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Abstract

The system of hydrodynamic-type equations for a stratified gas in gravity field is derived from BGK equation by me
piecewise continuous distribution function. The obtained system of the equations generalizes the Navier–Stokes one a
Knudsen numbers. The problem of a wave disturbance propagation in a rarefied gas is explored. The verification of the
made for a limiting case of a homogeneous medium. The phase velocity and attenuation coefficient values are in an a
with former fluid mechanics theories; the attenuation behavior reproduces experiment and kinetics-based results at m
range of the Knudsen numbers.
 2005 Elsevier B.V. All rights reserved.
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1. Introduction

There is a significant number of problems of g
dynamics at which it is necessary to use a the
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beyond the limits of traditional hydrodynamics
Navier–Stokes. The classical fluid mechanics is v
under the condition for the Knudsen numberKn =
l/L � 1, wherel is a mean free path, andL is a char-
acteristic scale of inhomogeneity of a problem un
consideration. The first work, in which wave pertu
bations of a gas was investigated from the point
view of more general kinetic approach (Boltzma
.
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equation), perhaps, is the paper of Wang Chang
Uhlenbeck[2].

Numerous researches on a sound propagatio
a homogeneous gas at arbitrary Knudsen num
were made, see, e.g., the classic experimental
pers [3,4] and, may be the most advanced theor
cal, kinetic-based[15]. The investigations have show
that at arbitrary Knudsen numbers the behavior o
wave differs considerably from one predicted on
basis of hydrodynamical equations of Navier–Stok
These researches have revealed two essential fea
first, propagating perturbations keep wave proper
at larger values ofKn, than it could be assumed on t
basis of a hydrodynamical description. Secondly
Kn � 1 such concepts as a wave vector and freque
of a wave become ill-determined.

The case, when the Knudsen numberKn is nonuni-
form in space or in time is more difficult for invest
gation and hence need more simplifications in kin
equations or their model analogues. A constructi
of such approaches for analytical solutions based
kinetic equation of Bhatnagar–Gross–Krook (BG
or of Gross–Jackson[5] in a case of exponentiall
stratified gas were considered at[18,19,21,22]in con-
nection with general fluid mechanics developme
A progress was launched by more deep understan
of perturbation theory (so-called nonsingular pert
bations), see, e.g.,[17]. Recently the interest to th
problem ofKn regime wave propagation has grow
again[23–27].

In this Letter we develop the method of a piecew
continuous distribution function launched by ideas
von Karman, mentioned in a pioneering paper of L
[9] and applied for a gas in gravity field in[21,22]. We
consider the example of one-dimensional wave per
bations theory for a gas stratified in gravity field
that the Knudsen number exponentially depends on
(vertical) coordinate and generalize the results of
lier [21,22] to take into account the complete set
nonlinearities. We start with the method review a
the generalization at the Section2, go down to the
linearized equations at the Section3, deriving the dis-
persion relation at the Section4 and, then, we stud
a solution of linear boundary problem to extract
attenuation parameter of the sound. At the Sectio5
we pick up all the theoretical curves against the
perimental data of Meyer[4] and Greenspan[3] and
discuss the results.
s:

2. Piecewise continuous distribution function
method

The kinetic equation with the model integral of co
lisions in BGK form looks like:

(1)
∂f

∂t
+ �v ∂f

∂�r − g
∂f

∂vz

= ν(fl − f ),

heref is the distribution function of a gas,t is time,�v
is velocity of a particle of a gas,�r is coordinate,

fl(�r, �v, t) = n

π3/2v3
T

exp

(
− (�v − �U)2

v2
T

)

is the local-equilibrium distribution function,vT =√
2kT /m denotes the average thermal velocity of p

ticles of gas,ν = ν0 exp(−z/H) is the effective fre-
quency of collisions between particles of gas at he
z, H = kT /mg is a parameter of the gas stratificatio
It is supposed, that density of gasn, its average spee
�U = (ux,uy,uz) and temperatureT are functions of
time and coordinates.

