distinct solutions of Fig. 1~a! collapse to
just two curves that correspond to the casesf050.2 ~solid curve! and f0

51.0 ~dashed curve!. In ~b! the tension is nondimensionalized byMg. The
16 separate curves of Fig. 1~b! collapse to just two curves that have thef0

as in ~a!.

Fig. 3. ~a! The period of a simple pendulum as determined from a serie
numerical solutions~dots!, computed from energy conservation, which lea
to an elliptic integral that is evaluated numerically~solid line!, and obser-
vations ~crosses!. The observations were acquired by measuring the ti
required for ten oscillations of a nearly conservative pendulum using
electronic stopwatch~the observed period is accurate to about 0.3%!. The
flexible line of this pendulum and the initial conditiondf/dt50 limit the
initial angle to about2p/2,f0,p/2. The period goes to infinity asf0

→p because the initial condition isdf(t50)/dt50. From dimensional
analysis we expect that this result,F(f0) from the right-hand side of Eq.
~13!, holds for all simple, inviscid pendula.~b! The maximum tension~dur-
ing an oscillation!, Tmax, determined from a series of numerical solutio
~dots! and as computed from energy conservation and the radial equatio
motion ~solid line!; we had no means to observe this variable.
439James F. Price
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model, Eqs.~2! and~3!. There is no compelling reason to us
seconds, aside from the practical convenience that clocks
calibrated in this unit. But suppose that our aim was to s
plify the mathematical model by choosing a unit of time th
is natural to the problem itself. The natural time scale of
pendulum is, of course, the~linear! period, which can be
used to define a nondimensional time~omitting the factor
2p!,

t* 5t/~P/2p!5t/AL/g. ~14!

The variablet* is a pure number that has the same numer
value regardless of the units used to measuret, g, andL, a
hint that there might be something useful here.

Nondimensional time may sound a little esoteric, b
amounts to nothing more than counting time in units of
linear period while taking explicit account of theAL/g de-
pendence of the period. If we were to consider only o
pendulum, then the whole exercise would amount to divid
the time by a constant. But if we were to consider all po
sible pendula~all possibleL andg!, then there is real merit in
this. To see why, let’s follow through by rewriting the equ
tion of motion, Eq.~2!, using the nondimensional time,t* .
Time derivatives transform asdt5dt* A(L/g) and so the
equation of motion becomes

d2f

dt* 2 52sinf, ~15!

with the initial conditions as before. The solution will be
the form

f5F~ t* ,f0!, ~16!

which is just like Eq.~12!. If the amplitude of the motion is
small, then the linear solution of Eq.~15! is just

f5f0 cost* . ~17!

The dependence uponL and g has not been omitted, but i
rather subsumed into the nondimensional time,t* , so that
Eq. ~17! suffices for allL andg.

Recall that the linear pendulum has the solutionf
5f0 cos(t/AL/g), and note that the argument of that cosi
function is the nondimensional time—it was there all alon
~because the arguments of trigonometric and expone
functions are nondimensional!. The difference between Eqs
~5! and ~17! is in how you look at them; do you see th
dimensional time,t, as the independent variable, or do y
see instead the nondimensional time,t* 5t/AL/g? The an-
swer will probably depend on the stage of an investigat
~and no doubt on our familiarity with dimensional analysi!;
experimental data are almost always recorded in dimensi
units, and it may be helpful to carry out a numerical integ
tion using dimensional units. But when it comes time to
port a mass of data from many experiments or integratio
there is often a great advantage to the use of nondimens
variables defined by dimensional analysis.

C. Extra and omitted variables

Dimensional analysis revealed that the period of a sim
inviscid pendulum did not depend on the mass of the bobM.
This result might suggest that the inclusion of extra or sup
fluous variables in a physical model will not spoil the resu
However, in most cases an extra variable will not be detec
in this way and will lead to an extra nondimensional va
440 Am. J. Phys., Vol. 71, No. 5, May 2003
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able. For example, if we had included the bob diameter,Db ,
in the physical model of the inviscid pendulum, it wou
have been carried through to a nondimensional varia
Db /L. If we had access to an experiment, we would so
find thatDb /L was of no evident importance in determinin
the period of a nearly conservative pendulum, and wo
drop it from the final result.

