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Navier: Blow-up and
Collapse

Marco Cannone and Susan Friedlander

I
n the 1820s Claude Louis Marie Henri Navier1

was a professor at the École des Ponts et
Chaussées in Paris, which was the Grande
École that trained engineers in nineteenth-
century France. At the same time as publish-

ing his famous fluid equations (now known as the
Navier-Stokes equations), he designed the first
monumental suspension bridge to be built in Paris
over the Seine. His bridge developed a crack just
before it was to open, and political battles resulted
in the removal of the bridge. Accusations were
made that Navier was “too much of a theoretical
mathematician” and not “practical” like the British
bridge builders such as Brunel or Stevenson. This
debate was a version of a more general dispute be-
tween the French and British approaches to math-
ematics, physics, and engineering. The different na-
tional approaches to science were in fact also
reflected by the way Navier (in 1822) and Stokes
(in 1845) derived their eponymous equations.

The word “blow-up” of the solutions for the
Navier-Stokes equations is familiar to at least a
subset of mathematicians, most of whom proba-
bly do not know of Navier’s bridge. In 1824–6,
however, Navier was best known for a two-volume
treatise on bridges [13] and the impressive design
for the Pont des Invalides over the Seine (Figure 1).

The controversy that followed the collapse of this
bridge received wide coverage in the French press
of the time, had repercussions for the Parisian
world of finance, and was detrimental to Navier’s
reputation.

The Navier-Stokes Equations
The concept of “blow-up” for the Navier-Stokes
equations has received considerable publicity re-
cently in the context of one of the “million dollar”
prize problems offered by the Clay Mathematics In-
stitute. Briefly stated, an important problem in
fluid dynamics is to answer the following question:
In three dimensions does the velocity field of a fluid
flow that starts smooth remain smooth for all time
as the field evolves under the Navier-Stokes equa-
tions? A physical quantity such as the velocity,
satisfying realistic boundary conditions, conceiv-
ably could develop a singularity in finite time, and
this phenomenon is referred to as “blow-up”. The
partial differential equations known as the Navier-
Stokes equations have proved to be among the
most challenging to mathematicians of all the par-
tial differential equations that arise from physics.
More details can be found, for example, in the Clay
prize description by Fefferman [5].

The first mathematical description of the mo-
tion of an “ideal” fluid was formulated by Euler [4]
in 1755 as a statement of Newton’s second law of
motion applied to a fluid moving under an inter-
nal force known as the pressure gradient. The Euler
equations governing the time evolution of the ve-
locity vector field vvv(xxx(t), t) and the (scalar) pressure
p(xxx(t), t) of an incompressible fluid have the form
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“All France knew of the disaster which happened in the heart of Paris to the first suspen-
sion bridge built by an engineer, a member of the Academy of Sciences; a melancholy col-
lapse caused by blunders such as none of the ancient engineers—the man who cut the canal
at Briare in Henri IV’s time, or the monk who built the Pont Royal—would have made; but
our administration consoled its engineer for his blunder by making him a member of the
Council-general.”

—Honoré de Balzac, from Le Curé de Village, 1841
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(1)

{ ∂vvv
∂t + (vvv · ∇) vvv = −∇p (xxx ∈ Rn, t > 0)

∇ ·vvv = 0

with initial condition

vvv(xxx,0) = vvv0(xxx),

where vvv0(xxx) is a given divergence-free vector field.
Here we restrict our attention to incompressible flu-
ids filling all of Rn, where n is the space dimension,
which we take to be 2 or 3. These equations, while
important theoretically, omit the effects of friction
and bring about, as pointed out by D’Alembert, “a
singular paradox which I leave to geometricians to
explain” [1]. To incorporate friction, the French
mathematician-engineer Navier (Figure 2) published
in 1822 a paper [12] with the derivation of the
equations of motion for a viscous fluid in which he
included the effects of attraction and repulsion
between neighboring molecules. From purely the-
oretical considerations he derived the following
modification of the Euler equations:

(2){ ∂vvv
∂t + (vvv · ∇) vvv = ε∆vvv −∇p (xxx ∈ Rn, t > 0)

∇ ·vvv = 0,

again with initial condition vvv(xxx,0) = vvv0(xxx) for a
given divergence-free vector field vvv0(xxx) in Rn.

