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Abstract

The system of hydrodynamic-type equations for a stratified gas in gravity field is derived from BGK equation by method of
piecewise continuous distribution function. The obtained system of the equations generalizes the Navier—Stokes one at arbitrary
Knudsen numbers. The problem of a wave disturbance propagation in a rarefied gas is explored. The verification of the model is
made for a limiting case of a homogeneous medium. The phase velocity and attenuation coefficient values are in an agreement
with former fluid mechanics theories; the attenuation behavior reproduces experiment and kinetics-based results at more wide
range of the Knudsen numbers.
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1. Introduction beyond the limits of traditional hydrodynamics of
Navier—Stokes. The classical fluid mechanics is valid
dynamics at which it is necessary to use a theory under the cond|F|on for the Knudsen nL_lmUem =
I/L « 1, wherel is a mean free path, aridis a char-
acteristic scale of inhomogeneity of a problem under
* Corresponding author. consideration. The first work, in which wave pertur-
E-mail addresses: leble@mifgate.pg.gda.pl bations of a gas was investigated from the point of

leble@mif.pg.gda.pfS.B. Leble) solovchuk@yandex.ru view of more general kinetic approach (Boltzmann
(M.A. Solovchuk).

There is a significant number of problems of gas
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equation), perhaps, is the paper of Wang Chang and2. Piecewise continuous distribution function
Uhlenbecl{2]. method
Numerous researches on a sound propagation in
a homogeneous gas at arbitrary Knudsen numbers The kinetic equation with the model integral of col-
were made, see, e.g., the classic experimental pa-lisions in BGK form looks like:
pers[3,4] and, may be the most advanced theoreti- af  _of f
cal, kinetic-base{l5]. The investigations have shown, —- +v-= —g- - = v(fi = f)s 1)
that at arbitrary Knudsen numbers the behavior of a
wave differs considerably from one predicted on a heref is the distribution function of a gasjs time,v
basis of hydrodynamical equations of Navier—Stokes. is velocity of a particle of a gag, is coordinate,
These researches have revealed two essential features: . =
first, propagating perturbations keep wave properties 7 v, ) = n exp<_ﬂ>
at larger values dkn, than it could be assumed on the 7T3/2v§ v%
basis of a hydrodynamical description. Secondly, at 5 the local-equilibrium distribution functiony; =
Kn > 1 such concepts as a wave vector and frequency /5t77;,; denotes the average thermal velocity of par-
of a wave become ill-determined. _ _ ticles of gas,y = voexp(—z/H) is the effective fre-
The case, when the Knudsen numberis nonuni- — q,ency of collisions between particles of gas at height
form in space or in time is more difficult for investi- . 5 — kT /mg is a parameter of the gas stratification.

gation and hence need more simplifications in kinetic | jg supposed, that density of gasits average speed
equations or their model analogues. A constructions 7 _ (x. 1y, uz) and temperatur@ are functions of

of such approaches for analytical solutions based on tjme and coordinates.

kinetic equation of Bhatnagar-Gross-Krook (BGK)  po|iowing the idea of the method of piecewise con-
or of Gross-Jacksofb] in a case of exponentially  tinyous distribution functions let us search for the so-
stratified gas were considered28,19,21,22]jn con- lution f of Eq. (2) as a combination of two locally

nection with general fluid mechanics development. oqilibrium distribution functions, each of which gives

A progress was launched by more deep understandingihe contribution in its own area of velocities space:
of perturbation theory (so-called nonsingular pertur-

bations), see, e.g[l?]. Recently the i_nterest to the ft :”+(2n7<nr+)3/2 exq_m4(‘;k—T’7++)2)’
problem ofKn regime wave propagation has grown L - v, >0,
again[23-27] far. V)= " m(P—D)2

=" () V2 exp— =),

In this Letter we develop the method of a piecewise . <0
Z )

continuous distribution function launched by ideas of
von Karman, mentioned in a pioneering paper of Lees (2)

[9] and applied for a gas in gravity field jA1,22] We here n™ = n*(t,2), U* = U*(t,2), T* = T*(1,2)
consider the example of one-dimensional wave pertur- are functional parameters of these locally equilibrium
bations theory for a gas stratified in gravity field so distributions functions.

