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A modification of Mott-Smith method for predicting the one-dimensional shock wave solution is presented.
Mott-Smith distribution function is used to construct the system of moment equations to study the steady-state
structure of shock wave in a gas of Maxwell molecules and in argon. The predicted shock solutions using the
newly proposed formalism are compared to the experimental data, direct-simulation Monte Carlo �DSMC�
solution, and the solutions predicted by other existing theories for Mach numbers M �11. The density, tem-
perature, heat flux profiles, and shock thickness calculated at different Mach numbers have been shown to have
good agreement with the experimental and DSMC solutions. In addition, the predicted shock thickness is in
good agreement with the DSMC simulation result at low Mach numbers.
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I. INTRODUCTION

A normal shock wave is an example of highly nonequi-
librium flows. An important parameter describing the non-
equilibrium properties of the gas is Knudsen number, which
can be defined in a shock wave as a relation between the
mean-free path and shock thickness. In the shock wave, mac-
roscopic properties of the gas change very fast within a short
distance, which is about several mean-free paths, and the
Knudsen number becomes large. The shock wave structure
cannot be described well by fluid dynamic equations in the
sense that Navier-Stokes equations �1� give good agreement
with the experimental data �2–4� only at Mach numbers M
�1.3. Quite recently, normal shock wave has been studied
using the Brenner’s modification to Navier-Stokes equations
�Brenner-Navier-Stokes� �5�. Their results have a better
agreement with the experimental data and Monte Carlo
simulations. When applying the Burnett and super-Burnett
equations, some nonphysical oscillations were found to ap-
pear in the solution even at M =2 �6�. In Grad method �7� and
extended irreversible thermodynamics �8�, a large number of
equations must be solved to get a reasonable accuracy �9�.
Grad’s 13-moment method succeeded to simulate shock pro-
file below the critical value MC=1.65. In Ref. �10�, it was
mentioned that one needs up to 680 moments �64 one-
dimensional equations� to calculate a smooth shock structure
for M =1.8 that fits well to the experimental data. With the
increasing number of moments in extended thermodynamics
�8�, the solution converges rather slow. Therefore, a large
number of moments is required to describe the processes at
large Knudsen numbers.

Good agreement with the experimental measurements was
obtained on the basis of bimodal distribution function �11�.
Mott-Smith pointed out that the distribution function in a
strong shock wave is bimodal �11� and can be expressed
by f =a�x�f0+ �1−a�x��f1, where f0 and f1 are the local-

equilibrium distribution functions for describing the super-
sonic and subsonic flows and a�x� is an unknown quantity.
Most of the experimental investigations of a gas or a plasma
shock wave are devoted to the measurement of macroscopic
parameters �12�. Only few works �12,13� have been directly
devoted to the study of the distribution function across the
shock wave. Those experimental works �12,13� as well as the
recent molecular dynamic �14,15� and direct Monte Carlo
simulations �15,16� confirmed the main conclusions �17�
about a bimodal distribution function in a shock region. The
bimodal approximation of Mott-Smith may be considered as
one of the most successful attempts to determine the struc-
ture of a planar shock wave by solving the Boltzmann equa-
tion �14,15,18�.

Because of its simplicity and correct prediction of shock
thickness at large Mach numbers, it was applied to several
shock formation problems, including the shock structure in
dense gases �11,16� and gas mixtures �19,20�, relativistic
shocks �21,22�, and plasma problem �17�. However, there
still exist several nontrivial deficiencies in this theory
�16,23–26�. The first drawback is that there is no unique way
that is currently available to determine the unknown quantity
a�x�, which needs to be determined from a moment equation
given by the Boltzmann equation. The choice of velocity
moment, while it can be arbitrary, can greatly affect the pre-
dicted result in the sense that the computed shock thickness
can be different by an amount of 25% �11,24�. Bashkirov and
Orlov �27� used nonanalytical moments in velocity space and
their results can have a difference about 80%–100%. As a
result, a better procedure should be adopted. The second de-
ficiency is attributed to the incorrect prediction of shock
thickness at low Mach numbers �25�. Our attempt in this
paper is to get rid of these disadvantages. There are several
approaches to improve the Mott-Smith theory �23,25–27�.
Salwen et al. �25� developed the Mott-Smith method by add-
ing an extra term to the two-term Mott-Smith distribution
function f =��=1