We may ask whether the omission of a relevant varia
would be detected. The answer is yes, rarely, if the omiss
makes it impossible to nondimensionalize the depend
variable. For example, if we analyzed tension under the
sumption that the mass would be irrelevant as it was for
period, then it would not be possible to find a nondime
sional tension. That would be a clear signal that someth
important had been omitted from the physical model. Ho
ever, if the dependent variable can be nondimensionali
with the variables that are included, then the purely form
procedure of dimensional analysis is not able to identify
incomplete model.7

IV. A BASIS SET OF NONDIMENSIONAL
VARIABLES

Once a preliminary physical model has been defined,
second and mathematical step of a dimensional analysis
find a complete set of nondimensional variables for t
model. With a little experience and for small problems su
as the simple, inviscid pendulum, this can be done by insp
tion. For larger problems it may be helpful to use the follo
ing technique4 that relies on the matrix methods of linea
algebra. Elements of linear algebra are commonly used
dimensional analysis,3,5 and an exhaustive exposition o
matrix methods can be found in Ref. 8. Bru¨ckner and
colleagues9 have shown how matrix methods can be appl
to very large problems. The following development diffe
from most others in that it does not rely on the Buckingha
Pi theorem, although it comes to the same result, and util
the null space basis to find a basis set of nondimensio
variables.10

A. The mathematical problem

What can we infer about a function given only that it
invariant to a change of units? An arbitrary change of un
for the dimensional variableXi can be written as

Xi85a1
D1ia2

D2i
¯aJ

DJiXi , ~18!

wherea1 is the scale change associated with mass,a2 the
scale change associated with length,a3 is for time and so on
up to J fundamental units.11 For pendulum problems and fo
mechanics generally,J53 ~mass, length, and time!, which is
assumed to simplify later expressions. The doubly inde
object,D ji , is the dimensionality of thei th dimensional vari-
able with respect to thej th fundamental unit, and when writ
ten as a matrix is called the dimensional matrix,D. We have
already listed the elements ofD as part of the physica
model. If we assume a physical model withI dimensional
variables, invariance forJ53 may be written as

F~X1 ,X2 ,...,XI !5F~a1
D11a2

D21a3
D31X1 ,

a1
D12a2

D22a3
D32X2¯a1

D1Ia2
D2Ia3

D3IXI !

~19!
440James F. Price
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for all a ~all possible changes of units!. Thus for a j , for
example, we can write that

]F

]a j
5

]F

]X1

]X1

]a j
1

]F

]X2

]X2

]a j
1¯

]F

]XI

]XI

]a j
50. ~20!

If we multiply Eq. ~20! by a j /F @assumingF to be nonzero
as in Eq.~10!#, and use

D ji 5
a j

Xi

]Xi

]a j
, ~21!

which follows from Eq.~18!, we obtainJ53 equations, one
for eacha:

D11

X1

F

]F

]X1
1D12

X2

F

]F

]X2
1¯D1I

XI

F

]F

]XI
50, ~22a!

D21

X1

F

]F

]X1
1D22

X2

F

]F

]X2
1¯D2I

XI

F

]F

]XI
50, ~22b!

D31

X1

F

]F

]X1
1D32

X2

F

]F

]X2
1¯D3I

XI

F

]F

]XI
50. ~22c!

This set of equations is best written and solved in ma
form

D ji Si50, ~23!

where D is a knownJ3I matrix, andS is an unknownI
31 vector of the~logarithmic! derivatives ofF with respect
to the dimensional variables that we seek to find:

Si5
] logF

] logXi
. ~24!

We will discuss a solution method in the following, but w
anticipate here that there will usually be several solution v
tors denoted bySk , with k51¯K ~a bold subscript denote
a particular vector, not an element of the vector as in
~26!!. For example, let’s say that there areI 54 dimensional
variables andK52 solution vectors~written in row form!
that happened to beS15@b10b20# andS25@0b300#, where
the b are usually small rational numbers. The first soluti
vector indicates that

X1

F

]F

]X1
5b1 ,

X2

F

]F

]X2
50,

~25!X3

F

]F

]X3
5b2 ,

X4

F

]F

]X4
50.

A solution for F is thus

F5X1
b1X3

b2, ~26!

where it is useful to term the right-hand side a ‘‘Pi-variable
that is,

P15X1
b1X3

b2. ~27!

The subscript onP ( ) refers to the subscript on the solutio
vectorS( ) . Any multiple of P1 is a solution to Eq.~25!, as
is any power ofP1 , as is any sum of any power; evident
any function having the argumentP1 is a solution to Eq.
~25!. Another solution can be found from the second solut
vector S2 and is some function ofP25X2

b3. In effect, we
have integrated a partial differential equation but witho
441 Am. J. Phys., Vol. 71, No. 5, May 2003
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supplying boundary or initial data; thus we learn someth
about the argument of an otherwise arbitrary function.

