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Abstract
In this study, a new high-order particlemethod is proposed to solve the incompressible Navier–Stokes equations. The proposed
method combines the advantages of particle and mesh methods to approximate the total and the spatial derivative terms under
the Lagrangian and the Eulerian frameworks. Our aim is to avoid convective instability and increase solution accuracy at the
same time. Data transfer from Lagrangian particles to Eulerian grids is realized by moving least squares interpolation. In
contrast to the previously proposed method, there is no need to interpolate diffusion terms from Eulerian grids to Lagrangian
particles. Therefore, the accuracy of the present solution will not be deteriorated by interpolation error. Additionally, no
extra work is required to manage particles for searching procedure. Because no convection term needs to be discretized by
upwinding schemes, false diffusion and dispersion errors will not be introduced, thereby increasing the solution accuracy.
To verify the proposed particle method, several benchmark problems are solved to show that the present simulation is more
stable, accurate, and efficient. The proposed particle method renders fourth- and second-order accurate solutions in space for
velocity and pressure, respectively.

Keywords High-order particle method · Incompressible Navier–Stokes equations · False diffusion error · Numerical
dispersion error

1 Introduction

Conventionally, there are two major classes of numerical
methods for solving the incompressible Navier–Stokes equa-
tions: mesh and meshless (particle) methods. Finite differ-
ence method (FDM), finite volume method (FVM) and finite
element method (FEM) are categorized as themeshmethods.
They are developed based on the Taylor series expansion,
conservation in a control volume, and variational princi-
ples, respectively. On the other hand, the moving particle
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semi-implicit (MPS) and smoothed particle hydrodynamics
(SPH) methods are the typical particle methods. MPS adopts
the idea of particle interactions to model spatial differential
operators, while Sph makes use of the concept of integral
representation of a function and exploits the derivative of the
kernel function to approximate spatial differential operators.

For the two major particle methods, MPS method was
developed in 1996 [1] to deal with incompressible free sur-
face flow problem and SPH method was firstly developed
to solve astrophysics problems [2,3] in 1977. MPS solves
the incompressible flows in a strong form and approximates
differential operators within particle interaction framework.
MPS adopts projection method to solve the Navier–Stokes
equations and uses the concept of particle number density
(PND) to model incompressibility [1]. However, the original
particle methods suffer from the oscillating pressure fields.
Several approaches have been proposed to tackle this diffi-
culty [4–7]. Additionally, MPS method was also improved
to tackle physically more complex flow problems such as
the multi-resolution problem [8], multi-phase flow problem
[9,10], and progressive water wave problem [11]. On the
other hand, SPH solves the weakly compressible flow in
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a weak form originally and is adopted to solve the incom-
pressible flows [12–15]. SPH has also been applied to solve
multi-resolution problem [16,17] or flexible fibers–viscous
fluids interaction [18]. Both MPS and SPH methods suffer
from the drawback of low accuracy and oscillatory pressure.
Recently, accuracy has been improved by taking least squares
or local polynomial reconstruction concepts into account
[8,19,20], while pressure oscillations were eliminated by
modifying the source terms in the pressure Poisson equation
(PPE) [21–23]. Since PPE is an elliptic equation, Hwang
proposed moving particle method with an embedded pres-
sure mesh (MPPM) [4] to reduce pressure oscillations. Also,
MPPM method was extended to solve multi-phase flow [10]
or flows in complex flowdomain [24]. In some of the recently
proposed MPS and SPH methods, [20,25] and [26] show
first-, second- and third-order accurate solutions for velocity,
respectively. However, for the most important issue, they did
not improve the accuracy order for pressure, which is most
likely first-order accurate. Thismotivates us to develop a new
particle method aiming primarily at increasing the spatial
accuracy order for pressure to second. Moreover, the spatial
accuracy order for velocity is improved to fourth as well.

In order to resolve low accuracy and inconsistency issues
encountered in the conventional SPH andMPSmethods, sev-
eral refined methods have been proposed such as the updated
Lagrangian particle hydrodynamics (ULPH) method [27],
material point method (MPM) [28,29], corrective smoothed
particle method (CSPM) [30], kernel gradient correction
(KGC) method [31,32], finite particle method (FPM) [33],
and decoupled finite particle method (DFPM) [34]. Most of
these particle methods, except the MPM, are aimed at pro-
viding alternativeways, which are consistent and have higher
accuracy compared with the conventional SPH and MPS
methods, to approximate the gradient and the divergence
operators. Also, it is noted that these numerical methods are
actually solving weakly compressible Navier–Stokes equa-
tions such that the equation of state or a pressure transient
equation shall be invoked for the calculation of pressure. In
ULPH method, new formulations were proposed, while the
others were constructed through the correction on the con-
ventional SPH method. The accuracy order of velocity and
pressure of these methods does not exceed second and first
orders, respectively. In addition, ghost particles are adopted
in these methods to model Dirichlet and Neumann boundary
conditions for velocity.However, the proposed IMLEmethod
exploits the advantage of the Eulerian method such that the
spatial derivative terms can be approximated to yield an even
higher accuracy order, e.g., sixth- and fifth-order accuracy
for the pressure gradient and the velocity Laplacian terms,
respectively. From the numerical tests, IMLE method shows
fourth- and second-order accuracy for velocity and pressure
fields, respectively. Also, with the aid of the interpolation
procedure, there is no longer any need to take care of particle

penetrating across the wall. While the ULPH, CSPM, KGC,
FPM, and DFPM are classified to be the fully Lagrangian
methods, the MPM is also a hybrid method which combines
the advantages of both Lagrangian and Eulerian methods
such as the newly proposed IMLE method. Some key differ-
ences are that the primitive variables u and p are transferred
in two ways, namely they are interpolated from Lagrangian
particles to Eulerian grids and in reverse at the integer time
step levels n and n+1. On the other hand, the IMLE method
only interpolates the intermediate velocities fromLagrangian
particles to Eulerian grids. It is noted that the source term of
the PPE is calculated from the interpolated velocities. As a
result, it is better to use the pressure gradient term to mod-
ify the interpolated velocities on Eulerian grids only but not
those on Lagrangian particles. Therefore, at the beginning of
the next time step, the velocity Laplacian term on Eulerian
grids can be approximated using a higher accurate numerical
scheme without adopting any interpolation procedure which
will deteriorate the accuracy order. It is also noted that in the
proposed IMLE method, unlike some other particle methods
[29,31,33], no free parameters will be involved.

In the conventional finite difference and finite volume
methods, the velocity terms are solved from the momentum
equations which involve convection terms. When discretiz-
ing convection terms, upwinding scheme can effectively
get rid of convective instability problem [35]. However,
upwinding schemes introduce errors which can deteriorate
the accuracy of the results. Firstly, discretizing convection
terms shall introduce numerical dispersion error. Several
dispersion-relation-preserving (DRP) schemes proposed in
[35–38] can be applied to reduce such an error. Secondly, in
most of the multi-dimensional flow situation, streamlines in
a flow field are not aligned with the grid lines. Therefore, it is
difficult to eliminate false diffusion error. Even though some
numerical methods [39–42] can partly resolve this problem,
within the framework of Eulerian approach it is still an open
issue in the computational fluid dynamics (CFD) community.

The goal of this paper is aimed at developing an improved
mixed Lagrangian–Eulerian (IMLE) method based on the
previously proposed MLE method [43] to improve compu-
tational accuracy, enhance numerical stability and computa-
tional efficiency by combining advantages of both particle
(meshless) and mesh methods. Diffusion terms present in
the momentum equations are discretized on Eulerian grids
to get high-order accuracy. It is emphasized that it is eas-
ier to get a better accuracy on Cartesian grid rather than
on Lagrangian particles. Total derivative terms are approxi-
mated by simply advecting Lagrangian particles so that the
procedure of discretizing convection terms can be avoided,
thereby completely eliminating the convective instability
problem. With the aid of the moving least squares (MLS)
interpolation method [44], velocity components can be inter-
polated back to the Eulerian grid to calculate the source
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term of the PPE. It is noted that MLS method was recently
adopted in high-order methods to solve fluid flow prob-
lems [45–48]. While the PPE is solved on the Eulerian
grid which is suitable for elliptic property of PPE, pres-
sure field shows no oscillations, thus eliminating a major
source of numerical error generated in conventional parti-
cle methods. In this newly proposed IMLE method, as the
most outstanding feature of Lagrangian particle methods,
there are no numerical dispersion and dissipative errors since
no upwinding schemes for the discretization of convection
terms have been adopted. Additionally, accuracy order in
calculating diffusion terms is as high as that of the numeri-
cal schemes adopted on Eulerian grids and is not restricted
by the interpolation scheme presented in the original MLE
method.