3 n��x�f�. They could get the correct shock
thickness at low Mach numbers, but for the strong shocks,
other distribution function should be chosen. Radin and*Corresponding author; twhsheu@ntu.edu.tw
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Mintzer �26� studied the structure of a strong shock wave
using the orthogonal polynomial expansion. Mott-Smith’s bi-
modal distribution function was used as the weighting func-
tion to generate the orthogonal polynomials of the expan-
sions. They could not obtain results in cases with the Mach
numbers M �2.14.

The Mott-Smith method gives a reasonable agreement
with the experimental data and the Monte Carlo simulation
result for strong shocks �24�. As a result, we use the Mott-
Smith distribution function in this paper to derive six-
moment equations for the steady-state problem in one-
dimensional domain. By virtue of the system of fluid
dynamic equations, the problem of choosing an appropriate
velocity moment will be automatically resolved. We will use
the collision integral for Maxwell molecules �28,29�. For the
case of real particle interaction potential, we will take the
temperature-dependent viscosity into account.

II. FLUID DYNAMICS EQUATIONS

The kinetic equation in a domain of one dimension takes
the following form:

� f

�t
+ VX

� f

�x
= JB, �1�

where f is the distribution function of a gas, t is the time, and
JB is the integral of collisions. In this study, we will consider
the case of Maxwell molecules �28,29�. The following subset
of basic functions is used:

�1 = m, �2 = mVX, �3 = m�2/2,

�4 =
m

2
�X

2, �5 =
m

2
�X�2, �6 =

m

2
�X

3. �2�

In the above, �� =V� −U� represents the peculiar velocity and
U� = �U ,0 ,0� is the stream velocity. The same set of basic
functions was used in Refs. �30,31� for the problem of wave
disturbance propagation in rarefied gas and in Ref. �32� for
the description of nonlinear sound propagation in stratified
gas following the Grad’s method of constructing system of
moment equations �7,8�.

Let us define a scalar product in velocity space as follows:

��I, f� � ��I� =	 dV� �If .

The moments of distribution function are related to the ther-
modynamic variables as follows:

� = ��1�, �U = ��2�,
3�

2m
kT = ��3� ,

PXX = ��4�, qX = ��5�, q̄X = ��6� . �3�

Here, m denotes the mass of a molecule, k the Boltzmann
constant, � the mass density, T the temperature, PXX the di-
agonal component of pressure tensor, qX the vertical compo-
nent of heat flow, and q̄X the new parameter having the same
unit as the heat flow.

One can project the kinetic equation �1� on the velocity
moments in Eq. �2� to get the following system of fluid dy-
namic equations:

�

�t
� +

�

�x
��U� = 0,

�

�t
U + U

�

�x
U +

1

�

�

�x
Pxx = 0,

3k

2m

�

�t
��T� +

3k

2m
U

�

�x
��T� + 
 3k

2m
�T + Pxx� �

�x
U +

�

�x
qx = 0,

�

�t
Pxx + U

�

�x
Pxx + 3Pxx

�

�x
U + 2

�

�x
q̄x = −

p

�

Pxx −

�

m
kT� ,

�

�t
qx + U

�

�x
qx + 2�qx + q̄x�

�

�x
U − 
 3k

2m
T +

1

�
Pxx� �

�x
Pxx

+
�

�x
J1 = −

2

3

p

�
qx,

�

�t
q̄x + U

�

�x
q̄x + 4q̄x

�

�x
U −

3

2�
Pxx

�

�x
Pxx +

�

�x
J2

= −
p

�

3

2
q̄x −

1

2
qx� , �4�

where p denotes the pressure and � is the viscosity. The
above system of equations contains J1 and J2, which are
given by

J1 =	 dV� �x
2�2f , J2 =	 dV� �x

4f = ��x
4� . �5�

To close the above system of equations in Eq. �4�, we have to
prescribe the distribution function. Several ways can be cho-
sen to close the above moment system. The first is based on
the use of polynomial expansions in velocity space for the
distribution function. The coefficients in these expansions
are, however, the unknown functions of time and space. One
may determine them from the moment system if the number
of expansion terms is chosen to be equal to the number of
moments �7�. The second method of closing the system of
moment equations involves a special choice of the distribu-
tion function that is suitable to the specific transport problem
under consideration �11,17,24,30,31,33,34�. Simple approxi-
mate functions may be chosen if one takes into account the
conditions that are specific to the problem. The distribution
function is chosen in such a way to get the properties in both
of the free-molecular and continuum regimes.