that the Knudsen number exponentially dependsonthe Thus, a set of the parameters determining a state
(vertical) coordinate and generalize the results of ear- of the perturbed gas is increased twice. The increase
lier [21,22] to take into account the complete set of of the number of parameters of distribution function
nonlinearities. We start with the method review and (2) results in that the distribution function generally
the generalization at the Secti@ go down to the differs from a local-equilibrium one and describes de-
linearized equations at the Secti®nderiving the dis- viations from hydrodynamical regime. In the range
persion relation at the Sectiaghand, then, we study  of small Knudsen numbers<« L we automatically

a solution of linear boundary problem to extract the haven™ =n~, Ut = U, T+ = T~ and distribu-
attenuation parameter of the sound. At the Seckion tion function (2) tends to local-equilibrium one, re-
we pick up all the theoretical curves against the ex- producing exactly the hydrodynamics of Euler and
perimental data of Meyeg#] and Greenspaf8] and at the small difference of the functional “up” and
discuss the results. “down” parameters—the Navier—Stokes equations. In
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the range of big Knudsen numbers the form(@a Herep is mass densityP,, is the diagonal component
gives solutions of collisionless problems. Similar ideas of the pressure tensay, is a vertical component of a
have resulted successfully in a series of investigations. heat flow,g, is a parameter having dimension of the

For example, in paperg,9] a method of piecewise
continuous distribution function was used for the de-
scription of flat and cylindrical (neutral and plasma)
Couette flows. Thus for a flat problem the surface of
break in the velocity space was determined by a nat-
ural conditionV, = 0, we follow the same geometry
of the break. The approach was developed for a de-
scription of a nonlinear sound in stratified gds,
21). In a cylindrical caseV, = 0, whereV, and V,

are, accordingly, vertical and radial components of ve-
locity of particles. Some problem of a flow caused
by pulse movement of plane was solved by pertur-
bations[8,10]. Solving a problem of a shock wave
structurg1,10] the solution was represented as a com-
bination of two locally equilibrium functions, one
of which determines the solution before front of a
wave, and another—after. In the problem of conden-
sation/evaporation of drops of a given sjd8,16] a
surface break was determined by so-called “cone of in-
fluence”, thus all particles were divided into two types:
flying “from a drop” and flying “not from a drop”.

The idea of a method of two-fold distribution func-
tions given by(2) is realized as follows. Let us intro-
duce a set of linearly independent eigen functions of
the linearized Boltzmann operator. In this Letter we
restrict ourselves by the case of one-dimensional dis-
turbancesU = (0, 0, U), but for the sake of realistic
constant values reproducing, velocities of gas parti-
cles are three dimensional. Hence the following subset
of basic functions (we apply the BGK equation) is
used:
p2=mV,,

1 - .
pr=m ¢3=§m|V—U|Z,

2 1 5 o2
pa=m(V: —U)",  gs=om(V:—U)|V —UI",
3)

Let us define a scalar product in velocity space:

1 3
@6:§m(Vz_U) .

@n. f) = (@) s/dagon(r,z, DFGaV). (@)
3
(1) =p(t.2). (g =pU,  (p3)= EﬁkT,
m
(‘P4> = Py, ((ﬂ5> =dqz, ((ﬂ6> =(q;. (5)

heat flow.
Projecting Eqg.(1) on the eigen function§3) sub-
spaces we obtain the system of differential equations:

9
—p+ —(pU
athra(p)
9 19
U—U+ =

—U
+ 0z az

91 —P;+g=0,

3k 3 3k
>mar Pt )+——U—(pT)
9

24 =0,
3Zqz

+ 3k T+ P aU-i—
2m'0 %)%z
0

0
U+2—q
ot tegLd

—P, —l—U8
“ 90z

d
9z Pzz+3Pzza

—v(z) (Pzz - —kT),
m
a

ad _.0
§QZ+U£QZ+2(%+‘]Z)8_ZU
- <§5T+ 1p )
>m 2z
iq_z-l'U;—Zq_z-i“léz;—zU—Z
—v(2)q;,

d

d
a—ZPzz‘i‘—

32 J1=-v(2)q;,

a
—J

d P
< « 0z

P.
at “az

where

J=m((V. — U)*(V - U)?),

Jo=m((V. — U)*). @)

While deriving of the continuity equation we have
used the following property of the distribution func-
tion:

<3f

_> o
vV,

It is obtained by integration by parts and taking into
account the condition lim, o, f = 0 (se€[14]).