For Navier, ε was simply a function of the mol-
ecular spacing to which he attached no particular
physical significance. His seminal paper [12] was
presented at the French Académie des Sciences
and was well received. He was elected a member
of the Académie in the mechanics section in Jan-
uary 1824.

The equations for the motion of a viscous fluid
were rederived by Cauchy in 1828 and by Poisson
in 1829. In 1843 Barré de Saint-Venant published a
derivation of the equations on a more physical basis
that applied not only to the so-called laminar flows
considered by Navier but also to turbulent flows.

However, the person whose name is now attached
with Navier’s to the viscous equations is the British
mathematician-physicist George Gabriel Stokes2

(Figure 3). In 1845 he published a derivation of the
viscous equations in a manner that is followed in
most current texts. Unlike Navier, he made it clear
that the parameter ε has an important physical
meaning: namely, ε measures the magnitude of
the viscosity (i.e., the friction of the fluid). Inter-
esting details of the history of the fluid equations
can be found in the books of Grattan-Guinness [8]
and of Rouse and Ince [15].

Since the Navier-Stokes equations incorporate ef-
fects of friction, they are physically more realistic
than the Euler equations. However, both systems
of equations are important for physical and math-
ematical reasons. For example, Constantin [3] sug-
gests that it is finite-time blow-up in the Euler
equations that is the physically more important
problem, since blow-up requires large gradients
in the limit of zero viscosity (ε goes to zero). As
Fefferman [5] remarks, finite-time blow-up in the
Euler equations is an open and challenging math-
ematical problem, just as it is for the Navier-Stokes
equations.

Two versus Three Dimensions
In this brief article we can give no details about the
complexity of the systems of fluid equations (1) and
(2), but we will make a few observations that may
indicate a little about the challenges the systems
pose to mathematicians. The Euler and the Navier-
Stokes equations are nonlinear with the same non-
linear term, (vvv · ∇)vvv. Exactly this “amount” of non-
linearity appears to be particularly subtle and could
imply blow-up in finite time. A question intimately
related to the possible loss of regularity of the so-
lutions is given by the possible loss of their unique-
ness. The solutions to the Euler and the Navier-
Stokes equations are known to be locally regular

Figure 1. Pont des Invalides, taken from the original drawing by Navier in [13].

2Born in Skreen, County Sligo, Ireland, in 1819, he died
in Cambridge in 1903.
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and unique in time, but at the instant T when they
cease to be regular (if such an instant exists) the
uniqueness could also be lost. The following
simple example illustrates blow-up and loss of
uniqueness in an equation with a nonlinearity.

Consider the ordinary differential equation

(3)

{ dy
dt = yα

y(0) = y0

for different values of α and y0. When the nonlin-
earity is quadratic (α = 2) and the initial condition
is y0 = 1, the solution is y = 1/(1− t) , which blows
up at t = 1. On the other hand, if α = 1/2 and
y0 = 0, then this differential equation has infinitely
many regular solutions, yC = ((t − C)/2)2 for t ≥ C
and yC = 0 otherwise, C being an arbitrary constant
such that 0 ≤ C ≤ ∞ (with the convention that
y∞ ≡ 0). Finally, in the case α = 1/2 and y0 = 1, the
differential equation has a regular solution,
y = ((t + 2)/2)2 for t ≥ −2 and y = 0 otherwise, that
is unique and that exists for all time.

The effects of nonlinearity in the fluid equa-
tions are strikingly different in two dimensions
(2D) and in three dimensions (3D). In fact, existence
and uniqueness of regular solutions for all time for
the 2D Navier-Stokes equations are classical re-
sults proved in 1933 by Jean Leray [7], whereas the
analog in 3D is a Clay prize problem. One crucial
difference between 2D and 3D is the constraint that
equations (1) and (2) impose in 2D on the evolu-
tion of the vorticity, an important physical attribute
of fluid motion. The vorticity, which we denote by
ωωω(xxx), is ∇×vvv. Taking the curl of (1) and (2) gives
the equations for the evolution of the vorticity in
an inviscid fluid:

(4)
∂ωωω
∂t

+ (vvv · ∇)ωωω = (ωωω · ∇)vvv

and in a viscous fluid:

(5)
∂ωωω
∂t

+ (vvv · ∇)ωωω = (ωωω · ∇)vvv + ε∆ωωω.