Mott-Smith �11� was the first to use the bimodal Maxwell-
ian distribution function for the description of shock struc-
ture. A mixture of two gases of different temperatures, den-
sities, and velocities is considered. The Boltzmann equation
governs the interaction between these two gases. This idea
was then generalized by Lees �33� in an arbitrary curvilinear
geometry for the discontinuous distribution function. At
present, the distribution functions proposed by Mott-Smith
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and Lees are considered to be most suitable to solve the
solution of boundary-value transport problems in a wide
range of Knudsen numbers �18,30,34�.

These ideas have resulted successfully in a series of flat
and cylindrical �neutral and plasma� Couette flows �18�, in
the study of condensation or evaporation of drops of a given
size �18�, and also in the study of the kinetic Knudsen layer
near a cometary nucleus �35�. The approach was developed
for the description of nonlinear sound propagation in strati-
fied gas �32�. In Refs. �30,31�, the problem of wave distur-
bance propagation in rarefied gas was studied within the con-
text of the above system. To close the system of differential
equations in Eq. �4�, a piecewise continuous distribution
function �33� was used. The agreement with the experimental
data was good for the phase velocity at all Knudsen numbers.
The previously proposed moment equations in Refs. �30,31�
were derived on the basis of small Mach numbers. Therefore,
they cannot be applied to describe the processes at high
Mach numbers.

In this study, we will choose the bimodal distribution
function �11�, which is proper to describe the subsonic and
the other accounting for the supersonic flow

f = f0 + f1, �6�

where

f0 = n0�x�
 m

2�kT0
�3/2

exp
−
m�V� − U� 0�2

2kT0
� �7�

and similarly for f1 with the subscript 0 being replaced
by the subscript 1 throughout. The parameters T0 ,T1 ,U� 1

= �U1 ,0 ,0�, U� 0= �U0 ,0 ,0� are assumed to be independent of
x and t. We will present them in the next section through the
Rankine-Hugoniot relations.

According to the definitions of density and velocity in Eq.
�3�, we can get the following two expressions through the
employed distribution function:

n0�x� = n�x�
�U1 − U�x��
�U1 − U0�

,

n1�x� = n�x�
�U�x� − U0�
�U1 − U0�

.

The expressions of the integrals J1,2 shown in Eq. �5� are
given below:

J1 =
n0�x�

2
�U − U0�4 + 2�U − U0�2n0�x�VT0

2 +
5

8
n0�x�VT0

4

+
n1�x�

2
�U − U1�4 + 2�U − U1�2n1�x�VT1

2 +
5

8
n1�x�VT1

4,

J2 =
n0�x�

2
�U − U0�4 +

3

2
�U − U0�2n0�x�VT0

2 +
3

8
n0�x�VT0

4

+
n1�x�

2
�U − U1�4 +

3

2
�U − U1�2n1�x�VT1

2 +
3

8
n1�x�VT1

4,

�8�

where VT
2=2 kT /m.

III. SHOCK STRUCTURE

The shock wave, which is stationary in the steady frame
of reference under current investigation, connects the equi-
librium states of density �0, velocity U0, and temperature T0
ahead of the shock at x→−� and the equilibrium quantities
�1, U1, and T1 behind the shock at x→�. It is convenient to
use the dimensionless equations for system �4�, where the
upstream values are used to define the following dimension-
less quantities:

�� =
�

�0
, U� =

U
�kT0/m

, T� =
T

T0
, x� =

x

	0
,

�� =
�

k�0T0/m
, q� =

q

�0�kT0/m�3/2 . �9�

In the above, �= pxx−�kT /m and 	0 is the mean-free path.
The mean-free path given in Refs. �2,4,36� will be adopted in
this study