The system(6) of the equations according to the
derivation scheme is valid at all frequencies of col-
lisions and within the limits of the high frequencies
should transform to the hydrodynamic equations. It is
a system of hydrodynamical type and generalizes the
classical equations of a viscous fluid to arbitr&y,
up to a free-molecule flow. However, the systésn

8
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is not closed yet. It is necessary to present values of j; — 13

two integralsJ; and J» as functions of thermody-
namic parameters of the systg@). Let us evaluate
the integrals(7) and (5) directly, plugging the func-
tion (2),

1 1 (ptUt pU)
+ -
=5(T+p )+ - ,
p=al e Zﬁ( v vy

1 L 1 o
PU=ﬁ(P+V1—f—P VT)+§(/0+U++,0 Uu-),

3p 3 2 _ .2
kT ==(pTvi V.
2m 8(p T +p T )
1
—[ptvi@ut -U
+2ﬁ[p 7 ( )

—p VrUT =),

1
Pe= 30"V 0 V)

1
+ﬁ[p+v;<U+—U>—p‘V;<U——U>],
1 3 _.,-3
6]z=ﬁ PtV =TV
St v 42,y C—2,
+§[,0 ViUt =)+ p" V(U = U)],
_ 1 3 _._._3
61z=m('0+VTJr -0 Vr)
3r 42,1 C—2,
+§[,0 ViUt —U)+p" V(U = U)],
(9)
where p* = mn*, VF = \/2kT%/m. Solving the

system(9) with respect to the six functional vari-

ablesU™*, p*, V¥ and plugging the results into the
expressions fot/1 » close the general nonlinear sys-
tem(6). The outlined procedure looks complicated so
we apply an expansion with respect to the Mach num-

ber.

3. Linearization of the problem

We estimate the function&®/V* as small, that
corresponds to small Mach numbéds= max|U /v7|.
We shall base here on an expansioMnup to the first

order. Within the specified approximation the integrals

in terms of the functional parameters are

3
2w
PV W = U)]

6(p+vf4+p‘v,;4) +

3
x [ptViiwt -v) -

+0(M?),
3 ot +4 1
3 N S

x [ptV iUt —U) = p V(U = U)

+0(M?). (10)
For the two-sides distribution functid@) the property
(8) looks as

+ —

1% P 2
— ——=04+0(M 11
V+ VT ( ) ( )

For findingn™ and VTjE within the zero order (a/* =
0) we solve together four equatiorf$l) and first three
equations of the syste(@). Thus we obtain

t=p, P =p,

. _ [T _ [xT
VT— m VT: 7

To evaluate the integralg andJs in the first order we
shall substitute* and Vf from (12)in the fourth and
fifth equations of systeif®) that yields expressions for
UtandU~

2mq;
Ut =— */_ 2kT<PZZ kT)

50kT’

_ «/_ 2mq;
/ kT U .
Pee = tUS S5pkT
(13)
Taking into accoung12) gives the rest functional pa-

rameters in the first order

3/2

0 27 [ m
- p,— Lir) 4+ (1 :
p+2kr<“ m >+ 5 <2kT> 7

_ m 27 ((m 3/2
2 —p+—(Pzz——kT) 5 (g) gz

(12)

2kT

n ZkT

Vr =y 2kT Pz _kT
m‘Zz
5ka\/_

_ | 2k 1 /m 0
Ve = —+—.—| P,, — —kT
T +6,0 2kT< 2 m )

qu
5,okT\/_

(14)
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Plugging the values dfLl4) and(13)into (10) gives the has the form

values ofJy » at the first order: 18 o 3, 39 48 \-,
el 22 2275,
5p (kT\? 61kT P, 125 5 ~ 25 25

h=—— ——| P, — ZkT ),

o A ) S It e
3 (kT 2 134T b Py 15 5 3 15

e=7 ") Taa \ P k) (19 irto1-3ir+32=0 (16)

So we have closed the systédf). Let us consider  Here the dimensionless wave numbes kCo/w and

the system in the hydrodynamics limKit < 1, v — the Reynolds number= v/w are introduced, where

0o). First the Euler's equations are obtained. At the w is frequency of a wavd, is the (vertical) component
next order of the perturbation theory in the small para- of the wave vector an@o = /5/6V7 is the adiabatic
meterv—! we reproduce the Navier—Stokes equations sound speed of linear wave. The Reynolds number and
(for the linear case seR1,22) having the Prandtl  the Knudsen number are obviously linked:

numberPr = 1. The general theory (and experiments

for noble gases) give fder the value 23. The wrong aor_w Vr 61

Prandtl number is the known disadvantage of BGK Ap v 21Co 52xr

model, that, however, can be removed by transition to
the more exact models of collision integral, for exam-

ple, of Gross—Jackson ongs. _ B o

Chen and Spiegdl5,26] by studying the ultra- 7% =di eXp(‘””(’ - C_OZ>> exp(—wc—oz>
sound propagation correct the wrong Prandtl number ) )
phenomenological. They follow a common practice to and the real parg = Re(k)Co/w = Co/C is the in-
use the linearized system fluid equations and put the Verse nondimensional phase veloaitys the factor of