In 2D the vorticity is a scalar field multiplied by
a unit vector perpendicular to the 2D plane of mo-
tion. Hence the term (ωωω · ∇)vvv vanishes in 2D, and
although (4) and (5) remain nonlinear, they are sig-
nificantly simpler than the 3D equations. In 2D
equation (4) becomes

(6)
∂ωωω
∂t

+ (vvv · ∇)ωωω ≡ dωωω
dt

= 000.

Thus in 2D the vorticity is a scalar quantity that is
conserved along the trajectories of the fluid parti-
cles. Conservation of vorticity is a strong constraint
on the complexity of the motions governed by the
Euler equations. Only a weaker constraint known
as Kelvin’s circulation theorem exists for 3D flows

where the term (ωωω · ∇)vvv
does not vanish and may
perhaps be instrumental
in creating blow-up for
the Euler equations.

An important advance
in the theory of partial
differential equations
was the concept of
“weak” solutions intro-
duced by Leray [7], par-
ticularly for the Navier-
Stokes equations. This
permits objects in much
larger classes than the
space of classical func-
tions to be used to de-
scribe the motion of a
fluid. It is easier to prove
existence of a solution
(regular or singular) in a
larger class, but such a
solution may not be
unique! Leray’s theory
gives the existence of
weak, possibly irregular,
and possibly nonunique
solutions to the Navier-
Stokes equations. His ap-
proach is based on so-
called energy estimates
(i.e., bounds on the inte-
gral of the square of the
velocity) and thus re-
quires the initial data to
be in L2(Rn) in n dimen-
sions. On the other hand,
a completely different
approach based on semi-
group theory was intro-
duced by Tosio Kato [9]
and provides the exis-
tence of a global unique
regular solution under the restrictive assumption
of small initial data. Kato’s method is based on scal-
ing-invariance arguments related to the fractal geo-
metric nature of the equations. This theory re-
quires the initial data to be in Ln(Rn), because this
is the only Lebesgue space Lp(Rn) that is invariant
under the appropriate scaling, i.e., 

‖f (xxx)‖Lp(Rn) = ‖λf (λxxx)‖Lp(Rn).

Hence the function spaces for Leray’s theory and
for Kato’s theory coincide when n = 2, but not when
n = 3. Thus in 2D the theories complement each
other, and therefore the solution to the Navier-
Stokes equations with initial data in L2(R2) is
regular and unique. In 3D, however, the problem
remains mysterious!

Figure 2. Bust of Claude Louis Marie
Henri Navier,  from the collection
at the École Nationale des Ponts et
Chaussées.

Figure 3. George Gabriel Stokes. 
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builder. Finley was a skilled engineer who worked
in an environment very different from that of Navier
at a Grande École, namely rural America in 1800.
Finley was practical and empirical, successfully
seeking to produce workable, simple, and generic
designs that could be constructed by rural black-
smiths. An indication of his success is that by 1820
he had a number of patents, and over forty chain
suspension bridges had been built in the U.S. The
innovations of Finley were taken up and extended
in Britain by Samuel Brown, a retired naval captain,
who determined through experiments the most ef-
ficient shape for the iron links in a suspension
bridge cable. He became a leading builder of sus-
pension bridges, including in 1820 the Union Bridge
over the river Tweed, whose span of 436 feet was
nearly twice the longest span of any bridge that had
been built in the U.S. The Union Bridge was shortly
followed by other engineering feats in Britain, in-
cluding the bridges built by such pioneers of the
industrial revolution as Brunel, Stevenson, and
Telford. Many more details concerning the history
of the suspension bridge can be found in the book
of Kranakis [10] and the paper of Picon [14].
Navier “Mathematicising” the Topic
When the French government called upon the École
des Ponts et Chaussées to assist in the development
of suspension bridge technology, it was natural
that they looked to Britain. At the request of his
superiors, Navier paid two visits to Britain in 1821
and 1823 to study suspension bridges.4 His in-
vestigations resulted in a major book [13] that was
published in 1823. In this book Navier brought to
the subject for the first time the analytical and ab-
stract approach of the mathematician. He sought
to illustrate the power and challenge of abstraction
versus an empirical ad hoc approach. He did what
applied mathematicians today seek so often to do
in constructing a mathematical model. As he re-
marked, modeling requires “a particular art which
consists of replacing the very questions to be re-
solved by other questions that differ as little as pos-
sible and to which mathematics may apply.” Navier
suggested that results be reformulated so as to
specify the theoretical limits within which they
should be relevant and that mathematical analysis
be used to determine the relationship between im-
portant parameters.