	0 =
16

5�2�

�0

�0
�k/mT0


1

0.783

�0

�0
�k/mT0

. �10�

The first three equations, cast in their dimensionless forms
�the superscript “prime” in Eq. �9� for the dimensionless
variables will be later omitted�, in the differential system �4�
are as follows:

d

dx
��U� = 0,

d

dx
��U2 + �T + �� = 0,

d

dx

1

2
�U3 +

5

2
�TU + �U + q� = 0. �11�

Far ahead of and behind the shock, the gas is in equilibrium
with �0=�1=0 and q0=q1=0. The dimensionless quantities
in front of the shock at x→−� are given by

T0 = 1, �0 = 1, U0 =�5

3
M0. �12�

Integration of all equations in Eq. �11� between the two equi-
librium states gives

�1 =
4M0

2

M0
2 + 3

,
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U1 =�5

3

M0
2 + 3

4M0
,

T1 =
�5M0

2 − 1��M0
2 + 3�

16M0
2 . �13�

It is worth noting that use of the above equations, which are
well known as the Rankine-Hugoniot relations, enables us to
prescribe the boundary conditions.

The number of equations can be reduced further by inte-
grating equations in Eq. �11� from the upstream state to an
arbitrary location x in the shock. By taking into account Eq.
�12�, we get

�U = �0U0,

�U2 + �T + � = �0U0
2 + �0T0,

�U3

2
+

5

2
�TU + �U + q =

�0U0
3

2
+

5

2
�0T0U0. �14�

The following relations can be obtained by solving the above
three equations in Eq. �14�:

��U� =�5

3

M0

U
,

��U,T� = 1 +
5

3
M0

2 −�5

3
M0
 T

U
+ U� ,

q�U,T� =� 5

12
M0
5

3
M0

2 + 5 + U2 − 3T� − U
1 +
5

3
M0

2� .

�15�

Then we substitute the relations in Eq. �15� into the differ-
ential system �4� to get the following system of three coupled
ordinary differential equations that govern the transport of
velocity U, temperature T, and q̄ below:


3 −
4

3
�15M0U + 5M0

2�dU

dx
+ 2

dq̄

dx

= −
p	0

��kT0/m
�1 +

5

3
M0

2 −�5

3
M0
 T

U
+ U��


�5

3
M0U2 + 5�5

3
M0 −

10

3
UM0

2 − 2U + 5
�15

9
M0

3

−
1

2
�15M0T + 2q̄�dU

dx
+

d

dx
J1 −

1

2
�15M0U

dT

dx

= −
2

3

p	0

��kT0/m
�� 5

12
M0
5

3
M0

2 + 5 + U2 − 3T�
− U
1 +

5

3
M0

2�� ,

U
dq̄

dx
+

d

dx
J2 + 
4q̄ +

3

2
U +

5

2
M0

2U −
1

2
�15M0U2�dU

dx

= −
p	0

��kT0/m
�3

2
q̄ −

1

2
� 5

12
M0
5

3
M0

2 + 5 + U2 − 3T�
+

1

2
U
1 +

5

3
M0

2�� .

The above three equations can be rewritten in the form given
below:

A�
d

dx
U

d

dx
T

d

dx
q̄
� = −

p	0

��kT0/m�G1�U,T, q̄�
G2�U,T, q̄�
G3�U,T, q̄�

� , �16�

where A is the 3
3 matrix with the nonlinear components.
The boundary conditions for the investigated system are
specified as

T0 = 1, U0 =�5

3
M0, q̄0 = 0 at x → − � . �17�

At x→�, we impose

U1 =�5

3

M0
2 + 3

4M0
, T1 =

�5M0
2 − 1��M0

2 + 3�
16M0

2 , q̄1 = 0.