Following the idea of the method of piecewise co
tinuous distribution functions let us search for the
lution f of Eq. (2) as a combination of two locall
equilibrium distribution functions, each of which giv
the contribution in its own area of velocities space:

(2)

f (t, �r, �V ) =




f + = n+( m
2πkT + )3/2 exp(−m( �V − �U+)2

2kT + ),

vz � 0,

f − = n−( m
2πkT − )3/2 exp(−m( �V − �U−)2

2kT − ),

vz < 0,

here n± = n±(t, z),U± = U±(t, z), T ± = T ±(t, z)

are functional parameters of these locally equilibri
distributions functions.

Thus, a set of the parameters determining a s
of the perturbed gas is increased twice. The incre
of the number of parameters of distribution functi
(2) results in that the distribution function genera
differs from a local-equilibrium one and describes
viations from hydrodynamical regime. In the ran
of small Knudsen numbersl � L we automatically
have n+ = n−,U+ = U−, T + = T − and distribu-
tion function (2) tends to local-equilibrium one, re
producing exactly the hydrodynamics of Euler a
at the small difference of the functional “up” an
“down” parameters—the Navier–Stokes equations
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the range of big Knudsen numbers the formula(2)
gives solutions of collisionless problems. Similar ide
have resulted successfully in a series of investigati
For example, in papers[7,9] a method of piecewis
continuous distribution function was used for the
scription of flat and cylindrical (neutral and plasm
Couette flows. Thus for a flat problem the surface
break in the velocity space was determined by a
ural conditionVz = 0, we follow the same geometr
of the break. The approach was developed for a
scription of a nonlinear sound in stratified gas[18,
21]. In a cylindrical caseVr = 0, whereVz and Vr

are, accordingly, vertical and radial components of
locity of particles. Some problem of a flow caus
by pulse movement of plane was solved by per
bations[8,10]. Solving a problem of a shock wav
structure[1,10] the solution was represented as a co
bination of two locally equilibrium functions, on
of which determines the solution before front of
wave, and another—after. In the problem of cond
sation/evaporation of drops of a given size[13,16] a
surface break was determined by so-called “cone o
fluence”, thus all particles were divided into two type
flying “from a drop” and flying “not from a drop”.

The idea of a method of two-fold distribution fun
tions given by(2) is realized as follows. Let us intro
duce a set of linearly independent eigen functions
the linearized Boltzmann operator. In this Letter
restrict ourselves by the case of one-dimensional
turbances�U = (0,0,U), but for the sake of realisti
constant values reproducing, velocities of gas pa
cles are three dimensional. Hence the following sub
of basic functions (we apply the BGK equation)
used:

ϕ1 = m, ϕ2 = mVz, ϕ3 = 1

2
m| �V − �U |2,

ϕ4 = m(Vz − U)2, ϕ5 = 1

2
m(Vz − U)| �V − �U |2,

(3)ϕ6 = 1

2
m(Vz − U)3.

Let us define a scalar product in velocity space:

(4)〈ϕn,f 〉 ≡ 〈ϕn〉 ≡
∫

d �v ϕn(t, z, �V )f (t, z, �V ),

〈ϕ1〉 = ρ(t, z), 〈ϕ2〉 = ρU, 〈ϕ3〉 = 3

2

ρ

m
kT ,

(5)〈ϕ4〉 = Pzz, 〈ϕ5〉 = qz, 〈ϕ6〉 = q̄z.
Hereρ is mass density,Pzz is the diagonal componen
of the pressure tensor,qz is a vertical component of
heat flow,q̄z is a parameter having dimension of t
heat flow.