The rest of this paper is organized as follows. Section 2
describes the governing equations and boundary conditions
prescribed in this paper. In Section 3, the previously proposed
mixed Lagrangian–Eulerian (MLE)method [43] is reviewed.
Then the spatial discretization schemes and the proposed
improved mixed Lagrangian–Eulerian (IMLE) method are
detailed. Section 4 presents numerical results obtained from
some classical benchmark problems including the Taylor–
Green vortex, the backward-facing step, and the lid-driven
cavity flow problems. Conclusions are drawn in Sect. 5.

2 Governing equations

In this study, we consider the equations for two-dimensional
incompressible fluid flow. Governing equations, namely
continuity and Navier–Stokes equations, are solved in the
physical domain � whose boundary is ∂�.

∇ · u = 0 (1)
du
dt

≡ ∂u
∂t

+ u · ∇u = − 1

ρ
∇ p + ν∇2u (2)

In the above equations, u is the velocity vector, p the pres-
sure, ρ the density, and ν the kinematic viscosity. Reynolds
number is defined as Re = ρUL

μ
, where U is the character-

istic velocity, L the characteristic length, and μ the dynamic
viscosity. The solutions of Eqs. (1) and (2) are sought sub-
jected to the initial condition for velocity specified in � and
the boundary conditions for velocity and pressure prescribed
on ∂�.

u (x, t = 0) = u0 (x) in � (3)

αφ + βn · ∇φ = γ on ∂� (4)

In Eq. (4), φ can be velocity u or pressure p and n denotes the
unit outward normal vector of the boundary ∂�. ForDirichlet

and Neumann boundary conditions, (α, β) equals (1, 0) and
(0, 1), respectively.

3 Numerical methods

3.1 Review of the previously proposedmixed
Lagrangian–Eulerianmethod

In the previously proposed Mixed Lagrangian–Eulerian
(MLE) method [43], the pressure oscillation problem usu-
ally encountered in the conventional particle methods, such
as MPS [1,5,7,21,22,49–52] and SPH [2,3,12,53–55], has
been resolved by solving the elliptic PPE on Eulerian grids.
Moreover, the accuracy order of discretizing the diffusion
terms on the Lagrangian particles has been improved from
the zeroth [56] and first [57] orders to the second order. The
key idea is that the diffusion terms were firstly calculated on
Eulerian grids by using the high-order scheme given in [58]
and then theywere interpolated to theLagrangian particles by
second-order accurate bilinear interpolation. Thus, the accu-
racy order of approximating diffusion terms at the locations
of moving particles is restricted by the adopted interpolation
scheme After the step of advecting particles, intermediate
velocities at the locations of moving particles are interpo-
lated back to the Eulerian grids by using third-order MLS
in order to calculate the source term shown in PPE. In the
final step, the values of velocity components on the moving
particles are updated by the pressure gradient term and these
particles continue their journey again according to the final
velocities.

In the original MLE method, the continuity equation is
solved on Eulerian grids aiming to retain the elliptic prop-
erty of the PPE. It is implied that the moving particles are
regarded as observation points rather than mass points as
usually used in the MPS and SPH methods. Because the
particles are considered as mass points, they cannot pen-
etrate physical boundaries and will generate less accurate
or totally unacceptable solutions when particles become
clustered. On the other hand, observation particles can be
deleted from or added into a cell according to the particle
distribution situation. For the case of highly clustered par-
ticles, the particle nearest the cell center will be kept and
the others be deleted. On the contrary, a particle will be
added into a cell without any particle. Also, for the bal-
ance of the computational efficiency and accuracy, a tuned
parameter was proposed to control the maximum number of
particles in a cell. In Sect. 4.3, numerical results obtained
from the case of different values of tuned parameters in
MLE methods will be compared with the proposed IMLE
method.

The numerical procedure of the MLE method is shown
below.
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Algorithm 1 Algorithm of the MLE method
1: Read input file
2: Calculate computational parameters
3: for time < MaxT ime do
4: Calculate diffusion terms on Eulerian grids
5: Interpolate diffusion terms from Eulerian grids to Lagrangian

particles
6: Calculate intermediate velocities on Lagrangian particles
7: Calculate intermediate locations of Lagrangian particles accord-

ing to the intermediate velocities
8: Update link-list which manages particle distribution
9: Interpolate intermediate velocities from Lagrangian particles to

Eulerian grids
10: Solve PPE
11: Modify intermediate velocities onEulerian grids andLagrangian

particles
12: Modify particle locations according to updated velocities
13: Update link-list which manages particle distribution
14: Delete too-clustered particles/Add one particle into the empty

cell/Delete particles from a cell which contains toomany particles
according to the value of npcmax

15: end for
16: Output results for post-processing

3.2 Cell-centered combined compact difference
scheme in collocated grids

In this study, a cell-centered (CC) collocated grid system
schematically shown in Fig. 1a is adopted. Red circles denote
cell centers storing variables u and p, green diamonds denote
boundary face centers storing boundary values of u and p,
and blue diamonds denote corner points storing only bound-
ary values of u. The reason for keeping corner points will
be addressed in Sect. 3.4.2. The numbers of the grid points
and the mesh cells are defined as np and nc = np − 1,
respectively. The grid size is defined as h = Lx

nc , where Lx is
the domain length along x-direction. For the sake of conve-

nience, a uniform Cartesian mesh is used in this study. For
spatial derivative terms in interior grid points, the sixth-order
accurate combined compact difference (CCD) [58] schemes
given below are applied to calculate the first and second
derivative terms, respectively.

7

16

(
φ′
i+1 + φ′

i−1

) + φ′
i − h

16

(
φ′′
i+1 − φ′′

i−1

)

= 15

16h
(φi+1 − φi−1) (5)

9

8h

(
φ′
i+1 − φ′

i−1

) − 1

8

(
φ′′
i+1 + φ′′

i−1

) + φ′′
i

= 3

h2
(φi+1 − 2φi + φi−1) (6)

It is noted that the original CCD schemes were derived in
the context of vertex-centered (VC) collocated grid system
which is shown inFig. 1b. In the cell-centeredgrid system, the
schemes should be derived for calculating the first and second
derivativeswithDirichlet andNeumann boundary conditions
for boundary cells. Here the scheme for approximating the
first derivative term subjected to Dirichlet boundary condi-
tion is taken as an example. The first derivative term at the
first cell center, i = 1, is assumed to take the form of

φ′
1 + a1φ

′
2 + hb1φ

′′
2 = 1

h
(c1φL + c2φ1 + c3φ2) (7)

In the above equation, h is the grid size and φL is the value
at the left Dirichlet boundary. After performing the modified
equation analysis and eliminating the first few leading error
terms, the five coefficients shown in Eq. (7) can be deter-
mined uniquely as: a1 = 8

9 , b1 = − 1
6 , c1 = − 16

27 , c2 = − 1,
and c3 = 43

27 . The leading error term of Eq. (7) is 1
240h

4φ(5).
By repeating the above procedure, the discretization schemes
for calculating the first and second derivative terms with
Dirichlet, Neumann, and periodic boundary conditions can

(a) (b)