The main issues confronting a bridge designer
were the equilibrium shape that could be achieved
by a balance of the forces acting on components of
the bridge and the stability of such an equilibrium
to perturbations. Significant sources of such per-
turbations include traffic over the bridge, thermal
expansion/contraction from solar heating, wind-dri-
ven oscillations, and forces due to the flow of water

4Between his visits Navier derived the Navier-Stokes equa-
tions.

“De l’Entreprise du Pont des Invalides”
We now turn away from the aspects of Navier’s work
that are most familiar to the mathematical com-
munity and start our discussion about the back-
ground and events related to Navier the engineer
and his ill-fated bridge.
Navier at the École Nationale des Ponts et
Chaussées
The beginning of Navier’s student career was not
stellar. In a typically French procedure, there is a
linear ordering of the list of admission at the École
Polytechnique, and in 1802–3 Navier was placed
116th out of 117 in the order of merit! Navier’s ca-
reer improved dramatically, however, and by the
end of his first year he was one of the top ten stu-
dents. After a couple of years he joined the Corps
at the École des Ponts et Chaussées in Paris, where
his great-uncle Emiland Gauthey worked as one of
the leading civil engineers in France. During Navier’s
studies at the École Polytechnique he was taught
by and came under the influence of Fourier.
Throughout his career Navier was a notable pro-
ponent of the important mathematical techniques
developed by Fourier. This was not the case for
most other engineers of this period. Furthermore,
the textbooks that Navier wrote for practicing en-
gineers introduced the basic principles of engi-
neering science to a field that previously had been
almost completely empirical.

The main areas of Navier’s work concerned hy-
drodynamics, elasticity theory, and the design and
construction of bridges. In 1819 he was teaching
mechanics at the École des Ponts et Chaussées,
working as a practical engineer, and carrying out
theoretical research. His seminal derivation of the
viscous fluid equations, written in the early 1820s,
was work that he kept somewhat secret from his
chief, Becquey, who considered Navier’s primary
task to be the design of bridges. Even today it
seems that there is a tendency in France, not only
at the Grandes Écoles, to classify scientists as ei-
ther theoretical or practical and to discourage the
melding of the two attributes. Navier was able to
counter this tendency and achieved a synthesis of
the practical and the theoretical. He obtained dis-
tinction and recognition both from scientists of the
French Académie des Sciences and from engineers.
As we will describe, however, his theoretical
achievements were held against him in the “affair
of the collapsing bridge”.
The Birth of Modern Suspension Bridges
Although suspension bridges date to antiquity in sev-
eral ancient cultures,3 the “modern” iron chain sus-
pension bridge sees its direct forerunner in the con-
structions of James Finley, an American inventor and

3Navier himself gave charming illustrations of antique
bridges in his book [13].
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fact, there was no great need for a bridge in this
position, as there was in the east of Paris. Rather,
he considered the grandeur and esthetics of a con-
struction that would add to the “gloire” of France
and the Corps des Ponts et Chaussées. He wished
to demonstrate both that a bridge of beauty could
be made from iron (rather than stone) and that it
could be made following the dictates of theoreti-
cal analysis. To illustrate this, we juxtapose two
quotations of Navier (from the translations in [10]):

There exists no urgent necessity to con-
struct a bridge to the Champs Elysées:
there is no obligation to build a sus-
pension bridge in Paris. But if it is de-
sired that one be built, let it be made
into a monument; let the character of
grandeur be given to this work that the
style of the construction admits of; let
its disposition be calculated with the
idea of forming an edifice approved by
artists, agreeable to the public, and hon-
orable to the administration.

…this study (of suspension bridges)
would not have been possible without
the progress made in mathematical
analysis in recent times, and without the
institutions by means of which those
charged with the direction of public
works are initiated into the most ad-
vanced ideas of mathematics.