Projecting Eq.(1) on the eigen functions(3) sub-
spaces we obtain the system of differential equatio

∂

∂t
ρ + ∂

∂z
(ρU) = 0,

∂

∂t
U + U

∂

∂z
U + 1

ρ

∂

∂z
Pzz + g = 0,

3

2

k

m

∂

∂t
(ρT ) + 3

2

k

m
U

∂

∂z
(ρT )

+
(

3

2

k

m
ρT + Pzz

)
∂

∂z
U + ∂

∂z
qz = 0,

∂

∂t
Pzz + U

∂

∂z
Pzz + 3Pzz

∂

∂z
U + 2

∂

∂z
q̄z

= −ν(z)

(
Pzz − ρ

m
kT

)
,

∂

∂t
qz + U

∂

∂z
qz + 2(qz + q̄z)

∂

∂z
U

−
(

3

2

k

m
T + 1

ρ
Pzz

)
∂

∂z
Pzz + ∂

∂z
J1 = −ν(z)qz,

∂

∂t
q̄z + U

∂

∂z
q̄z + 4q̄z

∂

∂z
U − 3

2ρ
Pzz

∂

∂z
Pzz + ∂

∂z
J2

(6)= −ν(z)q̄z,

where

J1 = m
〈
(Vz − U)2( �V − �U)2〉,

(7)J2 = m
〈
(Vz − U)4〉.

While deriving of the continuity equation we ha
used the following property of the distribution fun
tion:

(8)

〈
∂f

∂Vz

〉
= 0.

It is obtained by integration by parts and taking in
account the condition limV →∞ f = 0 (see[14]).

The system(6) of the equations according to th
derivation scheme is valid at all frequencies of c
lisions and within the limits of the high frequenci
should transform to the hydrodynamic equations. I
a system of hydrodynamical type and generalizes
classical equations of a viscous fluid to arbitraryKn,
up to a free-molecule flow. However, the system(6)
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is not closed yet. It is necessary to present value
two integralsJ1 and J2 as functions of thermody
namic parameters of the system(6). Let us evaluate
the integrals(7) and (5) directly, plugging the func
tion (2),

ρ = 1

2
(ρ+ + ρ−) + 1

2
√

π

(
ρ+U+

V +
T

− ρ−U−

V −
T

)
,

ρU = 1

2
√

π
(ρ+V +

T − ρ−V −
T ) + 1

2
(ρ+U+ + ρ−U−),

3

2

ρ

m
kT = 3

8

(
ρ+V +

T

2 + ρ−V −
T

2)

+ 1

2
√

π

[
ρ+V +

T (2U+ − U)

− ρ−V −
T (2U− − U)

]
,

Pzz = 1

4

(
ρ+V +

T

2 + ρ−V −
T

2)

+ 1√
π

[
ρ+V +

T (U+ − U) − ρ−V −
T (U− − U)

]
,

qz = 1

2
√

π

(
ρ+V +

T

3 − ρ−V −
T

3)

+ 5

8

[
ρ+V +

T

2
(U+ − U) + ρ−V −

T

2
(U− − U)

]
,

(9)

q̄z = 1

4
√

π

(
ρ+V +

T

3 − ρ−V −
T

3)

+ 3

8

[
ρ+V +

T

2
(U+ − U) + ρ−V −

T

2
(U− − U)

]
,

where ρ± = mn±, V ±
T = √

2kT ±/m. Solving the
system(9) with respect to the six functional var
ablesU±, ρ±,V ±

T and plugging the results into th
expressions forJ1,2 close the general nonlinear sy
tem(6). The outlined procedure looks complicated
we apply an expansion with respect to the Mach nu
ber.

3. Linearization of the problem

We estimate the functionsU±/V ±
T as small, tha

corresponds to small Mach numbersM = max|U/vT |.
We shall base here on an expansion inM , up to the first
order. Within the specified approximation the integr
in terms of the functional parameters are
J1 = 5

16

(
ρ+V +

T

4 + ρ−V −
T

4) + 3

2
√

π

× [
ρ+V +

T

3
(U+ − U) − ρ−V −

T

3
(U− − U)

]
+ O

(
M2),

(10)

J2 = 3

16

(
ρ+V +

T

4 + ρ−V −
T

4) + 1√
π

× [
ρ+V +

T

3
(U+ − U) − ρ−V −

T

3
(U− − U)

]
+ O

(
M2).

For the two-sides distribution function(2) the property
(8) looks as

(11)
ρ+

V +
T

− ρ−

V −
T

= 0+ O
(
M2).