Fig. 1 Two-dimensional grid systems
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be derived and the corresponding matrix equations, taking
nc = 4 as an example, are shown below.
(1) Cell-centered combined compact difference scheme for

the case with Dirichlet boundary condition (CC-CCD-
D) is

⎡

⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

1 0 8
9 − h

6
0 1 2

3h 0

7
16

h
16 1 0 7

16 − h
16− 9

8h − 1
8 0 1 9

8h − 1
8

7
16

h
16 1 0 7

16 − h
16

− 9
8h − 1

8 0 1 9
8h − 1

8

8
9

h
6 1 0

− 2
3h 0 0 1

⎤

⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ′
1

φ′′
1

φ′
2

φ′′
2

φ′
3

φ′′
3

φ′
4

φ′′
4

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡

⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎢⎢⎢⎢
⎣

− 16
27h − 1

h
43
27h

32
9h2

− 6
h2

22
9h2

− 15
16h 0 15

16h
3
h2

− 6
h2

3
h2

− 15
16h 0 15

16h
3
h2

− 6
h2

3
h2

− 43
27h

1
h

16
27h

22
9h2

− 6
h2

32
9h2

⎤

⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎥⎥⎥⎥
⎦

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

φL

φ1

φ2

φ3

φ4

φR

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(8)

(2) Cell-centered combined compact difference scheme for
the case with Neumann boundary condition (CC-CCD-
N) is

⎡

⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢
⎣

1 0 31
27 − 2h

9
0 1 − 8

9h
1
3

7
16

h
16 1 0 7

16 − h
16− 9

8h − 1
8 0 1 9

8h − 1
8

7
16

h
16 1 0 7

16 − h
16− 9

8h − 1
8 0 1 9

8h − 1
8

31
27

2h
9 1 0

8
9h

1
3 0 1

⎤

⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥
⎦

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ′
1

φ′′
1

φ′
2

φ′′
2

φ′
3

φ′′
3

φ′
4

φ′′
4

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡

⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢
⎣

4
27 − 2

h
2
h− 8

9h 0 0

− 15
16h 0 15

16h
3
h2

− 6
h2

3
h2

− 15
16h 0 15

16h
3
h2

− 6
h2

3
h2

− 2
h

2
h

4
27

0 0 8
9h

⎤

⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥
⎦

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ′
L

φ1

φ2

φ3

φ4

φ′
R

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

(9)

(3) Cell-centered combined compact difference scheme for
the case with periodic boundary condition (CC-CCD-P)
is

⎡

⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎢
⎣

1 0 7
16 − h

16
7
16

h
16

0 1 9
8h − 1

8 − 9
8h − 1

8

7
16

h
16 1 0 7

16 − h
16− 9

8h − 1
8 0 1 9

8h − 1
8

7
16

h
16 1 0 7

16 − h
16− 9

8h − 1
8 0 1 9

8h − 1
8

7
16 − h

16
7
16

h
16 1 0

9
8h − 1

8 − 9
8h − 1

8 0 1

⎤

⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎥
⎦

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ′
1

φ′′
1

φ′
2

φ′′
2

φ′
3

φ′′
3

φ′
4

φ′′
4

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡

⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢
⎣

0 15
16h − 15

16h
− 6

h2
3
h2

3
h2

− 15
16h 0 15

16h
3
h2

− 6
h2

3
h2

− 15
16h 0 15

16h
3
h2

− 6
h2

3
h2

15
16h − 15

16h 0
3
h2

3
h2

− 6
h2

⎤

⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥
⎦

⎧
⎪⎪⎨

⎪⎪⎩

φ1

φ2

φ3

φ4

⎫
⎪⎪⎬

⎪⎪⎭
(10)

As shown in Eqs. (8) and (9), the coefficient matrices for the
calculation of the first and second derivative terms are block-

tridiagonal matrices. Note that the size of the sub-matrix is
two because the number of unknowns at each mesh cell is
two and the number of sub-matrices is nc. Advantages of
adopting CC grids rather than VC grids are listed below.

1. There are no geometrical singular points. As shown in
Fig. 1b, the four corner points are the geometrically sin-
gular points upon which numerical implementation of

Neumann boundary conditions is not easy while solving
PPE. The Neumann boundary conditions can be dis-
cretized along the diagonal grid points as stated in [59]

for uniformmesh or using themodifiedCollatz difference
scheme given in [60]. However, one can avoid discretiz-
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ing theNeumannboundary conditions at the corner points
in CC grids.

2. The matrix size, LDA, is constant for the cases with
Dirichlet, Neumann, and periodic boundary conditions,
while LDA is different under different boundary condi-
tions if VC grid is adopted. For example, LDA = 2 ×nc
for calculating the first and second derivative values with
the given function values and LDA = 3 ×nc for solving
partial differential equation (PDE) if CC-CCD scheme is
adopted.On the other hand, LDAequals 2×np and 2×nc
forVC-CCDscheme to dealwith problemswithDirichlet
and Neumann/periodic boundary conditions. Therefore,
the complexity in programming can be reduced in using
the CC-CCD scheme.

3. In the original VC-CCD scheme, three function values at
grid points i = 1−3 are taken into account in calculating
the derivative terms at grid point i = 1. The derived
block-tridiagonalmatrix property is brokenwhen solving
a PDE as shown below.

⎡

⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢
⎣

a b c 0 0 0
α β 0 0 0 0
31
h 14 2h − 32

h 16 −4h 1
h

0 0 0 a b c 0 0 0
15
16h

7
16

h
16 0 1 0 − 15

16h
7
16 − h

16− 3
h2

− 9
8h − 1

8
6
h2

0 1 − 3
h2

9
8h − 1

8

0 0 0 a b c 0 0 0
15
16h

7
16

h
16 0 1 0 − 15

16h
7
16 − h

16− 3
h2

− 9
8h − 1

8
6
h2

0 1 − 3
h2

9
8h − 1

8

0 0 0 a b c 0 0 0
15
16h

7
16

h
16 0 1 0 − 15

16h
7
16 − h

16
− 3

h2
− 9

8h − 1
8

6
h2

0 1 − 3
h2

9
8h − 1

8

0 0 0 a b c
0 0 0 α β 0

− 1
h

32
h 16 4h − 31

h 14 −2h

⎤

⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥
⎦

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ1

φ′
1

φ′′
1

φ2

φ′
2

φ′′
2

φ3

φ′
3

φ′′
3

φ4

φ′
4

φ′′
4

φ5

φ′
5

φ′′
5

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

src1
γ

0

src2
0
0

src3
0
0

src4
0
0

src5
γ

0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(11)

In the above matrix equation, coefficients a, b, and c are used
in the governing equation, which is aφ + bφ′ + cφ′′ = src,
and α, β, and γ are shown in Eq. (4). From the computa-
tional point of view, the currently adopted CC-CCD scheme
retains the block-tridiagonal matrix property while calcu-
lating derivative values and solving a PDE. Therefore, the
block-tridiagonal LU decomposition method can be adopted
in this paper for solving Eqs. (8) and (9).

LU decomposition of the block-tridiagonal matrix is illus-
trated below. Equations (8) and (9) can be written in the
following form.

⎡

⎢⎢⎢⎢
⎢⎢⎢
⎣

B1 C1

A2 B2 C2

A3 B3 C3
. . .

. . .
. . .

Anc−1 Bnc−1 Cnc−1

Anc Bnc

⎤

⎥⎥⎥⎥
⎥⎥⎥
⎦

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

x1
x2
x3
...

xnc−1

xnc

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

b1
b2
b3
...

bnc−1

bnc

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(12)

In the above matrix equation, Ai , Bi , and Ci are the sub-
matrices shown in the coefficient matrix and their dimension
is 2 for calculating the first and second derivative terms and
3 for solving a PDE. xi and bi are the solution vector and
source vector corresponding to the cell index i . The coeffi-
cient matrix is firstly decomposed into L and U matrices as
shown below.

⎡

⎢⎢⎢
⎢⎢⎢⎢
⎣

B1 C1

A2 B2 C2

A3 B3 C3
. . .

. . .
. . .

Anc−1 Bnc−1 Cnc−1

Anc Bnc

⎤

⎥⎥⎥
⎥⎥⎥⎥
⎦
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=

⎡

⎢⎢⎢⎢
⎢⎢⎢
⎣

I1
L2 I2

L3 I3
. . .

. . .

Lnc−1 Inc−1

Lnc Inc

⎤

⎥⎥⎥⎥
⎥⎥⎥
⎦

×

⎡

⎢⎢⎢⎢⎢
⎢⎢
⎣

U1 C1

U2 C2

U3 C3
. . .

. . .
. . .