We find that the dimensional variables can appear inF
only in certain combinations that correspond one-to-one w
the solution vectorsSk ,

Pk5X1
S1kX2

S2k
¯XI

S1k5XSk, ~28!

whereX5@X1X2¯XI # is a vector of the dimensional vari
ables in the order they were entered into the dimensio
matrix, D. As anticipated in Sec. II, these Pi-variables a
nondimensional. The relationship among the Pi-variables
be written as

P15F~P2 ,P3 ,...,PK! ~29!

with no loss of generality. In the uncommon case thatK
51 and there is only one nondimensional variable, the fu
tion F must be a constant whose value cannot be determ
from dimensional analysis alone. The period of the line
pendulum is an example, and in that caseF52p would be
determined by experiment or theory@Fig. 3~a!#. Neither can
dimensional analysis determine anything further about
form of F in the much more common case thatK.1.

B. The null space

Equation ~23! is underdetermined in the usual case th
there are more unknown exponents than there are equat
There will thus be many possible solution vectors that c
lectively make up the null space of the matrixD. To repre-
sent the null space we seek a basis set from which any s
tion vector can be constructed. The computation of a n
space basis is readily automated4 and so we will not delve
into the solution method~see Ref. 12!. It is essential, how-
ever, to know the following two properties of null spac
bases.

~P1! The number of solution vectors, K, is the same for
basis sets and is given by the number of dimensional v
ables in the physical model minus the rank of the dim
sional matrix, K5I 2R. K is also the number of nondimen
sional variables and in that respect all basis sets are equ
efficient. One particular basis set may be more useful t
others, and so it is often necessary to transform from
basis to another. A transformation is easily accomplished
cause of the following.

~P2! The basis set vectors are orthogonal and span
null space. Any vector that is a solution of the homogeneo
system~23! can be found as a linear combination of th
vectors in any basis set. For example, ifS1 andS2 are a null
space basis, then their linear combination, sayS35a1S1
1a2S2 , with a1 anda2 any real number, is in the null spac
and is thus a solution. The corresponding nondimensio
variable isP35P1

a1P2
a2. If S3 , S1 andP3 , P1 are preferred

over, say,S2 , P2 , then a revised basis set can be taken
S1 , P1 , and S3 , P3 while omitting S2 , P2 . The revised
basis set has the same number of vectors as the initial b
set and it too spans the null space. An initial basis set
nondimensional variables can thus be transformed to ano
basis set simply by multiplying or dividing theP’s is any
order ~an example is in Sec. V!.
441James F. Price
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C. A basis set for the simple, inviscid pendulum

An application to the fast time-scale oscillation of th
simple, inviscid pendulum may help clarify the use of t
null space basis. The dimensional matrixD can be read di-
rectly from the physical model:

f t M L g f0

D5

m
l
t

F 0 0 1 0 0 0

0 0 0 1 1 0

0 1 0 0 22 0
G ~30!

where the first row is the dimensionality for mass, the sec
row is the dimensionality of length, and the third row is f
time. The dependent variablef is represented by the firs
column, 0 0 0, allzeros because angles are nondimensio
the timet by the second column, 0 0 1; themassM by the
third column, 1 0 0,etc. The order of listing the dimensiona
variables is important only insofar as the algorithm seeks
make the first few dimensional variables appear in the n
dimensional variables with exponents of 1. The calculat
of a null space basis yields three vectors that are con
enated into a matrix whose columns are the solution vect
S5@S1 ;S2 ;S3#,

S53
1 0 0

0 1 0

0 0 0

0 21/2 0

0 1/2 0

0 0 1

4 , ~31!

and the corresponding basis set of nondimensional varia
has three elements:

P15XS15f1 t0 M0 L0 g0 f0
05f, ~32a!

P25XS25f0 t1 M0 L21/2 g1/2 f0
05t/AL/g, ~32b!

P35XS35f0 t0 M0 L0 g0 f0
15f0 . ~32c!

The functional relationship among these may be written
P15F(P2 ,P3), or

f5F~ t/AL/g,f0!, ~33a!

and in analogy with Eqs.~6! and ~7!

P/AL/g5F~f0!, ~33b!

which is beginning to look familiar. Notice that the massM
has an exponent of zero in all of the solution vectors, c
sistent with the informal analysis of Sec. II that showed t
there was no way to construct a nondimensional varia
from a single parameter having dimensions of mass. A
note that the anglesf and f0 sailed into the null space
untouched because they were already nondimensional.

Tension can be analyzed in the same manner; the dim
sional matrix is

T t M L g f0

D5

m
l
t

F 1 0 1 0 0 0

1 0 0 1 1 0

22 1 0 0 22 0
G , ~34!
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and the null space basis vectors~again in matrix form! are

S53
1 0 0

0 1 0

21 0 0

0 21/2 0

21 1/2 0

0 0 1

4 . ~35!

A basis set of nondimensional variables is thus

P15T/Mg, ~36a!

P25t/AL/g, ~36b!

P35f0 . ~36c!