�18�

After solving Eq. �16� to get the explicit expressions of three
derivatives, we can then solve the coupled first-order ordi-
nary differential equations to get the solutions that connect
the fixed points �boundary conditions at x→−� and x→��.
This is the system for a vector of derivatives dU /dx. By
Cramer’s rule, the system can be solved for the vector of
derivatives. There exists, however, a problem if the determi-
nant of A is zero �8,9�. The critical condition can then be
obtained by setting the determinant to be zero. Let us find
when the determinant D of A�U� is zero. At the point x0, the
determinant D0=det�A�U0�� is zero if M0

2=1. At the point
x1, the determinant D1=det�A�U1�� is zero if M0

2=1. Other
critical Mach numbers are complex. At M �1, the determi-
nants D0 and D1 are negative. The upper bound of the critical
number does not exist in our theory at M �1. As a result, in
our theory, the continuous shock structure exists at all Mach
numbers. In the work of Chen �37�, there exists an upper
critical Mach number MC=2.2 while in Grad’s 13-moment
method MC=1.65 �7�. This is the reason why they cannot
obtain stable solution at Mach numbers larger than MC.

The system of equations was derived on the basis of
Gross-Jackson model �21� of Boltzmann equation that corre-
sponds to the special case of Maxwell molecules. The corre-
sponding viscosity is proportional to the temperature follow-
ing the expression given below with s=1:
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� = �0
 T

T0
�s

. �19�

It is well known that the viscosity takes the same form for
other interaction potentials just with an adjustment of the
exponent s �5,16,38�. For example, s=1 /2 is chosen for the
hard sphere and s0.72 for the argon �2,5,16�. Other authors
�2,5� advised to use s0.68. We will, as a result, use these
two values to see which of them can yield a better agreement
with the experimental results. According to Eqs. �10� and
�19�, one gets

p	0

��kT0/m
=

�T1−S

0.783
. �20�

In the calculation of Navier-Stokes shock profiles �1�, we
will use the constitutive equation to relate the heat conduc-
tivity with the viscosity by �= 15

4 � for the case of Maxwell
molecules �31�. In the work of Mott-Smith �11�, the system
of four equations was considered. In this case, the density
takes the form given below

��x� = �1 +
��0 − �1�

1 + exp��x/	0��
, �21�

where

 =
5

3

1

0.783
�3

5

1

M0

U0

U1

U0 − U1

U0 + U1
.

The profiles of other macroscopic flow quantities may be
predicted by the appropriate moments of bimodal distribu-
tion function.

IV. COMPARISON STUDY AND DISCUSSION
OF RESULTS

To compute the solutions of temperature and velocity in
shock profiles from the proposed system of ordinary differ-
ential equations in Eq. �16�, subjected to boundary condi-
tions �17� and �18�, the computational domain is descretized
into N+2 positions at xi with i=0,1 ,2 , . . . ,N+1 and step

size �x. The following approximation is used at the nodal
point i:

�dT

dx
�

i
=

Ti+1 − Ti−1

2�x
.

Calculation of the solutions at positions x1 and xN requires to
know the field values at x0 and xN+1, which are given by Eqs.
�17� and �18�. One needs to derive 3N-coupled algebraic
equations for the N unknown values of U, T, and q̄. The
resulting nonlinear system was solved with the appropriate
tanh�x� curve being considered as an initial guess for the
velocity and temperature �similar to Ref. �39��. The predicted
temperature and density are presented in a normalized form

T − T0

T1 − T0
,

n − n0

n1 − n0
.

One of the main parameters which can well describe shock
profile is the shock thickness, which is defined as

0
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0.1

0.12

1 1.1 1.2 1.3 1.4

M

�
��

Navier-Stokes
this theory
Mott-Smith

DSMC [4]

FIG. 1. Comparison of the computed inverse density thick-
nesses, which are plotted against the Mach number. The currently
predicted results are compared to those based on the theories of
Navier-Stokes, Mott-Smith, and DSMC.
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FIG. 2. Plot of the computed values of temperature-density
separation which is plotted against the Mach number. Notation—
see Fig. 1.
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FIG. 3. Density profile plotted as the function of distance. Com-
parison of the currently predicted density profile to the DSMC,
Navier-Stokes, and Mott-Smith simulation results against x at
M =1.7.
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� =
�1 − �0

max
 ��

�x
� .

The inverse thickness can be derived from Eq. �21� as 	

� = 
4

according to Mott-Smith theory. Another quantity is the
temperature-density separation �T�, which is the distance be-
tween two points which have T=0.5 and �=0.5, respectively.