Unc−1 Cnc−1

Unc

⎤

⎥⎥⎥⎥⎥
⎥⎥
⎦

(13)

Algorithm 2 Block-tridiagonal LU decomposition
1: U1 = B1
2: for i = 2 to nc do
3: Solve LiUi−1 = Ai
4: Ui = Bi − LiCi−1
5: end for

Through a forward substitution, vector y = Ux is
obtained.

⎡

⎢
⎢⎢⎢⎢⎢⎢
⎣

I1
L2 I2

L3 I3
. . .

. . .

Lnc−1 Inc−1

Lnc Inc

⎤

⎥
⎥⎥⎥⎥⎥⎥
⎦

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

y1
y2
y3
...

ync−1

ync

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

b1
b2
b3
...

bnc−1

bnc

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(14)

Algorithm 3 Block-tridiagonal forward substitution
1: y1 = b1
2: for i = 2 to nc do
3: yi = bi − Liyi−1
4: end for

Finally, the solution vector x can be obtained after a back-
ward substitution step.

⎡

⎢⎢⎢
⎢⎢⎢⎢
⎣

U1 C1

U2 C2

U3 C3
. . .

. . .
. . .

Unc−1 Cnc−1

Unc

⎤

⎥⎥⎥
⎥⎥⎥⎥
⎦

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

x1
x2
x3
...

xnc−1

xnc

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

y1
y2
y3
...

ync−1

ync

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(15)

Algorithm 4 Block-tridiagonal backward substitution
1: Solve Uncxnc = ync
2: for i = nc − 1 to 1 do
3: Solve Uixi = yi − Cixi+1
4: end for

In the execution of computer code, the coefficientmatrices
can be constructed and decomposed only once in the pre-
processing step. During the time-stepping procedure, only
forward and backward substitutions are needed to be per-
formed to get the solution vector x.When solving the periodic
boundary value problem, the same procedures can be applied
only with a slight modification of the matrices L and U.

3.3 The newly proposed improvedmixed
Lagrangian–Eulerianmethod

To solve Eqs. (1) and (2), the projection method proposed
by Chorin [61] is adopted. First of all, Eq. (2) is temporally
discretized by the first-order Euler explicit method without
considering the pressure gradient term under the Lagrangian
framework to get the intermediate velocities.

u∗ = un + 
tν∇2un (16)

In the above equation, the superscripts n and ∗ represent
the solutions obtained at the time level n and the intermedi-
ate level between levels n and n + 1. Since the momentum
equation is solved under the Lagrangian framework, fluid
particles should be advected with the intermediate velocities
to the intermediate locations.

r∗ = rn + 
tu∗ (17)

It is to be noted that rn is the location of the center of a
cell which is uniformly distributed because Cartesian grid
is considered in this study. It is obvious that the intermedi-
ate location r∗ is not uniformly distributed any longer after
the advection step. Therefore, a third-order accurate moving
least squares (MLS) interpolation method is adopted to inter-
polate the intermediate velocities from r∗ back to rn . In this
study, 32 = 9 particles are taken into account for interpola-
tion purpose as shown in Fig. 2. Red circles represent cell
center (rn), and blue triangles represent intermediate loca-
tions (r∗). It is noted that the red solid circle is the reference
location to interpolate velocities from the surrounding nine
blue solid triangles. Red and blue hollow symbols are not
taken into account in the interpolation procedure. The green
circle is the influence domain for the red solid circle, and
the radius is twice the diagonal length of the mesh cell such
that re = 2

√
2h. The influence radius re is used in calcu-

lating the weighting function ωi (ri , re) which is used in the
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MLS interpolation method. The subscript i is the index of
the interpolated point (blue solid triangle), and r is the dis-
tance between the interpolated point and the reference point
(red solid circle). In this study, the weighting function given
below takes the form from [62].

ωi (ri , re)

=
{

a
re

+ b
re

(
ri
re

)
+ c

re

(
ri
re

)2 + d
re

(
ri
re

)3 + e
re

(
ri
re

)4
0 ≤ ri ≤ re

0 re > ri

(18)

where

a = 480
√
2 − 705

512
√
2 − 745

b = 0 c = − 960
√
2 + 1515

512
√
2 − 745

d = −210

512
√
2 − 745

e = 480
√
2 − 600

512
√
2 − 745

For performing the MLS interpolation method, a local poly-
nomial given below is constructed.

Fig. 2 Schematic of the interpolation process (circles denote Eulerian
grids; triangles denote Lagrangian particles; solid symbols denote the
points participating in interpolation process; hollow symbols denote the
points not participating in interpolation process)

f (x, y) = a0+a1x+a2y+a3x
2+a4xy+a5y

2+O(x3, y3)

(19)

The coefficients a0−a5 can be determined by using the MLS
method tominimize the error and solving the following linear
system.

⎡

⎢⎢⎢⎢⎢⎢
⎣

∑
ω2
i

∑
ω2
i xi

∑
ω2
i yi

∑
ω2
i x

2
i

∑
ω2
i xi yi

∑
ω2
i y

2
i∑

ω2
i xi

∑
ω2
i x

2
i

∑
ω2
i xi yi

∑
ω2
i x

3
i

∑
ω2
i x

2
i yi

∑
ω2
i xi y

2
i∑

ω2
i yi

∑
ω2
i xi yi

∑
ω2
i y

2
i

∑
ω2
i x

2
i yi

∑
ω2
i xi y

2
i

∑
ω2
i y

3
i∑

ω2
i x

2
i

∑
ω2
i x

3
i

∑
ω2
i x

2
i yi

∑
ω2
i x

4
i

∑
ω2
i x

3
i yi

∑
ω2
i x

2
i y

2
i∑

ω2
i xi yi

∑
ω2
i x

2
i yi

∑
ω2
i xi y

2
i

∑
ω2
i x

3
i yi

∑
ω2
i x

2
i y

2
i

∑
ω2
i xi y

3
i∑

ω2
i y

2
i

∑
ω2
i xi y

2
i

∑
ω2
i y

3
i

∑
ω2
i x

2
i y

2
i

∑
ω2
i xi y

3
i

∑
ω2
i y

4
i

⎤

⎥⎥⎥⎥⎥⎥
⎦

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

a0
a1
a2
a3
a4
a5

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∑
ω2
i fi∑

ω2
i fi xi∑

ω2
i fi yi∑

ω2
i fi x

2
i∑

ω2
i fi xi yi∑

ω2
i fi y

2
i

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(20)

It is worth noting that the function value can be evaluated at
the reference point by calculating f (0, 0) which is actually
a0. Therefore, the above linear system does not need to be
solved entirely to get all the six coefficients. Instead, back-
ward elimination procedure can be adopted to get a0 without
computing the values of a1−a5 and it is more computation-
ally efficient.

Since the interpolated intermediate velocity field is not
divergence free, a modified step is introduced to obtain the
divergence free velocity field.

un+1 = u∗
interpolated − 
t

ρ
∇ pn+1 (21)

Taking divergence operation on the above equation and using
Eq. (1), the pressure Poisson equation (PPE) can be obtained
as following.

∇2 pn+1 = ρ


t
∇ · u∗

interpolated (22)

In this study, the abovePPE is discretized by the second-order
central difference scheme, leading to

pi+1, j + pi−1, j + pi, j+1 + pi, j−1 − 4pi, j

= ρh

2
t

(
u∗
i+1, j − u∗

i−1, j + v∗
i, j+1 − v∗

i, j−1

)
(23)

The resulting linear system is solved by the conjugate gra-
dient (CG) iterative solver. The iterative solution of p is
said to be convergent if the root mean square (RMS) of the
residuals is smaller than a convergence criteria, said RMS(
resk

)
< ε = 10−15, where resk is the residual of the k-th

step iterative solutions and the function RMS is defined as

RMS (φ) =
⎛

⎝ 1

ncx

1

ncy

ncx∑

i=1

ncy∑

j=1

φ2
i, j

⎞

⎠

1
2

(24)
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In the above equation, ncx and ncy are the number of mesh
cells in x- and y-directions, respectively.

For the sake of completeness, the numerical procedure for
the IMLE method is summarized below.