For findingn± andV ±
T within the zero order (atU± =

0) we solve together four equations:(11)and first three
equations of the system(9). Thus we obtain

ρ+ = ρ, ρ− = ρ,

(12)V +
T =

√
2kT

m
, V −

T =
√

2kT

m
.

To evaluate the integralsJ1 andJ2 in the first order we
shall substituten± andV ±

T from (12) in the fourth and
fifth equations of system(9) that yields expressions fo
U+ andU−

U+ = −
√

π

2

√
m

2kT

(
Pzz − ρ

m
kT

)
+ U + 2mqz

5ρkT
,

(13)

U− =
√

π

2

√
m

2kT

(
Pzz − ρ

m
kT

)
+ U + 2mqz

5ρkT
.

Taking into account(12) gives the rest functional pa
rameters in the first order

ρ+ = ρ + m

2kT

(
Pzz − ρ

m
kT

)
+ 2

√
π

5

(
m

2kT

)3/2

qz,

ρ− = ρ + m

2kT

(
Pzz − ρ

m
kT

)
− 2

√
π

5

(
m

2kT

)3/2

qz,

V +
T =

√
2kT

m
− 1

6ρ

√
m

2kT

(
Pzz − ρ

m
kT

)

− mqz

5ρkT

√
π,

(14)

V −
T =

√
2kT

m
+ 1

6ρ

√
m

2kT

(
Pzz − ρ

m
kT

)

+ mqz √
π.
5ρkT
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Plugging the values of(14)and(13) into (10)gives the
values ofJ1,2 at the first order:

J1 = 5ρ

2

(
kT

m

)2

+ 61

12

kT

m

(
Pzz − ρ

m
kT

)
,

(15)J2 = 3ρ

2

(
kT

m

)2

+ 13

4

kT

m

(
Pzz − ρ

m
kT

)
.

So we have closed the system(6). Let us conside
the system in the hydrodynamics limit (Kn � 1, ν →
∞). First the Euler’s equations are obtained. At
next order of the perturbation theory in the small pa
meterν−1 we reproduce the Navier–Stokes equati
(for the linear case see[21,22]) having the Prandt
numberPr = 1. The general theory (and experime
for noble gases) give forPr the value 2/3. The wrong
Prandtl number is the known disadvantage of B
model, that, however, can be removed by transitio
the more exact models of collision integral, for exa
ple, of Gross–Jackson ones[5].

Chen and Spiegel[25,26] by studying the ultra
sound propagation correct the wrong Prandtl num
phenomenological. They follow a common practice
use the linearized system fluid equations and put
empirical Prandtl numberPr = 2/3 into the theoreti-
cal results. But the Prandtl number for their system
1 also.

We have proposed a modification of the proced
for deriving fluid mechanics (hydrodynamic-typ
equations from the kinetic theory. We did not beg
to derive our equations in the customary way fr
an expansion in mean free path, as it is usually do
Therefore the obtained system of the equations ge
alizes the Navier–Stokes at arbitrary density (Knud
numbers).

As we shall see, our method gives reasonable ag
ment with the experimental data against the res
following from NS, and some other types of the flu
dynamic equations as, e.g.,[23,25–27].

4. Homogeneous medium limit. Dispersion
relation

Let us deliver a verification of the model for a lim
ing case of homogeneous medium and compare it
the classic experimental data of[3,4]. We linearize the
fluid equations and find the dispersion relation, wh
-

has the form

18

125
k̃6 +

(
3

5
r2 − 39

25
− 48

25
ir

)
k̃4

+
(

−ir3 − 24

5
r2 + 23

3
ir + 58

15

)
k̃2

(16)+ ir3 − 1− 3ir + 3r2 = 0.

Here the dimensionless wave numberk̃ = kC0/w and
the Reynolds numberr = ν/w are introduced, wher
w is frequency of a wave,k is the (vertical) componen
of the wave vector andC0 = √

5/6VT is the adiabatic
sound speed of linear wave. The Reynolds number
the Knudsen number are obviously linked:

Kn = λ

λb

= w

ν

VT

2πC0
=

√
6

5

1

2πr
.