The functional relationship for the tension and the maxim
tension can be written as

T/Mg5F~ t/AL/g,f0!, ~37a!

and

Tmax/Mg5F~f0!. ~37b!

Notice that the mass,M, has been retained in the nondime
sional tension. That the mass must appear is evident w
one considers that the tension in the line will equal t
weight of the bob,T5Mg, in the absence of motion~the
tension of a moving pendulum will exceed this value due
centrifugal acceleration!. Note too that the length,L, has
been eliminated from the maximum tension. A little thoug
will reveal that a length cannot be made nondimensio
with T, g, andM in any combination, and thus dimension
analysis reveals that the maximum tension of a simple,
viscid pendulum started from rest must be independent oL.
This conclusion was suggested by inspection of a few
merical solutions@see Fig. 1~b!# and dimensional analysi
assures us that it holds rigorously.13

V. THE VISCOUS PENDULUM

Now consider the decay rate defined by

G5
1

F

dF

dt
, ~38!

whereF is the amplitude of the motion. We begin with ob
servations of the amplitudeF made by measuring the cor
length at intervals of 30 s to 2 min@the crosses of Fig. 4~a!#.
For this purpose it was advantageous to use a longer pe
lum, L53.70 m, to minimize the consequence of the rand
error of the visually measured cord, about 1023 m. This pen-
dulum was supported on a needle bearing~a fishhook on a
hard metal surface! to minimize interactions with the pivot
and the line was a smooth monofilament having a diam
Dl50.4031023 m. The bob was a nearly spherical, more
less smooth lead fishing sinker with a diameterDb

50.0211 m and massM50.055 kg. The observed amplitud
history,F(t), was quite repeatable and can be roughly ch
acterized as an exponential decay with a time scale of ab
10 min.

A. A physical model of the viscous pendulum

We presume that hydrodynamic drag with the surround
air is the primary damping process,14 and that the diameter o
442James F. Price
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the bob,Db , and of the line,Dl , are now relevant, as are th
density and kinematic viscosity of air,r, and n. When we
amend the inviscid model of Sec. II to include these va
ables, we have a physical model for the decay rate o
simple, viscous pendulum:

~1! the decay rate,G8m0l 0t21, the dependent variable;
~2! mass of the bob,M8m1l 0t0, a parameter;
~3! length of the line,L8m0l 1t0, a parameter;
~4! acceleration of gravity,g8m0l 1t22, a parameter;
~5! the amplitude of the motion,F8nond, a parameter;
~6! diameter of the line,Dl8m0l 1t0, a parameter;
~7! diameter of the sphere,Db8m0l 1t0, a parameter;
~8! density of air, r8m1l 23t0, a parameter~1.2 kg m23,

nominal!;
~9! kinematic viscosity of air,n8m0l 2t21, a parameter

(1.531025 m2 s21, nominal!.

~For the purpose of defining the amplitude of the motion
might have usedf0 in place ofF.! Dimensional analysis
from here on omitting all of the intermediate steps, indica
six nondimensional variables,

GAL/g5F~F,Db /L,Dl /L,rDb
3/M ,g1/2L3/2/n!. ~39!

The first five nondimensional variables have an obvious
terpretation, but the last one involving the viscosity,n, does
not. In any event, we are not ready to make use of suc
comprehensive model. We may still be thinking of the nea
conservative pendulum of Sec. II, but the nine-varia
physical model includes all possible pendula and fluid me
ums. Before we can expect a useful result from dimensio
analysis, we will have to identify the most relevant para
eters for the kind of nearly conservative pendulum that
have in mind.

Fig. 4. ~a! Observations~crosses! and a numerical solution~the thin solid
line! of the motion of a simple, viscous pendulum. The crosses are ob
vations of the amplitude at intervals of 30 s to 2 min.~b! The decay rate
computed directly from the observations~crosses, from three repetitions o
the experiment!, as estimated from an approximate analytical solution
~53! ~dashed line! and as determined from the numerical model soluti
~solid line!. Drag that is linear in the angular velocity produces a const
decay rate~simple exponential decay in time!, and drag that is quadratic in
the angular velocity produces a decay rate that increases linearly with
amplitude,f.
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B. Drag on a moving sphere

A piecewise approach is tried next. Consider in isolati
the hydrodynamic drag on a smooth sphere~the bob! due to
a steady motion through an infinite viscous fluid~air! that is
otherwise at rest. The physical model of drag is specified

~1! drag ~a force!, H8m1l 1t22, the dependent variable;
~2! speed of the sphere,U8m0l 1t21, a parameter;
~3! diameter of the sphere,Db8m0l 1t0, a parameter;
~4! density of air,r8m1l 23t0, a parameter;
~5! kinematic viscosity of air,n8m0l 2t21, a parameter.