In 1823 Navier presented meticulous plans to his
superiors in the Corps des Ponts et Chaussées.
Every detail was designed on the basis of a theo-
retical analysis in which Navier had sufficient con-
fidence that he did not resort to the usual engi-
neering practice of “overbuilding” (i.e., deciding
what was needed in terms of strength and then mul-
tiplying the result by a number considerably greater
than one). A committee of experts reported very fa-
vorably on Navier’s project, convinced that “theory
everywhere illuminates practice.” They decided
that because of its novel and nonessential nature,
the bridge should be privately rather than pub-
licly funded. Investors were sought in a company
that would finance the building of the bridge in re-
turn for the rights to collect all the tolls for fifty-
five years. Final approval was given by Becquey
and the minister of the interior, the project was

in the river. The expertise that Navier brought to
these issues was considerable. His book on bridges
contained well-known calculations needed to de-
scribe the equilibrium of chains and are based on
simple differential equations whose approximate
solutions are either catenary or parabolic. More
sophisticated and original mathematics in his work
included the use of Fourier’s series solutions. For
example, this occurs in the context of the dis-
placement from equilibrium of a perfectly flexible
chain (the so-called vibrating string problem), which
is governed by the wave equation. Other typical
mathematical arguments that can be found in
Navier’s book are connected with elasticity theory.
There was a considerable similarity between the
equations describing the distribution of the load
in chains and those studied by Navier in his pio-
neering work on curved elastic rods and elastic rec-
tangles. Again, the primary mathematical tools
used by Navier were Fourier series. Cauchy, who is
credited as the founder of modern elasticity the-
ory, acknowledged that his research in this field had
been inspired by a memoir of Navier published in
1820.

One very important aspect of suspension bridges
is their susceptibility to destruction by drastic
wind-induced oscillations. Such destruction oc-
curred in Navier’s time and also more recently (for
example, the spectacular collapse of the Tacoma
Narrows bridge in 1940). This topic, however, re-
ceived little attention from Navier, possibly be-
cause it was too difficult to analyze with the tools
he had available. In fact, it remains to this day a
very subtle problem involving resonant nonlinear
oscillations and turbulence in the wind, a problem
that challenges the expertise of modern fluid dy-
namics.
The Collapse of Navier’s Dream: Politics and
Controversies
Not only did Navier present the theory of the sus-
pension bridge in his major treatise [13], he also put
forward a design for a monumental suspension
bridge to be built across the Seine, connecting the
Hôtel des Invalides (Napoleon’s tomb) with the
Champs Elysées. This bridge had a span of 155 me-
ters and incorporated all of Navier’s theory and
knowledge acquired from his studies in Britain. It
was to be a state-of-the-art achievement in both
technology and artistic design, with a fashionable
Egyptian5 motif. The bridge was to be called the Pont
des Invalides.6 In choosing this site for his bridge,
Navier was not motivated by practical issues: in

5In 1822 Navier derived the Navier-Stokes equations,
Fourier published his fundamental research on the heat
equation, and Champollion deciphered the Egyptian hi-
eroglyphics.
6Today the site is occupied by Pont Alexandre III, con-
structed in 1890, whereas Pont des Invalides is the name

given to the next bridge downstream, a stone arch con-
structed in 1850. Beautiful pictures and descriptions of the
bridges of Paris can be found in [11].



12 NOTICES OF THE AMS VOLUME 50, NUMBER 1

and after many acrimonious discussions and ac-
cusations the bridge was eventually dismantled.

A government committee was formed to inves-
tigate the technical and financial ramifications of
the accident to the Pont des Invalides. Criticism was
levied at the Corps for being too attached to the-
ory and for being too autocratic and elitist, as com-
pared to the British and American engineering es-
tablishments. It was suggested that the chains
must have been too heavy for the buttresses if
they could not withstand a “slight accident”. In
contrast, the superior achievements of British
bridge builders were praised for not “mathemati-
cising” the problem.7

Navier wrote numerous letters and a report,8 vig-
orously defending all engineering aspects of the de-
sign. However, he became the scapegoat for the pub-
lic relations disaster for the Corps, which later
(unfairly) passed him over for promotion.