Letk =B +ia, then

empirical Prandtl numbePr = 2/3 into the theoreti-  attenuation. _ _ _
cal results. But the Prandtl number for their system is Ve search the basic Fourier component solution of
1 also. the linearized system as a superposition of three plane

We have proposed a modification of the procedure Waves
for deriving fluid mechanics (hydrodynamic-type)
equations from the kinetic theory. We did not begin
to derive our equations in the customary way from +A,.3 exp(—iwt + ik3z), a7
an expansion in mean free path, as it is usually done.
Therefore the obtained system of the equations gener-
alizes the Navier—Stokes at arbitrary density (Knudsen
numbers).

As we shall see, our method gives reasonable agree- . ,
ment with the experimental data against the results the relationo = po(1+p"). _
following from NS, and some other types of the fluid ~ Substituting(17) into the linearized system, one
dynamic equations as, e.§23,25-27] expressesdy, A3, Ay, Ag, Ag in terms of A = A/

To determine the coefficienta!, A2, A% we should
choose boundary conditions, considering a problem at
4. Homogeneous medium limit. Dispersion half-space and the reflection of molecules from a plane
relation as a diffuse on¢l2]. The boundary condition for the
distribution function looks as

ni = Atexp(—iwt + ik1z) + A?exp(—iwt + ikaz)

wherek; = kjw/Co, i, j = 1,2,3 andk; are solu-
tions of the dispersion equati¢f6) correspondent to
the modesi{n;} = {p’,U’, T', P.,q.,q.} is the dis-
turbance variables. For examp}g,is defined through

Let us deliver a verification of the model for a limit- _ n
ing case of homogeneous medium and compare it with f(z=0,V,t) = 3203 exp{ —
the classic experimental data[8f4]. We linearize the TEVy
fluid equations and find the dispersion relation, which ~ Vz > 0.

(‘7 _ l_joe—iwt)Z }
V2 ’
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Re(Pz)

oz ﬂ [\} UA \%\H[\J\VI\VI\V/\KANAVA AAB,

@

Fig. 1. Finding of attenuation factor.

Here Ug stands for an amplitude of the hydrodynamic

velocity oscillations. Fot/y/Vy <« 1 we have:

f - f(O) ~ ZUOVZ e_l'w[
f(O) VT2

The correspondent hydrodynamical variables at the
boundary has the values

0(z=0,V,1)=

, V.>0.

P’(Z =01 = <(p(z =0, ‘77 l))
= —— 7 _ s _VZ/VZ
- ,Ta/zVTs/dV(P(Z—O, V,be T
= ﬂefiwz
NEd ’
v - Uo _,
U/(Z = 09 t) = _Z(p(z = O, V’ t) — _Oe—lw[,
VT 2

2

V. - U
PL(z=0.1) = <i2<p<z =0,V, z>> =
VT

g

—iwt

(18)

Substituting the valuest}, A} into (17) and com-
paring right-hand sides of expressi¢ht7) and (18)
yields in the system of equations in variabkes Solv-

ing the system of equations we extract the variables
Al A% A3,

5. Comparison with experiment and results of
other evaluations

331
Ln(Re(Pz)) i

QD 1020 30 40

0=3.2/47=0.068
-1
-2
-3
-4

(b)
by the formula
PZIZ(Z,t)eiwt =A411€ik1z +A221€ik22 +A2€ik3z. (19)

The real part of this expression relates to experiment.
In Fig. 1(a) the real part of this expression is repre-
sented at = 0.2, whereZ = zw/Co is dimensionless
coordinate. The attenuation facteris determined as

a slope ratio of the diagram of the logarithm of the
pressure amplitude depending upon distance between
the oscillating wall and the receiver. It is illustrated at
Fig. 1b).

The dispersion relatiorf16) is the binary cubic
equation with coefficients parametrized byAt the
vicinity of the limit » — 0 (free molecule flow) we
start from the propagation velocity by the formula
Co/C =0.54+0.152 + o(r%).