Despite the highly idealized configuration of this problem
is very difficult to compute the drag in the common case t
the flow around the sphere is turbulent. However, dim
sional analysis combined with laboratory measurement le
to a useful result. The initial basis set of nondimensio
variables for this physical model comes out to be

P15
H

rDb
2U2 , P25

n

UDb
, ~40!

where we recognize thatP2 is the inverse of an importan
nondimensional variable called the Reynolds number:

Re5
UDb

n
. ~41!

We know from P2 of the null space~Sec. III! thatP1 in Eq.
~40! is not uniquely determined by dimensional analysis, a
that a general basis set can be written as

nP15
H

rDb
2U2 S UDb

n D n

, P25
UDb

n
, ~42!

wheren is any real constant. In writing this equation we a
assuming thatH and P25Re should remain to the firs
power. The functional relation between these nondim
sional variables could be written asnP15F(Re), whereF
depends onn.

We will next consider how to choose the value ofn that
gives the best or most useful form.15 Regardless of the form
finally chosen, an essential result is that the nondimensio
drag, nP1 , is expected to be a function of the Reynol
number alone~more on Re in the following!. Laboratory
measurements can thus be used to defineF(Re) which
should hold for all steadily moving spheres, just the way t
the functionF(f0) @see Fig. 3~a!# sufficed to define the pe
riod for all inviscid, simple pendula.

1. Scaling analysis

The crucial~and in this case the only! choice is that of the
dependent nondimensional variable,P1 . One strategy is to
form P1 so that it reflects a physically meaningful, even
highly idealized, solution for the dependent variable. T
procedure is often termed a scaling analysis~see Ref. 3, Lin
and Segel, Chap. 6!.

A scaling analysis requires some sense of the physic
the problem. Visual observations of the flow around a sph
provide hints that drag can arise from two distinct process
If the sphere is moving very slowly so that the wake beh
the sphere is nearly undisturbed, then the drag will be ma
viscous, that is, due to the shear of the flow around
sphere and directly proportional to the viscosity of the flu
The shear can be estimated byU/Db , and the viscous stres

r-

.

t

he
443James F. Price



o
b

e
ra

e
d
n
d

he

itia

ou
n-
g

c
o

in
e-
a
b

he
ld

, o
ar
d
a

ly
ak
ur
ys
o

in
ry

y-

i
Re

Re
r-

ic
al-
rag
the
g as
as-

the
lds

ted

re
by rnU/Db . If this viscous stress acts over an area prop
tional to Db

2, then the viscous drag on the sphere would
H}rnDbU. This is the basis setn51 of Eq. ~42!. If we
expected that this was the dominant drag-producing proc
then it would be appropriate to nondimensionalize the d
as

H

rnDbU
5F~Re!5Cv~Re!, ~43!

because the Re-dependence ofCv , the so-called viscous
drag coefficient, would then be minimized.

Even if the fluid were nearly inviscid, there would still b
drag because fluid must be accelerated as it is displace
the moving sphere. If the displaced fluid is carried along i
highly disturbed wake, as is more or less observed behin
rapidly moving sphere~we will clarify what is meant by
rapidly!, then the drag would be roughly proportional to t
density of the fluid times the speed squared~a momentum
flux! multiplied by the frontal area,A5pDb

2/4. Thus the in-
ertial drag would be estimated asH}rAU2. If we expected
that this inertial drag process was dominant, then the in
basis set corresponding ton50 would be appropriate:

H

rAU2 5F~Re!5Ci~Re!, ~44!

and the Re-dependence of the inertial drag coefficientCi
would show the departures from inertial drag due to visc
effects. Either form of the drag coefficient effectively co
veys the laboratory data and in that regard there is nothin
choose between them.

2. The other nondimensional variables: The Reynolds
number

Once the dependent nondimensional variable,P1 , has
been selected, the remaining nondimensional variables
be formed in ways that most clearly define the geometry
the problem, that reflect a balance of terms in a govern
equation, or that follow conventions in the field. This pr
scription is necessarily vague because the possibilities
limitless, however, the task is often easier than might
expected. For the example of drag on a moving sphere, t
is only one remaining nondimensional variable, the Reyno
number or its inverse. There are many other such ratios
ten termed nondimensional ‘‘numbers,’’ that succinctly ch
acterize the balances among terms in mathematical mo
and thus are the natural terminology of theoretical mech
ics.