Algorithm 5 Algorithm of the IMLE method
1: Read input file
2: Calculate computational parameters
3: for time < MaxT ime do
4: Calculate the diffusion terms on Eulerian grids, Eq. (8) or (9) or

(10).
5: Calculate the intermediate velocities on Eulerian grids,

Eq. (16).
6: Calculate the intermediate locations of the Lagrangian particles

departing from the Eulerian grids according to the intermediate
velocities, Eq. (17).

7: Interpolate the intermediate velocities from Lagrangian particles
to Eulerian grids, Eqs. (20).

8: Solve the PPE, Eq. (23).
9: Update the intermediate velocities on Eulerian grids, Eq. (21).
10: end for
11: Output results for post-processing

Some key differences between the MLE and IMLE meth-
ods are summarized below.

1. After the interpolation step (step 9 in Algorithm 1), MLE
particles keep moving from the intermediate locations
r∗ to the next locations rn+1 (step 12 in Algorithm
1) until they are deleted. This means that MLE parti-
cles are not always located at the Eulerian grid points.
Thus another interpolation (step 5 in Algorithm 1) is
required to interpolate diffusion terms from Eulerian
grids to Lagrangian particles after those terms have been
calculated on Eulerian grids by the VC-CCD scheme.
Therefore, the accuracy order of the diffusion terms on
Lagrangian particles is restricted by the accuracy order
of the adopted interpolation scheme.

2. In every advection step (step 7 in Algorithm 1 and step
6 in Algorithm 5), the departing points of the MLE par-
ticles may not be located on the Eulerian grid points,
while the IMLE particles are exactly departed from the
Eulerian grid points (shown in Fig. 3). In other words,
distance between a Lagrangian particle and its corre-
sponding Eulerian grid point may be longer for MLE
method, i.e., |rn−rn−2|MLE > |r∗−rn|IMLE. As a result,
IMLE particles can be expected to be distributed more
uniformly than MLE particles (a small/large deviation
from the uniformEulerian grids in IMLE/MLEmethods).
In this situation, particle distribution with smaller devi-
ation can reduce MLS interpolation error [63] in IMLE
method.

3. The source term of the PPE is calculated from the inter-
polated velocities. It is therefore better to update the

interpolated velocities on Eulerian grids only rather than
to update the velocities on Lagrangian particles as well.

4. The interpolation procedure (step 7 in Algorithm 5) can
be seen as a re-meshing stepwhich re-meshes the slightly
non-uniform Lagrangian particles to the uniform Eule-
rian grids.

5. MLE uses semi-staggered grid which requires one (two)
additional interpolation procedures to interpolate the
pressure gradient terms from cell faces to cell vertices in
two (three)-dimensional grids [64]. IMLE adopts collo-
cated grid, and there is no need for interpolating pressure
gradient term; therefore, IMLE is more efficient.

With respect to the conventional finite difference method,
which directly discretizes the convection terms, the previous
process (steps 6–7 in Algorithm 5) can be seen as an alter-
native way to compute the addition of particle derivative and
convection terms at grid points. As shown above, the particles
move along the streamlines so that there is no false diffu-
sion error generated from using any local one-dimensional
upwinding scheme. Also, since there is no convection terms
used in IMLE method, there is no dispersion error as well
resulting from the discretization of the convection terms.

3.4 Boundary treatments for intermediate velocity

3.4.1 Boundary treatment for Neumann boundary
condition

For the cases of Dirichlet boundary condition, intermediate
velocity components located on boundary face centers (green
diamonds in Fig. 1a) are directly assigned as velocity com-
ponents at next time step, i.e., u∗ = un+1. On the other hand,
if Neumann boundary condition is considered, velocity com-
ponents and tangential location of a boundary face particle
are determined by the boundary cell particle. As shown in
Fig. 4, tangential location of a boundary face particle is the
projection of the location of a boundary cell particle, i.e.,
y∗
face particle = y∗

cell particle. Similarly, velocity vector is dupli-
cated from the boundary cell particle to its corresponding
boundary face particle, i.e., u∗

face particle = u∗
cell particle.

It is worth noting that there are no ghost/dummy parti-
cles adopted in IMLE method, while they are usually used
in conventional SPH [25,65,66] and MPS [8,9,67] meth-
ods. Ghost particle or repulsive force model, which may
deteriorate computational accuracy, was developed to pre-
vent particles from penetrating rigid walls. However, in the
proposed IMLE method, Lagrangian particles are reset to
uniform Eulerian mesh points, thus ensuring that no particle
can penetrate across the walls.
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Fig. 3 Schematic of MLE (left) and IMLE (right) particles. Red circles denote cell centers, blue diamonds denote MLE particles at different time
step, and blue triangle denotes intermediate location of IMLE particle. (Color figure online)

Fig. 4 Schematic of determining location and velocity of boundary
face particles (green solid diamond) for Neumann boundary condition
in x-direction. (Color figure online)

3.4.2 Boundary treatment for interpolation procedure

When using MLS interpolation, there are six unknowns in
Eqs. (19) and (20). It is obvious that there should be at least
six particles needed to be taken into account for MLS inter-
polation. Also, MLS interpolation is more accurate if there
are more particles when solving Eq. (20). In this study, nine
(= 3d , where d = 2 is the problem dimension) particles are
considered in MLS interpolation for interior, boundary and

corner cells. Three interpolation cases are shown in Figs. 2
and 5a, b. In order to maintain nine-particle property, four
corner particles are reserved for utilizing MLS interpolation
of intermediate velocities. As mentioned previously, solid
triangles and diamonds are used to interpolate intermediate
velocities to solid circle while not for hollow symbols.

A most important point in using MLS interpolation is that
there is no need to tackle the difficulty of the unity (normal-
ization) condition which is the inevitable condition for SPH
kernel function. In SPH, a physical quantity φ on a particle
can be calculated in continuous sense by means of

φi =
∫

φ jW
(
x j − xi , h

)
dVj (25)

The discrete form of the above equation is

φi =
NP∑

j=1

φ jW
(
x j − xi , h

)

Vj (26)

In the above two equations, the quantity φ is interpolated
from the surrounding particles j = 1 ∼ NP to the particle
i , where NP is the number of particles within the influence
domain of particle i ,W the kernel function, h the smoothing
length, and 
Vj the volume of particle j . One of the several
important properties forW is thatW should satisfy the unity
(normalization) condition. Continuous and discrete forms of
the unity condition are shown below.

∫
W

(
x j − xi , h

)
dVj = 1 (27)
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(a) (b)

Fig. 5 Schematic of interpolation procedure for different boundary conditions for a corner cell

Table 1 Spatial rates of
convergence for the
Taylor–Green flow

Mesh size u v p

RMS of error sroc RMS of error sroc RMS of error sroc

1.00E−1 2.6800E−03 – 2.6800E−03 – 9.6307E−02 –

5.00E−2 1.7601E−04 3.9285 1.7601E−04 3.9285 2.2690E−02 2.0856

2.50E−2 1.1140E−05 3.9818 1.1147E−05 3.9809 4.1758E−03 2.4419

1.25E−2 7.0159E−07 3.9890 7.6250E−07 3.8698 1.2609E−03 1.7276

(a) (b) (c)

Fig. 6 Numerical results of the Taylor–Green vortex flow considered at Re = 106

NP∑

j=1

W
(
x j − xi , h

)

Vj = 1 (28)

However, most of the kernel functions were developed in
continuous sense, i.e., satisfying Eq. (27) only, they are not
guaranteed to satisfy the discrete unity condition as stated

in [68–70]. In order to enforce the unsatisfied discrete unity
condition, reproducing kernel particle method (RKPM) [71]
or improved SPH methods [69,70] were developed.

On the other hand, MLS interpolation method is based on
the concept of surface reconstruction. By using Eq. (19),
a smooth function can be reconstructed accurately under
the nine-particle framework. In a short summary, under the
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Fig. 7 Evolution of decayed
maximum velocity
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Fig. 8 The maximum of the
relative errors obtained for the
cases with different grid
numbers
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Fig. 9 Schematic of the
backward-facing step flow
problem
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(a)

(b)

Fig. 10 Streamlines for different Reynolds numbers of the backward-facing step flow problem

weakly non-uniformparticle distribution (stated in Sect. 3.3),
the nine-particle compact framework (shown in this section)
adopted in MLS interpolation method can improve compu-
tational accuracy.