Let k̃ = β + iα, then

ni = ai exp

(
−iw

(
t − β

C0
z

))
exp

(
−w

α

C0
z

)

and the real partβ = Re(k)C0/w = C0/C is the in-
verse nondimensional phase velocity,α is the factor of
attenuation.

We search the basic Fourier component solutio
the linearized system as a superposition of three p
waves

ni = A1
i exp(−iwt + ik1z) + A2

i exp(−iwt + ik2z)

(17)+ A3
i exp(−iwt + ik3z),

where kj = k̃jw/C0, i, j = 1,2,3 and k̃j are solu-
tions of the dispersion equation(16) correspondent to
the modes;{ni} = {ρ′,U ′, T ′,P ′

zz, q
′
z, q̄

′
z} is the dis-

turbance variables. For example,ρ′ is defined through
the relationρ = ρ0(1+ ρ′).

Substituting(17) into the linearized system, on
expressesAj

2,A
j

3,A
j

4,A
j

5,A
j

6 in terms ofAj

1 ≡ Aj .
To determine the coefficientsA1,A2,A3 we should
choose boundary conditions, considering a problem
half-space and the reflection of molecules from a pl
as a diffuse one[12]. The boundary condition for th
distribution function looks as

f (z = 0, �V , t) = n

π3/2V 3
T

exp

{
− ( �V − �U0e

−iwt )2

V 2
T

}
,

Vz > 0.
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Fig. 1. Finding of attenuation factor.
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HereU0 stands for an amplitude of the hydrodynam
velocity oscillations. ForU0/VT � 1 we have:

ϕ(z = 0, �V , t) = f − f (0)

f (0)
∼ 2

U0VZ

V 2
T

e−iwt , Vz > 0.

The correspondent hydrodynamical variables at
boundary has the values

ρ′(z = 0, t) = 〈
ϕ(z = 0, �V , t)

〉
= 1

π3/2V 3
T

∫
d �V ϕ(z = 0, �V , t)e−V 2/V 2

T

= U0√
π

e−iwt ,

U ′(z = 0, t) =
〈
VZ

VT

ϕ(z = 0, �V , t)

〉
= U0

2
e−iwt ,

(18)

P ′
zz(z = 0, t) =

〈
VZ

2

V 2
T

ϕ(z = 0, �V , t)

〉
= U0√

π
e−iwt .

Substituting the valuesAj

2,A
j

4 into (17) and com-
paring right-hand sides of expression(17) and (18)
yields in the system of equations in variablesAj . Solv-
ing the system of equations we extract the variab
A1,A2,A3.

5. Comparison with experiment and results of
other evaluations

In experimental acoustics the pressure perturba
amplitude is usually measured. Correspondent com
nation of the basic variables for the pressure is gi
by the formula

(19)P ′
zz(z, t)e

iwt = A1
4e

ik1z + A2
4e

ik2z + A3
4e

ik3z.

The real part of this expression relates to experim
In Fig. 1(a) the real part of this expression is rep
sented atr = 0.2, whereZ̃ = zw/C0 is dimensionless
coordinate. The attenuation factorα is determined a
a slope ratio of the diagram of the logarithm of t
pressure amplitude depending upon distance betw
the oscillating wall and the receiver. It is illustrated
Fig. 1(b).

The dispersion relation(16) is the binary cubic
equation with coefficients parametrized byr . At the
vicinity of the limit r → 0 (free molecule flow) we
start from the propagation velocity by the formu
C0/C = 0.54+ 0.15r2 + o(r4).

Alexeev [23,27] and Chen–Rao–Spiegel[24–26]
consider the propagation of the only sound mode.
a finding of the attenuation factor they solve the disp
sion relation. Unlike these works we take into acco
the propagation of three modes. The attenuation fa
is determined graphically as shown in theFig. 1.