Recall that for the purpose of modeling drag, a slow
moving sphere is one that has a nearly undisturbed w
Observational evidence shows that this kind of flow occ
when Re<1, regardless of speed per se; dimensional anal
tells us as much in that the drag coefficient depends only
Re. The small Re range is that of a very small bug swimm
slowly through water, for example. Note that in this ve
small Re range the viscous drag coefficientCv is O(1) and
roughly constant@Fig. 5~a!#. For creatures and objects an
where near our size, Reynolds numbers ofO(105) and greater
are the norm, and inertial drag~often termed ‘‘form drag’’! is
generally more important for runners and bicyclers than
viscous drag. Notice that for moderately large values of
103<Re<105, the inertial drag coefficientCi is O(1) and
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very roughly constant within subranges.17 We can anticipate
that the motion of our pendulum is in an intermediate
range in which both viscous and inertial drag will be impo
tant.

C. A numerical simulation

To model the decay process we will include hydrodynam
drag on the line and the bob in the angular momentum b
ance. Drag will be estimated by means of the steady d
laws discussed above, and so it is implicitly assumed that
instantaneous speed of the bob or line gives the same dra
would a steady motion of the same speed. Whether this
sumption is appropriate remains to be seen.

The main task is to account for the Re-dependence of
drag coefficients. Because the line is quite thin, the Reyno
numbers of the line are rather small, Rel5UDl /n<20, where
U5rdf/dt, r is the distance from the pivot, and ana priori
estimate ofdf/dt is f0 /AL/g. In that small Re range the
viscous drag coefficient on a cylinder can be approxima
well by Cv53/21Re/3 ~the heavy dotted line of Fig. 4~b!!.
The drag per unit length of the line,d5dr, can then be

Fig. 5. Drag coefficients of a sphere~a! and a cylinder~b! moving at a
steady speedU through viscous fluid. Two forms of drag coefficient a
shown here, the viscous drag coefficient is denoted byCv ~the dashed line!,
and the inertial drag coefficient denoted byCi ~the solid line, usually de-
notedCd , and by far the most commonly encountered form!. Note thatCv
is O(1) if Re is very small, and thatCi is O(1) if the Reynolds number is
very large. The inertial drag coefficients were read from Munsonet al. ~Ref.
3, Fig. 7.7!, and Rouse~Ref. 16, Figs. 125 and 126!.
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computed by the drag law corresponding to Eq.~43! as H
5prnCvU dr, and the~dimensional! torque due to drag
over the length of the line is then

t l5E
0

L

rH dr 5rS p

2
nL31

1

12
DlL

4Udf

dt U D df

dt
. ~45!

The absolute value operator ensures that the drag forc
ways opposes the motion. The bob has a much larger d
eter and a Reynolds number Reb5L(df/dt)Db /n in the range
Reb<1000 where no simple formula for a drag coefficient
highly accurate. Thus we will allow an arbitraryCi(Reb) and
compute the drag-induced torque on the bob as

tb5
pr

8
Ci~Reb!Db

2L3Udf

dt U df

dt
, ~46!

where Reb and Ci are evaluated at each time step of t
numerical integration using the data of Fig. 5~a!. The
amended angular momentum balance~in dimensional vari-
ables!,

d2f

dt2
52

g

L
sin~f!2

t l1tb

L2M
, ~47!

together with Eqs.~53! and ~54! and the data of Fig. 4~a!
plus the initial condition~3! make a complete if rather cum
bersome model that can be integrated numerically.

With drag terms included, the period of the oscillation
nearly unchanged, while the amplitude slowly decays@Fig.
4~a!#. The decay simulated by the numerical solution loo
plausible when compared with the observations, sugges
that the steady drag laws have the gist of it~a more critical
appraisal is given below!.

D. An approximate model of the decay rate

Numerical solutions are not revealing of parameter dep
dence, but given two modest approximations we can ded
a model of the viscous pendulum that has transparent s
tions. First, the anglef is small enough in the case shown
Fig. 4~a! that sinf of Eq. ~55! can be well approximated b
f. Second, the drag overall is due mostly,'85%, to the line,
and so it should be acceptable to make the approxima
that the inertial drag coefficient for the bob is a consta
Ci50.7, an average for the Reb range of the bob in the
present case. With these approximations we obtain a solv
model for the simple, viscous pendulum~now in nondimen-
sional variables!

d2f

dt* 2 52f2a
df

dt*
2bU df

dt* U df

dt*
, ~48!

where the coefficient in the linear drag term is

a5
p

2

rnL3/2

Mg1/2 , ~49!

and the coefficient in the quadratic term is

b5
r

8M S 0.7Db
2L1

2p

3
DlL

2D . ~50!