Alexeev [23,27] and Chen—Rao-Spiegf?4—26]
consider the propagation of the only sound mode. For
afinding of the attenuation factor they solve the disper-
sion relation. Unlike these works we take into account
the propagation of three modes. The attenuation factor
is determined graphically as shown in thig. 1

In Figs. 2, 3a comparison of our results of numer-
ical calculation of dimensionless sound speed and at-
tenuation factor depending eris carried out in a par-
allel way with the results by other authors. The kinetic
theory gives the good agreement with the experimental
data at arbitrarfn numbers. The Navier—Stokes pre-
diction is qualitatively wrong at big Knudsen number.
Our results for phase speed give the good consistency

In experimental acoustics the pressure perturbation with the experiments at all Knudsen numbers. How-

amplitude is usually measured. Correspondent combi-

nation of the basic variables for the pressure is given

ever, our results for the attenuation of ultrasound are
good (as we can see in experiment) only for the num-
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Fig. 2. The inverse nondimensional phase velocity as a function of the inverse Knudsen number. The results of this Letter are compared to
Navier—Stokes, the theory of Chen—Spief@8l,26], the generalized Euler and generalized Navier—Stokes equations of A[28éahe results
of Buckner—Ferzigef12] based on the direct solution of the Boltzmann equation (BGK-model) and the experimental data of Meyer—Sessler

and Greenspai3,4].
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Fig. 3. The attenuation factor as a function of the inverse Knudsen number.
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berr up to order unity. But our results look a bit better
than Navier—Stokes, Alexed23,27]and Chen—Rao—
Spiegel one$24—26](the other fluid equation$,23,
25,26).

Chen-Rao-Spiegel derive the equations of fluid dy-
namics from the kinetic theory of a simple gas. As in
the works of Hilbert, of Chapman and EnsKég, they
started from an expansion in the Knudsen number. But
they do not apply solvability condition in each order,
as it is usually done. This improves the equations, by
the procedure arisen at Bogoliubov methidd]. Their
expressions, unlike the Navier-Stokes equations, for
the pressure tensaP;; and heat currenf are ex-
pressed in terms of the fluid fields,(U, T') and their
derivatives. That is, their final formulae fa@%; andg
implicitly contain terms of all orders iKn and so they
may hope, that their procedure will produce higher ac-

333

r. decreased. For example, Buckner and Ferziger in
the papef12] have shown, that for > 1 the solution
is determined mainly by the discrete sound mode and
the dispersion relation may be used in calculating the
sound parameters. Fer< 1, the continuous modes
are important. The solution remains “wavelike”, but it
is no longer a classical plane wave. In fact, the sound
parameters depend on a position of the receiver.

Below r. the solution is represented as superpo-
sition of eigen functions from continuous spectrum,
therefore the classical understanding of a sound should
be changed. The concept of a dispersion relation is
not applicable more. Itis unclear whether a continuum
theory, based on BGK-model, can do much better than
this results for attenuation.

The attenuation factor at big Knudsen numbers
Kn > 1 is modeled by the account of effects of a re-

curacy than Navier—Stokes equations. But there is alsolaxation in integral of collisions. The model of the

a divergence with the experiment for attenuation.
Alexeev derived the generalized Boltzmann equa-
tion from the BBGKY-hierarchy of the kinetic equa-
tions taking into account three possible levels of
scales, connected with the mean time of particle in-
teractions, mean time between collisions and the hy-
drodynamic time. He obtained the generalized Navier—

Gross—Jackson at givevi limits an account of higher
relaxation times (fast attenuation) as essentially bases
on the condition:

Ai=ANy1, I>N4+1

Supreme times of a relaxation are assumed identical.

Stokes and generalized Euler equations with the help [t means, that the inclusion of the supreme eigen func-
of the Chapman—Enskog method. His theory gives a fiOnS xi, i > N + 1 is necessary, that would allow to

gualitative agreement with the experimental data for
attenuation. However it is necessary to solve the sys-
tem of the differential equations of twice higher order,
than the traditional hydrodynamical equations. We can
apply our method for the generalized Boltzmann equa-
tion of Alexeev[20,27]and we hope, that such “joint”
theory would give a better agreement with the ex-
perimental data for attenuation at arbitrary Knudsen
number.

6. Conclusion

The attenuation of sound at big Knudsen numbers
is not “damping” (due to intermolecular collisions),
but rather “phase mixing” (due to molecules which left
the oscillator at different phases arriving at the receiver
at the same time). Solving the Boltzmann equation by
the method of the Gross—Jacksfaj revealed a dis-
appearance of discrete modes at some vatues-,
[11,12] When the number of the moments increases,

move in the range of higher Knudsen numbers.
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