4 Verification and validation studies

4.1 Taylor–Green vortex flow

In the first test case, the IMLE method is verified using the
analytical solutions of theTaylor–Greenvortexflowproblem.
The considered flow domain is a unit square consisting of a
series of decaying vortices. The analytical solutions of the
flow variables can be expressed as follows.

uanalytic (x, y, t) = −Uebt cos (2πx) sin (2π y) (29)

vanalytic (x, y, t) = Uebt sin (2πx) cos (2π y) (30)

panalytic (x, y, t) = −U 2

4
e2bt [cos (4πx) + cos (4π y)] (31)

In the above equations, b is the decaying rate expressed as
−8π2/Re, where Re (= ρUL/μ) is the Reynolds number
(= 100). The density ρ, reference velocity U , and charac-
teristic length L are set to unity similar to those reported in
the previous works [24,55,72].

First of all, in order to test the spatial rates of convergence
(sroc) of velocity and pressure, periodic boundary conditions
are applied in both x- and y-directions. Different grid res-
olutions (nc2 = 102, 202, 402, and 802) are adopted. In
order to evaluate the sroc, a relatively small time step size
(
t = 10−5) is considered and the simulations are executed
for only one time step in order to eliminate the influence of
time discretization error on the computed sroc [73]. Table 1
shows the RMS of the errors and the sroc at different grid
resolutions. It is observed that velocity and pressure exhibit
fourth- and second-order accuracy, respectively. Therefore,
the current IMLEmethod is more accurate than our previous
MLE method [43], as the latter reported that the sroc values
of velocity and pressure are merely 2.0 and 1.4, respectively.

Secondly, in order to examine the numerical dissipation
of the proposed IMLE method, the Reynolds number is
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(a)

(b)

Fig. 11 Normalized velocity profiles of the backward-facing step flow problem

increased to 106. The grid resolution is set to nc2 = 4002 In
this case, time step size 
t = 0.1
x is considered such that
the initial Courant–Friedrichs–Lewy (CFL) number is about
0.1. Figure 6 shows the contours of velocities u, v, and pres-
sure p. It is appealing to note that the predicted numerical
solutions vary smooth even at high Re flow condition.

Finally, the proposed IMLE solutions are compared with
the ISPH solutions [72]. Here, the time evolutions of maxi-
mum velocity (Eq. 32) are compared. The maximum relative
error is defined in Eq. (33).

umax (t) = max (abs (u (t))) (32)

L∞ = 5
max
t=0

|umax (t) − ebt |
ebt

(33)

For this comparative study, simulations are performed using
grid resolutions nc2 = 102, 202, 402, and 802 and the CFL
number is again set as 0.1. The Reynolds number is 100, and
the simulation time is 5 s. Figure 7 shows that umax (t) comes
closer to the analytical solution if a finer mesh is adopted.
Figure 8 shows that the proposed IMLEmethod outperforms
the ISPH method [72].

4.2 Backward-facing step flow

In this subsection, a backward-facing step flow problem is
considered to show the ability of applying IMLE to simulate
inflow-outflow problem. The physical domain, the initial,
and the boundary conditions are shown in Fig. 9. In this
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Table 2 Comparisons of
computation times between
MLE and IMLE of the
backward-facing step flow
problem at Re = 100

Program name MLE IMLE

Comput. time (s) Prop. (%) Comput. time (s) Prop. (%) Improvement

Main 1.2561E+05 100.00 3.1721E+04 100.00 3.96

u∗ 1.1621E+03 0.93 6.1763E+02 1.95 1.88

MLS intrpl. 2.7307E+04 21.74 2.0338E+03 6.41 13.43

pn+1 9.4545E+04 75.27 2.8761E+04 90.67 3.29

Table 3 Velocity u at different
cross sections of the
backward-facing step flow
problem at Re = 100

y x/Hs

0.00 2.55 3.06 3.57 4.18 4.80 5.41

0.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.5 0.0000 − 0.0492 0.0006 0.0517 0.0996 0.1277 0.1407

1.0 0.0000 − 0.0500 0.0341 0.1179 0.1966 0.2444 0.2673

1.5 0.0000 − 0.0064 0.0993 0.2005 0.2946 0.3525 0.3814

2.0 0.0000 0.0760 0.1932 0.2996 0.3958 0.4546 0.4842

2.5 0.0000 0.1903 0.3106 0.4126 0.5001 0.5515 0.5767

3.0 0.0000 0.3288 0.4442 0.5338 0.6042 0.6419 0.6583

3.5 0.0000 0.4826 0.5846 0.6549 0.7020 0.7219 0.7269

4.0 0.0000 0.6420 0.7215 0.7660 0.7861 0.7866 0.7795

4.5 0.0000 0.7955 0.8434 0.8574 0.8487 0.8305 0.8127

5.0 0.1151 0.9299 0.9387 0.9197 0.8834 0.8493 0.8236

5.5 0.6115 1.0310 0.9970 0.9458 0.8861 0.8408 0.8109

6.0 1.0001 1.0856 1.0103 0.9320 0.8557 0.8050 0.7752

6.5 1.2775 1.0846 0.9751 0.8783 0.7943 0.7443 0.7185

7.0 1.4439 1.0249 0.8937 0.7895 0.7070 0.6631 0.6444

7.5 1.4993 0.9110 0.7737 0.6734 0.6007 0.5671 0.5570

8.0 1.4439 0.7542 0.6268 0.5404 0.4833 0.4617 0.4602

8.5 1.2774 0.5710 0.4667 0.4009 0.3620 0.3519 0.3572

9.0 1.0001 0.3793 0.3066 0.2640 0.2423 0.2409 0.2497

9.5 0.6117 0.1953 0.1568 0.1361 0.1279 0.1306 0.1385

10.1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

problem, the heights of step and inlet channel are set at
Hs = 4.9 and Hi = 5.2, respectively. For simplicity, a
fully developed parabolic inflow profile is prescribed at the
inlet channel. The length of the physical domain is twenty
times the step height. At outflow boundary, Neumann and
Dirichlet boundary conditions for velocity and pressure are
specified. Reynolds number for this problem is defined as
Re = ρUL/ν, where ρ is the density which is 1,U the aver-
age inflow velocity which is 1 and L the hydraulic length
which is equal to 2Hi. Two different Reynolds numbers are
considered in this studywhich are 100 and 389. Uniform grid
size 
x = 
y = 0.1 and time step 
t = 0.01 are adopted
so that Courant number is approximately equal to 0.15. Sim-
ulation times of T = 500.0 and 1000.0 are taken for the cases
with low and high Reynolds numbers, respectively.

In order to compare the numerical results with the exper-
imental data [74], normalized velocity profiles (u/U ) at
different cross sections (x/Hs) are compared. First of all,
streamlines near the inlet channel are shown in Fig. 10. IMLE
results show very smooth streamlines of the primary vor-
tices. Secondly, Fig. 11 shows that velocity profiles obtained
from IMLEmethod are in good agreement with the reference
experimental data. Finally, Table 2 shows that IMLE outper-
forms MLE in terms of the computational efficiency. Some
discussions about efficiency are detailed in the next section.
The degree of computational improvement is defined as the
fraction of computation time of MLE method over that of
IMLE method. The numerical data of velocity u at differ-
ent cross sections are shown in Tables 3 and 4 for different
Reynolds numbers.
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Table 4 Velocity u at different
cross sections of the
backward-facing step flow
problem at Re = 389

y x/Hs

0.00 2.55 3.06 3.57 4.18 4.80 5.41

0.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.5 0.0000 − 0.0749 − 0.0865 − 0.0967 − 0.1072 − 0.1150 − 0.1183