In Fig. 1, we compare the results of our work to the re-
sults of other authors for the inverse density thickness. For
weak shocks, agreement of the solutions between the cur-
rently predicted result and the Monte Carlo simulation result
�4� is excellent. Mott-Smith theory �11� predicted a relatively
larger thickness at low Mach numbers.

The predicted values of the temperature-density separa-
tion �T� shown for the Maxwell molecules in Fig. 2 are
compared well to the Monte Carlo simulations �4�, Mott-
Smith theory �11�, and Navier-Stokes results �1�. Our results
are in good agreement with the direct-simulation Monte
Carlo �DSMC� calculation in the range of 1�M �2.5. The
predicted Navier-Stokes solution is correct only for M �1.3

and the solution calculated by Mott-Smith theory has a good
agreement with the DSMC result only in the range of
2.2�M �2.5.

In Figs. 3–10, we compare our results for the density and
heat flux profiles to the results of DSMC simulation �40� for
Maxwell molecules, Navier-Stokes results, and Mott-Smith
results computed at different Mach numbers M =1.7, 4, 8,
and 10. In Figs. 7 and 8, we compare our results for the
density and heat flux profiles to the results of DSMC simu-
lation of Nanbu and Watanabe �40� and Bird �16,40�. Inter-
relations between the Nanbu and Bird DSMC methods were
shown in Ref. �41�. Nanbu �42� derived his scheme in a
mathematical manner directly from the Boltzmann equation.
He transformed the Boltzmann equation into a set of equiva-
lent stochastic equations of motion for the simulated mol-
ecules. Bird’s method �16�, which was derived based on the
physics of gas flow, is not directly connected with the Bolt-
zmann equation. In Fig. 11, we present the predicted results
only for the heat flux profile because it is the higher-order
moment of the distribution function and the difference be-
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FIG. 4. Comparison of the heat flux profiles which are plotted as
the function of distance. Notation—see Fig. 3.
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FIG. 6. Predicted heat flux profiles plotted as the function of
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tween the underlying theories is clearly seen. The normalized
density of our solutions at the coordinate origin x=0 is ex-
actly 0.5 at any Mach number. Navier-Stokes solutions fail to
describe the shock profiles when M �1.7. Our results agree
well with the DSMC simulation for both heat flux and den-
sity profiles at Mach numbers 1.7�M �4. At M =1.7 and
M =2, the heat fluxes predicted from the Mott-Smith theory
are larger than the Nanbu DSMC simulation values �40�. At
M =3 and M =4, Mott-Smith prediction results for the heat
flux lie below the DSMC simulation results. At the large
Mach numbers M =8 and 10, our results show a reasonable
agreement with the DSMC simulation. In Fig. 7, we can see
that at large Mach numbers, our theory can well reproduce
the DSMC solution of the density profile in the upstream
region. In the downstream region, Mott-Smith results pro-
vide a better agreement with DSMC results. The difference
between the predicted results of Nanbu and Watanabe �40�
and Bird �16� DSMC simulations can be explained by the
statistical errors in DSMC calculations. Our results in the
downstream region are close to DSMC results of Bird
�16,40�. Small deviation may be caused by the fact that the

bimodal distribution function is the approximate solution of
the Boltzmann equation. However, we will see from Fig. 15
that for the case of real gas, our theory gives excellent agree-
ment with the DSMC simulation results �43� for the density
profile in both upstream and downstream parts of the flow. At
M �4, the disagreement between the DSMC and Mott-Smith
simulation results is apparent for the heat flux profile.

In Fig. 11, we have plotted the results based on the Bur-
nett equations �36�. One can see that the solution curve for
the Burnett equations exhibits upstream oscillations. Oscilla-
tions appearing in Burnett theory at M =1.5 will increase for
the shock investigated at an increasingly higher Mach num-
ber �6,39�. Calculation must be carried out very carefully and
should be restricted with the step size �x	0. With the de-
creased step size �x, oscillations arise and the convergence
of solution cannot be reached. The solution predicted from
our proposed equations does not suffer from any oscillation.