The most comprehensive recent book on Navier’s
bridge is that of Kranakis [10]. In this excellent work
she examines Navier’s design for the buttresses and
asks why Navier did not see a need for extra
stonework or earthwork, despite the fact that each
cable would bear a huge tension of over 1,000,000
pounds. Navier calculated the resultant of a sum of
forces exerted by the cables and concluded that a
comparatively slim buttress positioned at exactly
the correct point could provide the necessary

7“In all other countries, in Germany, England, Italy, where
institutions like ours do not exist, works of this character
are better done and far less costly than in France. Those
three nations are remarkable for new and useful inven-
tions in this line. I know it is the fashion to say, in speak-
ing of our Écoles, that all Europe envies them; but for the
last fifteen years Europe, which closely observes us, has
not established others like them. England, that clever cal-
culator, has better schools among her working population,
from which come practical men who show their genius the
moment they rise from practice to theory.” H. de Balzac
[2].
8This report appears as an appendix to the second edition
of Navier’s book on suspension bridges [13].

open to bidding in April 1824, and in August build-
ing began.

Progress on the construction was good, and
there was much general interest in this novel edi-
fice connecting the two most fashionable districts
in Paris. By September 1826 the bridge was almost
complete. As Grattan-Guinness [8] reports, the
Moniteur Universel told its readers: “…there is still
about 5 weeks of work. But soon, stripped of its
scaffolding, it will be possible to appreciate it quite
complete, and we do not doubt that this first sight
will sharply excite the interest of Parisians.” How-
ever, just as this news bulletin was to appear, dis-
aster struck. On the night of 6–7 September 1826
the buttress of the bridge in the right bank
“cracked” when the surrounding earth was flooded
due to a broken water pipe from a nearby pump-
ing station. Now the strength of these buttresses
in Navier’s design had in fact already been ques-
tioned by the committee of experts. Even in July
when the roadway was attached to the suspended
chains, small cracks had appeared in the anchor-
ages where the cables changed direction to de-
scend vertically to their anchors (Figure 4). It was
agreed that the buttresses would have to be
strengthened. After the flooding this became im-
perative.

At first it was assumed that repairs would be car-
ried out and that the bridge would be completed,
but politics and financial issues intervened. A dis-
pute developed between the Corps and the con-
tractor over who had financial responsibility for the
repairs. A financier threatened to sue the Corps. Sar-
castic articles appeared in the press against the
Corps, and Navier was referred to as “that eminent
man of science whose calculations fail in Paris.” The
Paris City Council, which for various political rea-
sons had opposed the project from the beginning,
seized the opportunity to attack it. The accident
caused panic among the investors. The principal fi-
nancial backer died, and no one could be found to
replace him. Navier pleaded in public and in private
to complete his project. But he was unsuccessful,

Figure 4. A portion of the bridge, as designed by Navier, showing the anchorage (see [13]).
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resistance. However, even though his design was
novel and untried, Navier did not appear to have
tested it on a scale model, nor did he “overbuild”
to compensate for possible error. His own state-
ments suggest that this was rash. In particular, he
noted that the resistance of the earth could only
be calculated accurately for the vertical forces. For
the horizontal forces the resistance depended sig-
nificantly on the cohesion of the earth, “the eval-
uation of which is subject to great uncertainty.”9

Hindsight suggests that Navier’s concept, in which
the cables descend vertically to the anchorage, was
probably workable (for example, this was suc-
cessfully used in the Brooklyn Bridge). However, his
implementation in the design for the Pont des In-
valides may indeed have relied on a theoretical
model that approximated reality but with insuffi-
cient accuracy for what was demanded of it.

Although the affair of the Pont des Invalides was
a major setback in Navier’s career and must have
caused him personal distress, he continued to be
a prominent scientist consulted by the French gov-
ernment on issues of science and technology. In
1831 he became a Chevalier de la Legion d’Honneur.
He was a man of strong political views, following
an ideology based on society taking advantage of
science and technology. After a lifetime of what
must have been very hard work producing re-
markable and diverse achievements, he died at the
relatively early age of fifty-one.
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9This is particularly ironic because the movement of a
liquid-particle suspension (e.g., the flooded earth) receives
attention from modern fluid dynamicists, who use the
Navier-Stokes equations with modifications of Navier’s
frictional term.
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