1.0 0.0000 − 0.1251 − 0.1409 − 0.1536 − 0.1643 − 0.1685 − 0.1629

1.5 0.0000 − 0.1475 − 0.1606 −0.1685 − 0.1705 − 0.1621 − 0.1397

2.0 0.0000 − 0.1399 − 0.1443 − 0.1419 − 0.1290 − 0.1028 − 0.0602

2.5 0.0000 − 0.1014 − 0.0927 − 0.0764 − 0.0455 − 0.0000 0.0622

3.0 0.0000 − 0.0314 − 0.0069 0.0248 0.0742 0.1377 0.2165

3.5 0.0000 0.0721 0.1132 0.1603 0.2264 0.3045 0.3948

4.0 0.0000 0.2140 0.2701 0.3300 0.4085 0.4953 0.5896

4.5 0.0000 0.4003 0.4662 0.5329 0.6156 0.7018 0.7896

5.0 0.1139 0.6311 0.6966 0.7601 0.8352 0.9086 0.9773

5.5 0.6118 0.8882 0.9403 0.9890 1.0434 1.0916 1.1296

6.0 1.0001 1.1306 1.1600 1.1854 1.2094 1.2238 1.2239

6.5 1.2775 1.3119 1.3161 1.3152 1.3056 1.2833 1.2437

7.0 1.4439 1.4023 1.3829 1.3569 1.3149 1.2580 1.1827

7.5 1.4994 1.3907 1.3503 1.3021 1.2324 1.1472 1.0451

8.0 1.4439 1.2754 1.2177 1.1527 1.0636 0.9614 0.8468

8.5 1.2775 1.0609 0.9935 0.9209 0.8264 0.7235 0.6142

9.0 1.0001 0.7635 0.6996 0.6339 0.5519 0.4664 0.3801

9.5 0.6118 0.4176 0.3742 0.3310 0.2787 0.2262 0.1756

10.1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Fig. 12 Schematic of the lid-driven cavity flow problem

4.3 Lid-driven cavity flow

In the last validation study, a lid-driven cavity flow in a unit
square domain is considered. The physical domain, the ini-
tial, and the boundary conditions are schematically shown in
Fig. 12. For this problem, characteristic velocity and length
and density are 1. Reynolds numbers of 1000 and 10,000
are considered, while the corresponding simulation times are
400.0 and1000.0.Grid numbers 812 and 2012 are adopted for

Table 5 Grid settings for MLE
simulations of the lid-driven
cavity flow problem

Re

1000 10,000

41-1(1) 81-1(4)

* 41-4(2) 81-4(5)

** 81-1(3) 201-1(6)

low and high Reynolds numbers, respectively. For compar-
isons, grid settings for MLE simulations are listed in Table 5,
where the notationm−n means thatm is the number of grid
points and n is the maximum number of particles in a cell.
The row with symbol * indicates that the numerical results
of those settings are shown in [43]. The row with symbol **
indicates that under these settings, particle numbers are the
same for both MLE and IMLE methods. Case numberings
are shown in parentheses.

Usually, velocity profiles u(y) and v(x) at the cross
sections x = 0.5 and y = 0.5 are compared with the refer-
ence data obtained from [75] for benchmarking purpose. As
shown in Fig. 13, under the same number of grids/particles
(nc2 = 802, 2002), IMLE method shows better accuracy
than that of MLE(3)/MLE(6). Both high accuracy order of
approximating diffusion terms and smaller MLS interpola-
tion error can result in this result. On the other hand, for
the previously proposed MLE method, larger values of n
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(a) (b)

Fig. 13 Comparison of the velocity profiles between IMLE, MLE and Ghia [75] for different Reynolds numbers of the lid-driven cavity flow
problem

(more particles) with the same number of grid points show
more accurate velocity profiles (comparing cases (1)–(2) and
(4)–(5)). Even though cases (2) and (5) show more accu-
rate velocity profiles, velocity and pressure contours exhibit
oscillations near the walls (top row of Figs. 14 and 15). The
problems of oscillating contours can be partly resolved by
increasinggrid number as shown in themiddle rowofFigs. 14
and 15. Contours of u and v show no oscillations, while pres-
sure contours remain unsmooth. However, by comparing the
middle and bottom rows in Figs. 14 and 15, IMLE method
shows even more smoother contours both for u, v, and p
under the same number of grids/particles. For the compar-
ison with the conventional particle method, IMLE method
shows accurate results with smaller number of grids and par-
ticles (nc2 = 802 and 2002), while SPH method reported in
[55] used much larger number of particles (N = 2002 and
4002). Therefore, IMLE method is said to be more accurate
than the previously proposed MLE method. The numerical
data of velocities u(y) and v(x) at the cross sections x = 0.5
and y = 0.5 are shown in Table 6.

On the other hand, computational times for cases (3),
(6) and IMLE are shown in Tables 7 and 8. There are
some major issues regarding to the save of computational
times in each step. For calculating intermediate velocities
u∗, MLE method requires an additional work to accom-
plish the interpolation (step 5 in algorithm 1). Therefore,
it is less efficient than IMLE method. In MLS inter-
polation, because the neighboring particles are explicitly
known in IMLE method, no additional work is needed
to proceed particle searching procedure in IMLE method.

For solving the MLS matrix equation, only backward
elimination procedure is taken in MLS interpolation in
IMLE method. In addition, since Lagrangian particles are
re-meshed to Eulerian grids, there is no need to use
linked-list to manage particle distribution. Therefore, IMLE
method is more efficient than the previously proposed MLE
method.

The most important observation to be pointed out is
that both conventional particle and MLE and IMLE meth-
ods solve transient Navier–Stokes equations because the
total derivative terms are solved. It is not easy for MLE
method to reach steady state solutions, while application of
IMLE method can get nominally steady state solutions. In
other words, by computing L2_u = RMS

(
un − un−1

)
or

L2_p = RMS
(
pn − pn−1

)
, where the superscripts n and

n−1 are time levels, IMLE method shows nominally steady
state solution for lid-driven cavity flow problem at both low
and high Reynolds numbers as shown in Fig. 16, while MLE
method does not. To the authors’ best knowledge, it is the
first time for a Lagrangian-based method to show the con-
vergence profiles. On the other hand, while the computed
solutions are reaching steady state, iteration number for the
application of CG to solve the PPE is decreased to one.
A considerable amount of computing time can be saved.
Figure 17 shows the results mentioned above. Therefore,
IMLE method is clearly shown to be more stable than the
previously proposed MLE method.

After illustrating the advantages of the proposed IMLE
method in terms of the accuracy, efficiency and stability,
the effects of numerical schemes on the accuracies of the
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 14 Numerical results of the lid-driven cavity flow problem at Re = 1000 (left column: contour u; middle column: contour v; right column:
contour p; top row: case of MLE(2); middle row: case of MLE(3); bottom row: case of IMLE
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 15 Numerical results of the lid-driven cavity flow problem at Re = 10,000 (left column: contour u; middle column: contour v; right column:
contour p; top row: case of MLE(5); middle row: case of MLE(6); bottom row: case of IMLE

123



Computational Particle Mechanics

Table 6 Velocities u and v at
the cross sections x = 0.5 and
y = 0.5 for different Reynolds
numbers of the lid-driven cavity
flow problem

y or x Re = 1000 Re = 10,000

u(x = 0.5, y) v(x, y = 0.5) u(x = 0.5, y) v(x, y = 0.5)

0.00 0.0000 0.0000 0.0000 0.0000

0.05 − 0.1558 0.2257 − 0.4094 0.4012

0.10 − 0.2706 0.3120 − 0.3627 0.3833

0.15 − 0.3483 0.3485 − 0.3139 0.3243

0.20 − 0.3565 0.3399 − 0.2676 0.2730

0.25 − 0.3090 0.2956 − 0.2239 0.2248

0.30 − 0.2493 0.2378 − 0.1818 0.1791

0.35 − 0.1976 0.1812 − 0.1411 0.1352

0.40 − 0.1513 0.1285 − 0.1012 0.0927

0.45 − 0.1058 0.0777 − 0.0619 0.0510

0.50 − 0.0597 0.0272 − 0.0226 0.0097

0.55 − 0.0129 − 0.0237 0.0169 − 0.0317

0.60 0.0349 − 0.0754 0.0576 − 0.0738

0.65 0.0846 − 0.1285 0.0999 − 0.1174

0.70 0.1374 − 0.1827 0.1446 − 0.1630

0.75 0.1945 − 0.2373 0.1929 − 0.2113

0.80 0.2553 − 0.2976 0.2458 − 0.2631

0.85 0.3138 − 0.3901 0.3049 − 0.3191

0.90 0.3579 − 0.4918 0.3724 − 0.3808

0.95 0.4350 − 0.3511 0.4445 − 0.4620

1.00 1.0000 0.0000 1.0000 0.0000

Table 7 Computational times
for the MLE(3) and IMLE at
Re = 1000 of the lid-driven
cavity flow problem