Approximate solutions for small damping are given in R
14; linear drag causes the amplitude to decay at a rate~non-
dimensional!
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F

dF

dt*
52

a

2
~51!

and the quadratic term causes decay at a rate

1

F

dF

dt*
52

8b

6p
F, ~52!

where againF is the slowly varying amplitude. For sma
damping, these can be added together and evaluated to
an approximate decay rate,

GAL/g5
1

F

dF

dt*
'25.23102421.631022F, ~53!

shown as the dashed line of Fig. 4~b!. This approximate
model shows very clearly how the decay rate is expecte
vary with the parameters that characterize the pendulum
the fluid medium~and gives an excellent account even f
quite strong damping!. All of the pieces of this model were
present in our first attempt at dimensional analysis of
viscous pendulum, Eq.~39!, though we had no way to rec
ognize them at the time.

The decay rate can be estimated from the observations
from the numerical solution by a direct~no smoothing re-
quired! first differencing@Fig. 4~b!#. A comparison of decay
rates makes a much more sensitive test of the drag form
tion than does the amplitude itself@see Fig. 4~a!# and reveals
that the decay is not a simple exponential as it first appe
There is a significant dependence of the decay rate upon
amplitude, which in the approximate model follows from th
quadratic drag term, Eq.~58!. Thus the hydrodynamic drag
on this pendulum appears to be mainly inertial~Sec. IV!,
though viscous drag is important too, especially at sma
amplitudes.

Although the modeled decay rate is fairly accurate, ther
at least a hint that the appropriate drag law for this pendu
overall ~that is, the entire system, including the supporti
structure! has a somewhat greater linear drag than is found
the models, and slightly less quadratic drag. This behavio
found consistently over a range of conditions, but furth
study of drag phenomena is outside the scope of this pap18

VI. CONCLUDING REMARKS

The claim was made in Sec. I that dimensional analy
was occasionally quite powerful. With some experience
can see that dimensional analysis is most useful in ca
where the mathematical model is either not known or can
be solved usefully. Dimensional analysis can always mak
little progress toward a solution merely by showing the fo
that variables must take in an equation that is invariant t
change of units. That, in a nutshell, is what dimensio
analysis does. In the case that there are only two or th
nondimensional variables in a problem, dimensional analy
can be an immensely powerful tool leading almost directly
a solution ~the inviscid pendulum! or an efficient way to
correlate a large data set~drag on a moving sphere!. If the
problem has many variables~the viscous pendulum!, then
dimensional analysis alone will probably not suffice, and f
ther analysis or simplification will be required.

We have emphasized that an equation written in non
mensional variables, for example Eq.~17!, is more efficient
than its dimensional counterpart, Eq.~5!. There is something
to keep in mind, however. An equation written in nondime
sional variables must be accompanied by a definition of
445James F. Price



ju
g
na
a

ig

l b

ith
ra
e

a
at
in,
de
su
l
ee
on
is
ro
ric

rd

ol
h
ra
ch
e
fo
th

in

inu
.

fas

n
p

-
C.
in

ple
ge

n
s/

en

t
do

at is
al

t is

.

of

nal

pace

,
s

e

,

thing

l

and,
ation

hysi-
n-
lem
seek
sider

ases
One
that
the

is?

lum

ible

t
mu-

, is
ide
and

en-
onal
say
effi-
ctive
ons
that
nondimensional variables. Better yet is an explanation of
why a particular definition was used, and what its advanta
and limitations may be. The thoughtful use of dimensio
analysis is a hallmark of insightful analysis, while the cav
lier use of nondimensional variables can obscure what m
otherwise have been a valuable message.

The mathematical steps that produce a nondimensiona
sis set are certain and quick~indeed, automatic!, and the
physical model is a finite list of variables. The ease w
which a dimensional analysis can be done might gene
confidence that the procedure is without risk of error. Wh
dimensional analysis is applied to a mathematical~or nu-
merical! model, this may well be true. But when dimension
analysis is meant to describe a real, physical system, th
not the case. Though the mathematical analysis is certa
remains that the definition of an appropriate physical mo
is seldom as straightforward as the examples here might
gest. The absolute requirement that the physical mode
complete is always at odds with the practical need to k
the physical model concise. The success of a dimensi
analysis depends upon finding a satisfactory comprom
this requires judgment that comes with experience and f
continual reference to relevant observations and nume
integrations.
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11For example, suppose thatX5 is a speed in British engineering units
feet/second, and we wish to computeX58 in SI units, meters/second. Thi
variable has dimensionality,D1550 (X5 does not have units of mass!,
D2551 for length, andD35521 for time. The appropriate scale chang
factors area150.435 ~pounds to kilograms for nominalg!, a250.3048
~feet to meters!, anda351 ~seconds to seconds!. ThusX5850.3048X5 .

12G. Strang,Introduction to Linear Algebra~Wellesley–Cambridge Press
Wellesley, MA, 1998!.