In Figs. 2, 3a comparison of our results of nume
ical calculation of dimensionless sound speed and
tenuation factor depending onr is carried out in a par
allel way with the results by other authors. The kine
theory gives the good agreement with the experime
data at arbitraryKn numbers. The Navier–Stokes pr
diction is qualitatively wrong at big Knudsen numb
Our results for phase speed give the good consist
with the experiments at all Knudsen numbers. Ho
ever, our results for the attenuation of ultrasound
good (as we can see in experiment) only for the nu



332 D.A. Vereshchagin et al. / Physics Letters A 348 (2006) 326–334

mpared to

Sessler
Fig. 2. The inverse nondimensional phase velocity as a function of the inverse Knudsen number. The results of this Letter are co
Navier–Stokes, the theory of Chen–Spiegel[25,26], the generalized Euler and generalized Navier–Stokes equations of Alexeev[23], the results
of Buckner–Ferziger[12] based on the direct solution of the Boltzmann equation (BGK-model) and the experimental data of Meyer–
and Greenspan[3,4].

Fig. 3. The attenuation factor as a function of the inverse Knudsen number.
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berr up to order unity. But our results look a bit bett
than Navier–Stokes, Alexeev[23,27] and Chen–Rao
Spiegel ones[24–26] (the other fluid equations[6,23,
25,26]).

Chen–Rao–Spiegel derive the equations of fluid
namics from the kinetic theory of a simple gas. As
the works of Hilbert, of Chapman and Enskog[6], they
started from an expansion in the Knudsen number.
they do not apply solvability condition in each ord
as it is usually done. This improves the equations
the procedure arisen at Bogoliubov method[17]. Their
expressions, unlike the Navier–Stokes equations
the pressure tensorPij and heat current�q are ex-
pressed in terms of the fluid fields (ρ,U,T ) and their
derivatives. That is, their final formulae forPij and �q
implicitly contain terms of all orders inKn and so they
may hope, that their procedure will produce higher
curacy than Navier–Stokes equations. But there is
a divergence with the experiment for attenuation.

Alexeev derived the generalized Boltzmann eq
tion from the BBGKY-hierarchy of the kinetic equ
tions taking into account three possible levels
scales, connected with the mean time of particle
teractions, mean time between collisions and the
drodynamic time. He obtained the generalized Nav
Stokes and generalized Euler equations with the
of the Chapman–Enskog method. His theory give
qualitative agreement with the experimental data
attenuation. However it is necessary to solve the
tem of the differential equations of twice higher ord
than the traditional hydrodynamical equations. We
apply our method for the generalized Boltzmann eq
tion of Alexeev[20,27]and we hope, that such “joint
theory would give a better agreement with the
perimental data for attenuation at arbitrary Knud
number.

6. Conclusion

The attenuation of sound at big Knudsen numb
is not “damping” (due to intermolecular collisions
but rather “phase mixing” (due to molecules which l
the oscillator at different phases arriving at the rece
at the same time). Solving the Boltzmann equation
the method of the Gross–Jackson[5] revealed a dis
appearance of discrete modes at some valuesr = rc
[11,12]. When the number of the moments increas
rc decreased. For example, Buckner and Ferzige
the paper[12] have shown, that forr > 1 the solution
is determined mainly by the discrete sound mode
the dispersion relation may be used in calculating
sound parameters. Forr < 1, the continuous mode
are important. The solution remains “wavelike”, bu
is no longer a classical plane wave. In fact, the so
parameters depend on a position of the receiver.

Below rc the solution is represented as super
sition of eigen functions from continuous spectru
therefore the classical understanding of a sound sh
be changed. The concept of a dispersion relatio
not applicable more. It is unclear whether a continu
theory, based on BGK-model, can do much better t
this results for attenuation.

The attenuation factor at big Knudsen numb
Kn > 1 is modeled by the account of effects of a
laxation in integral of collisions. The model of th
Gross–Jackson at givenN limits an account of highe
relaxation times (fast attenuation) as essentially b
on the condition:

λi = λN+1, i > N + 1.

Supreme times of a relaxation are assumed ident
It means, that the inclusion of the supreme eigen fu
tions χi , i � N + 1 is necessary, that would allow
move in the range of higher Knudsen numbers.
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