Application of the super-Burnett equations fails to get rid
of the oscillations. As it is shown in Ref. �39�, several at-
tempts of improving the Burnett, super-Burnett, and Grad
equations were reported recently. A good agreement with the
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FIG. 8. Predicted heat flux profiles plotted as the function of
distance. Comparison of the currently computed results to the re-
sults of Nanbu and Watanabe �40� and Bird �16� DSMC, Navier-
Stokes, and Mott-Smith simulations at M =8.0
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experimental and DSMC simulation results was obtained on
the basis of Reg13 equations at M �4 �39�. However, Reg13
equations fail to quantitatively predict strong shock waves.

The temperature profile in Fig. 12 shows its maximum
within the shock layer, which cannot be predicted by Mott-
Smith theory and Navier-Stokes equations. The temperature
profile becomes nonmonotonic at a Mach number M �3. It
is well known that such a predicted temperature profile is not
a mathematical artifact but is rather the result of atomistic
dynamics �14,44,45�. This overshoot was theoretically pre-
dicted first by Holway �46�. He showed that the mixture of
the two gases of Maxwell molecules can be mixed in such a
way that they get a temperature higher than that of either
constituent. The overshoot was later confirmed experimen-
tally �see, for example, Ref. �13�� as well by the Monte Carlo
�16,24� and molecular-dynamics simulations �15,45�. Note
that in this paper, we use six fluid dynamic equations, while
Moth-Smith used four equations. In Fig. 12, we have also
plotted the results computed from the system of five equa-
tions using the same closure procedure. One can see that the
increasing number of equations helps to improve the predic-
tion accuracy of shock profile. We expect, as a result, that if
we keep increasing the number of moments using the same
closure procedure, the agreement with the experiment and
Monte Carlo simulation will be increasingly better.

It is worth noting that the predicted temperature-density
separation by Mott-Smith theory is smaller in comparison to
the DSMC value. The temperature-density separation by
Mott-Smith theory �11� is �T�=5.89	0 at M =10, while in
our theory, �T� is 7.44	0, which agrees with the DSMC
value �40�. The temperature-density separation predicted by
the system of five equations is �T�=6.50	0. For the Navier-
Stokes equations, we got the value �T�=3.68	0.

In Fig. 13, the predicted values of temperature-density
separation are compared to the Monte Carlo simulation re-
sults �4,40�. Our results agree well with the DSMC calcula-
tion in the range of Mach numbers 1�M �10. Mott-Smith
theory gives good agreement with the DSMC simulation
only in the range of Mach numbers 2.2�M �2.7.

In Table I, we compare the results of inverse shock thick-
ness predicted by different theories. At M �2.5, the derived

system predicts a correct shock thickness. At larger Mach
numbers M �2.5, the predicted shock thicknesses differ
from the DSMC simulation by an amount of 5%–15%. Mott-
Smith solution agrees better with the Nanbu solution �40� at
large Mach numbers. It is worth noting, however, that agree-
ment of the solutions is only found in the maximum density
gradient but not in the density profile itself. In Figs. 3–10,
our results are all seen to be in reasonable agreement with
the DSMC simulation for Maxwell molecules.

Next, shock parameters are compared to the experimental
data and Monte Carlo simulation for argon. In Fig. 14, the
results computed from the derived system are compared to
the measured inverse shock thickness for argon �3�. The val-
ues s=0.72 and s=0.68 chosen for the viscosity exponent
yield a good agreement with the experimental data. We esti-
mate that s=0.70 would provide a result that has the best
agreement with the experimental data. Experimental mea-
surement of temperature is difficult and, therefore, Monte
Carlo simulation results are usually used for comparison.

Figures 15 and 16 show the temperature and density pro-
files calculated from the DSMC simulation �43�, Navier-
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FIG. 12. Comparison of the predicted temperature profiles at
M =10. Notation—see Fig. 3. Note that the predicted temperature
shows an overshot.
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Stokes, Brenner-Navier-Stokes �5�, and our proposed equa-
tions for argon. Argon is modeled with the value s=0.72 for
the viscosity exponent in the calculations of the abovemen-
tioned theories. Brenner-Navier-Stokes equations produce
good agreement in the central and downstream shock re-
gions, but in the upstream region, their predicted profiles are
wrong. Our results are in excellent agreement with the
DSMC simulation results for both of the density and tem-
perature profiles.