Program Case (3) IMLE

Time (s) Prop. (%) Time (s) Prop. (%) Speedup

Main 1.1796E+4 100.00 2.4201E+3 100.00 4.87

u∗ 2.7623E+2 2.34 1.3733E+2 5.67 2.01

MLS intrpl. 6.8301E+3 57.90 8.8174E+2 36.43 7.75

pn+1 4.0819E+3 34.60 1.2853E+3 53.11 3.18

Table 8 Computational times
for the MLE(6) and IMLE at
Re = 10,000 of the lid-driven
cavity flow problem

Program Case (6) IMLE

Time (s) Prop. (%) Time (s) Prop. (%) Speedup

Main 7.2239E+5 100.00 3.2185E+5 100.00 2.24

u∗ 1.1835E+4 1.64 9.8702E+3 3.07 1.20

MLS intrpl. 2.7382E+5 37.90 3.3744E+4 10.48 8.11

pn+1 4.1168E+5 56.99 2.7375E+5 85.06 1.50
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(b)(a)

(c) (d)

Fig. 16 Convergence profiles of the MLE (top row) and IMLE (bottom row) methods of the lid-driven cavity flow problem

velocity Laplacian (physical diffusion) term and the interpo-
lation procedure based on the MLS method is examined. In
the calculation of velocity Laplacian terms, the conventional
second-order centered finite difference (FD2), the fourth-
order compact finite difference (CD4), and the proposed
sixth-order cell-centered combined compact finite differ-
ence (CC-CCD6) schemes are adopted. When performing
MLS interpolation, the first- and the second-order accurate

schemes can be similarly derived as the derivation of the
third-order scheme given in Eq. (19) by setting the trun-
cation errors to be O (x, y) and O

(
x2, y2

)
, respectively.

Figure 18 compares the numerical results obtained from dif-
ferent Laplacian and MLS interpolation schemes. Note the
notation Lapn andMLSm signify that the velocity Laplacian
term and the MLS interpolation scheme are calculated by
2n-th- and m-th-order accurate schemes, where n and m are
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(a)

(c)

(b)

(d)

Fig. 17 Number of CG iterations of the MLE (top row) and IMLE (bottom row) methods of the lid-driven cavity flow problem

1, 2 or 3. For the same velocity Laplacian schemes (left col-
umn in Fig. 18), a slight improvement is seen when using the
second-order accurate MLS interpolation scheme, as com-
paredwith the solutions obtained from thefirst-order scheme.
In addition, there is a significant improvement in accuracy
when the third-order accurate MLS interpolation scheme is
adopted. On the other hand, the order of accuracy of Lapla-

cian scheme has no significant effect on the numerical results
when the sameMLS interpolation scheme is adopted. Seem-
ingly, the accuracy of the numerical solution ismore sensitive
to the MLS interpolation scheme.

Finally, the proposed IMLE method is compared with
the collocated finite volume solutions obtained from Open-
Foam [76]. Here, the flow case with high Reynolds number

123



Computational Particle Mechanics

(a) (b)

(c) (d)

(e) (f)

Fig. 18 Numerical results of adopting different schemes in calculating
velocity Laplacian terms and performing MLS interpolation for the lid-
driven cavity flow problem investigated at Re = 10,000. Lap1, Lap2,
and Lap3 indicate that the velocity Laplacian term is approximated by

FD2, CD4, and CC-CCD6 scheme, respectively. MLS1, MLS2, and
MLS3 indicate that the MLS interpolation scheme is first-, second-,
and third-order accurate, respectively
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Fig. 19 Velocity profiles
obtained from the proposed
IMLE method and the
OpenFoam icoFoam module
with different convective
schemes
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0 1

0 1

0

1

0

1
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(Re = 10,000) is considered. The module icoFoam in
OpenFoam is used, whereby it solves the unsteady incom-
pressible laminar Navier–Stokes equations using the PISO
scheme. In this study, cell number nc2 = 2002, time step

t = 0.1
x and simulation time T = 1000 are chosen. For
OpenFoam, the numerical scheme used for discretizing the
partial derivative term (∂u/∂t) is Euler implicit scheme. For
spatial discretization, the pressure gradient term (∇ p) and
the velocity Laplacian term

(∇2u
)
are discretized using the

second-order central difference scheme, while the convec-
tion term (∇ · uu) is discretized using either the first-order
upwind (FUD) or the QUICK schemes. In order to gener-
ate the structured Cartesian mesh, the blockMesh module is
executed. Figure 19 shows that the predicted velocity profiles
using the proposed IMLEmethod come closer to those of the
third-order QUICK scheme, while the FUD scheme (from
OpenFoam) shows significant numerical diffusion. Mean-
while, Fig. 20 shows that the contours of velocity components
u and v predicted from the proposed IMLE method are sig-
nificantly smoother than those obtained by using the QUICK
scheme. Figure 21 shows the streamlines and the vorticity
contours obtained from the proposed IMLE method and the
OpenFoam with the QUICK convective scheme. It is obvi-
ously seen that use of the proposed IMLE method can get
non-oscillating numerical solutions. The unphysical oscilla-
tions are mainly arisen due to erroneously introduced phase

and amplitude errors (or false diffusion error). However, the
proposed IMLE method is more physically reasonable since
moving particles are purely advected along the streamlines
at their respective velocities.

5 Concluding remarks

In this study, an improved mixed Lagrangian–Eulerian
(IMLE) method is successfully developed to solve incom-
pressible Navier–Stokes equations on the basis of the pre-
viously proposed MLE method. IMLE method combines
the advantages of mesh and meshless methods to yield
a higher accuracy order and avoid discretizing convection
terms, respectively. The key feature is that by adopting a re-
meshing procedure, intermediate velocities on Eulerian grids
can be calculated without introducing convection terms but
with advecting Lagrangian particles and adoptingMLS inter-
polation. In this way, high-order accurate finite difference
scheme is adopted to calculate diffusion terms on Eulerian
grids, while Lagrangian methods usually show low accuracy
order. In order to utilize MLS interpolation for both interior,
boundary, and corner cells, some special treatments for cal-
culating intermediate velocities on boundary face particles
are proposed. Weakly non-uniform and 32-particle compact

123



Computational Particle Mechanics

(a) (b)

(c)

(e) (f)

(d)

Fig. 20 Contours of the velocity components u and v obtained from the proposed IMLE method and the OpenFoam icoFoam module with FUD
and QUICK convective schemes
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Fig. 21 Streamlines and vorticity contours obtained from the solutions
of the IMLE method and the OpenFoam with the QUICK scheme. a
Streamlines obtained from the computed IMLE solutions; b streamlines
obtained from the OpenFoam solutions using QUICK scheme; c vor-

ticity contours obtained from the computed IMLE solutions; d vorticity
contours obtained from the OpenFoam solutions using QUICK scheme

framework can improve MLS interpolation accuracy. In the
last section, IMLE method shows good numerical results
for different kinds of problems including periodic, inflow-
outflow, and bounded flows. Finally, it is reiterated that
for the fully periodic problem, our proposed IMLE method
can render fourth- and second-order accuracies for velocity
and pressure, respectively. Also, IMLE outperforms MLE in
terms of the numerical accuracy, computational efficiency,
and scheme stability. It is also worth noting that the proposed
method can be easily extended to solve the three-dimensional

problems and it is under our current development. Since
the proposed IMLE method adopts Eulerian grids to calcu-
late the velocity Laplacian term and solve the PPE, one has
to put in extra efforts to confront with difficulties of com-
plex geometries inside the flow domain, irregular physical
domain, and distorted free surface. For these issues, the cou-
pled immersed boundary (IB) [77] and IMLE method, and
the coupled level-set [10,29] and IMLE method are under
our current development.
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