13There is no doubt that dimensional analysis has just added some
significant to what we knew from numerical integrations~that is, the maxi-
mum tension is independent ofL!. Does this result from dimensiona
analysis constitute a satisfactoryexplanation? This is clearly a matter of
degree and opinion, but my opinion is that it does not. On the one h
dimensional analysis has deduced a very clear statement of the observ
from a general principle~invariance to the choice of units! and a set of
specific conditions~the physical model!. This is a form of explanation, but
one that seems shallow and unsatisfying; there is no connection to a p
cal principle, and not the slightest hint of quantitative limits. In this i
stance and frequently, we will have to look beyond the immediate prob
at hand or use something more than dimensional analysis when we
explanations with enough depth to confer a useful understanding. Con
the following: The period of a simple~inviscid! pendulum undergoing
small amplitude motion is independent of the amplitude, and yet incre
with the square root of the length. Can you explain these facts?
approach might be to use dimensional analysis to analyze oscillators
have a restoring force that is proportional to some arbitrary power of
displacement. A salient fact for the maximum tension shown in Fig. 3~b! is
that the maximum value is exactly 5~nondimensional units! and occurs at
f05p. Is dimensional analysis of any further use for explaining th
Consider energy conservation.

14Detailed treatment of damping processes are by P. T. Squire, ‘‘Pendu
damping,’’ Am. J. Phys.54, 984–991~1986! and R. A. Nelson and M. G.
Olsson, ‘‘The pendulum: Rich physics from a simple system,’’ibid. 54,
112–121~1985!.

15One criterion is to follow conventions of the field. In this caseP1 is a drag

coefficient, usually defined asCd5H/
1
2rAU2, whereA is the frontal area

of the object. For the purpose of this essay we will consider other poss
forms for P1 .

16More recent textbooks~Ref. 3!, like this article, show only the curve tha
runs through the middle of a tight cloud of data points that have accu
lated from many laboratory experiments, see for example, Rouse~Ref. 3!.
What is most important, but not evident from this kind of presentation
that drag coefficients inferred from experiments made using a very w
range of spheres and cylinders moving at widely differing speeds
through many different viscous fluids~Newtonian fluids! do indeed col-
lapse to a well-defined function of Reynolds number alone, just as dim
sional analysis had indicated. This is a result, characteristic of dimensi
analysis generally, that is at once profound and trivial. One might
trivial because, after all, dimensional analysis told us that the drag co
cient must depend upon Re alone. From this perspective, an effe
collapse of the data verifies that carefully controlled laboratory conditi
can indeed approximate the idealized physical model. It is profound in
446James F. Price
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dimensional analysis has shown the way to a useful result~Fig. 5!, where
there would otherwise have been be an unwieldy mass of highly spe
data~as in going from Fig. 1 to Fig. 2!. An open question of considerabl
practical importance is whether the steady drag laws are robust in
sense of giving useful estimates in practical problems, say our pendu
in which the idealized conditions are inevitably violated. Other data s
have been developed to define the effects of idealized surface rough
for example, but our pendulum has a long list of violations—tim
dependence, a nearby solid boundary~the floor!, slight surface roughness
etc., all present at once, so that we are on our own. About all that ca
said is that it is important to understand the full set of assumptions u
which a similarity law has been defined, and to be skeptical of applicat
outside of those bounds.

17Even at very large Re it does not follow that viscosity is entirely irreleva
Significant changes in the drag coefficient occur at around Re'23105 due
to changes in the viscous boundary layer and the width of the wake be
a moving sphere. This is the Re range of a well-hit golf ball or tennis b
and is part of the reason that aerodynamic drag on these objects
surprising sensitivity to surface roughness or spin. For much more d
447 Am. J. Phys., Vol. 71, No. 5, May 2003
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on these phenomenon see S. Vogel,Life in Moving Fluids~Princeton U.P.,
New York, 1994!, and P. Timmerman and J. P. van der Weele, ‘‘On the r
and fall of a ball with linear and quadratic drag,’’ Am. J. Phys.67, 538–
546 ~1999!.

18Can you calculate a Reynolds number for the bob and the line from
original six nondimensional variables of Eq.~39!? Which nondimensional
variable is present in Eq.~39! but not in Eqs.~57! and~58!? How or why
was it omitted? Under what conditions~what parameter range! would you
expect to see a significant effect of the time-dependent motion? How c
you test~in principle and in practice! that the steady drag formulation
really are appropriate for modeling the damping of a simple pendulu
You might, for example, consider that the fluid medium was water in pl
of air ~the approximate density and kinematic viscosity of water arer

51.03103 kg m23 and n51.831026 m2/s at a temperature50°C, and
r51.03103 kg m23 and n50.731026 m2/s at a temperature540°C).
Given these results, can you think of a name more apt than ‘‘visco
pendulum?
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