In Fig. 17, we present a higher-order moment of the dis-
tribution function q̄x as the function of Mach number. The
profiles show the trend similar to heat flux profiles that the
peak moves upstream with the increasing Mach number. The
magnitudes also increase with the increasing Mach number.
In the Mott-Smith theory �11�, only the density profile is
calculated from the fluid dynamic system, while for the tem-
perature, heat flux, and pressure, they are calculated from the
appropriate moments of bimodal distribution function. Use
of the system of six equations instead of four equations in

Mott-Smith method helps us to get rid of the incorrect pre-
diction of shock structure at low Mach numbers and gives us
some additional insights into the behaviors of temperature,
heat flux, and pressure in the whole range of Mach numbers.
By increasing the number of equations in the proposed for-
malism, it will allow us to get the information of higher
moments of distribution function.

V. CONCLUSION

On the basis of Mott-Smith distribution function for the
Maxwell molecules, a system of fluid dynamic equations was
derived to predict the structure of shock wave in a neutral
monatomic gas. The predicted shock thickness is seen to
have a good agreement with the Monte Carlo simulation at
all Mach numbers. The predicted inverse density thickness
for argon is also shown to be in good agreement with the
experimental data. In contrast to the Mott-Smith theory, the

TABLE I. Predicted inverse density thickness for the Maxwell gas using different theories. M-S2,
M-S3—Mott-Smith VX

2 and VX
3 theory �11�, SGZ23—Salwen, Grosch, Ziering �VX

3 ,VXV2� �25�,
SGZ33—Salwen, Grosch, Ziering �VX

3 ,VXV2� �25�, NS—Navier-Stokes �1�, and MC—Monte Carlo simula-
tion �40�.

M M-S2 M-S3 SGZ23 SGZ33 MC NS This theory

1.2 0.057 0.0504 0.0653 0.065 0.067 0.066

1.5 0.124 0.116 0.136 0.143 0.151 0.140

1.7 0.154 0.164 0.194 0.167

2 0.184 0.193 0.192 0.212 0.193 0.242 0.193

2.5 0.205 0.200 0.224 0.202 0.286 0.201

3 0.206 0.251 0.196 0.223 0.205 0.300 0.196

4 0.188 0.248 0.170 0.193 0.186 0.288 0.168

5 0.165 0.228 0.146 0.165 0.163 0.262 0.145

6 0.146 0.145 0.235 0.127

7 0.129 0.128 0.211 0.112

8 0.115 0.116 0.189 0.101

9 0.104 0.105 0.172 0.090

10 0.0945 0.138 0.0804 0.0902 0.0925 0.157 0.080
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FIG. 15. Density profile plotted as the function of distance.
Comparison of the currently predicted density profile to the DSMC,
Navier-Stokes, and Mott-Smith simulation results against x at
M =11; s=0.72.
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derived system predicts the correct shock thickness,
temperature-density separation, and shock profile at a low
Mach number. The Mott-Smith solution is qualitatively cor-
rect for M =2�3. At other Mach numbers, their predicted
errors are large. Our predicted temperature, density, and heat
flux profiles are seen to agree well with the Monte Carlo
simulation in the investigated range of Mach numbers 1.7
�M �10. We have computed the density and temperature
profiles by the present theory and compared to the Monte

Carlo simulation results data for argon. Excellent agreement
for density and temperature profiles has been found. In ex-
tended thermodynamics, many moments are required in or-
der to get a predicted solution with good agreement with the
experimental result. With the Mott-Smith closure, a fairly
good agreement with the experimental and the Monte Carlo
simulation results can be obtained even from a differential
system with much fewer equations. If one increases the num-
ber of moments using the same closure procedure, the agree-
ment with the experimental measurement and the Monte
Carlo simulation is expected to become increasingly better.
According to the work of Holian and Mareschal �47�, in the
near future it is highly interesting to investigate further the
case with the Mach number which is much larger than our
currently investigated largest value �M =11�. The proposed
procedure can be also applied to the processes involving
polyatomic gases, gas mixtures, plasma, and problem in as-
trophysics.
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