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SUMMARY

The present study aims to accelerate the non-linear convergence to incompressible Navier–Stokes
solution by developing a high-order Newton linearization method in non-staggered grids. For the sake
of accuracy, the linearized convection–diffusion–reaction finite-difference equation is solved line-by-line
using the nodally exact one-dimensional scheme. The matrix size is reduced and, at the same time,
the CPU time is considerably saved owing to the reduction of stencil points. This Newton linearization
method is computationally efficient and is demonstrated to outperform the classical Newton method
through computational exercises. Copyright � 2005 John Wiley & Sons, Ltd.

KEY WORDS: incompressible Navier–Stokes solution; high-order Newton linearization; non-staggered
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1. INTRODUCTION

Numerical simulation of fluid flow encounters difficulties in accurately approximating and prop-
erly linearizing the multi-dimensional advection terms in the discretized momentum equations.
The chosen linearization methodology can significantly affect the solution convergence se-
quences [1]. Development of an effective linearization method is, thus, an important task in
the area of computational fluid dynamics. This study aims to refine the conventional Newton
linearization procedure for accelerating convergence towards the final solution.

Linearization of momentum equations can be achieved straightforwardly by lagging the non-
linear term. This simple iteration method (SIM) may result in slow convergence and is hence
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very time consuming. To improve the convergence, one can apply the potentially attractive
Newton linearization method due to its q-quadratic convergence [2]. In Newton’s method, the
matrix equation Ax = b, where x is the state vector and A is a function of x, is approximated
by a first-order Taylor series to render Jk�xk+1 = Rk . Here, k denotes the iteration level and
one component in J is given by Jij = −�R(i)/�x(j), where R (≡ b−Ax) is the residual vector.
Then the matrix equation is solved for �xk from Jk �xk+1 = Rk , followed by obtaining the up-
dated solution from xk+1 = xk +�xk+1. Calculations are continued until the residual falls below
a user’s specified tolerance, with Jk and Rk being calculated from the most updated value of x.

Newton method has been known as a powerful technique for solving non-linear fluid and
heat transfer equations. Implementation of this method requires, however, a massive calculation
in the factorization of Jk [1]. Another drawback in using Newton’s method, assuming the
required memory is available, is due to its small radius of convergence. Using the variable
secant procedure, which is now generally known as the Newton–Raphson method, can overcome
these difficulties by replacing the derivative terms with a secant line approximation through two
points. However, this potentially attractive linearization needs to factorize the tangent matrix in
each iteration [3]. The inexact Newton method [4] was proposed to reduce the computational
cost required in the classical Newton–Raphson linearization method. In the modified Newton–
Raphson method, the tangent matrix is factorized once for a number of steps. This occasionally
updating strategy may lead to poor convergence in the simulation of a highly non-linear
equation. As a means of partly circumventing this problem, the asymptotic Newton method was
proposed [3]. In this paper a straightforward implementation of high-order Newton linearization
procedures is proposed for obtaining non-linear solution at a less computational cost.

The rest of this paper is organized as follows. In Section 2, a high-order Newton linearization
method is detailed. This is followed by presenting the proposed scheme that is mostly suited
to solve for the resulting linearized momentum equations. In Section 3, the incompressible
Navier–Stokes equations are linearized and then they are discretized on non-staggered grids.
An assessment of different linearization methods is given in Section 4. Section 5 provides the
concluding remarks.

2. LINEARIZATION OF NAVIER–STOKES EQUATIONS

In this paper, the two-dimensional viscous equations for an incompressible fluid flow are
considered. Subject to the divergence-free constraint condition given in (1), the steady-state
flow equations for the velocity vector u = (u, v) and the pressure p are as follows:

∇ · u = 0 (1)

(u · ∇)u = −∇p + 1

Re
∇2u + f (2)

Note that Equations (2) is the working equations for u. By virtue of the continuity equa-
tion, equation for p can be derived as follows by summing �/�x (x-momentum) and �/�y

(y-momentum):

∇2p = ∇
[

1

Re
∇2u − (u · ∇)u + f

]
(3)
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The above equation will be solved subject to the Neumann-type pressure boundary
condition

�p
�n

=
[

1

Re
∇2u − (u · ∇)u + f

]
· n (4)

where n denotes the outward-directed unit vector normal to the boundary of domain. For
simplicity, the dynamic viscosity � is considered to be uniform.

Newton’s method is a powerful technique for solving the system of non-linear equations
given by A(u)u = b, where u = (u, v). After calculating the pressure solution from (3) to
(4), one can obtain �uk+1 (≡ uk+1 − uk) from Jk�uk+1 = −rk using the Newton’s method.
Here, k denotes the iteration level and Jk ≡ {Jij = �rk

i /�uk
j } is the Jacobian matrix. In the

above method, the execution time is mainly spent on the factorization of Jk . For this reason,
it is possible to reduce the computational time by solving two non-linear equations in (2)
separately.

The first step towards solving the non-linear equation is to linearize the convective terms
shown in (2). We rewrite Equations (2) as F(u) = 0 and G(v) = 0, respectively, where

F(u) = uux + vuy − 1

Re
(uxx + uyy) + px (5)

G(v) = uvx + vvy − 1

Re
(vxx + vyy) + py (6)

Note that F ′(u) �= 0 and G′(v) �= 0 are two necessary conditions for the quadratically convergent
Newton’s method. Define q(u) and r(v) by

q(u) = F(u)�(u) (7)

r(v) = G(v)h(v) (8)

They are differentiated with respect to u and v, respectively, once and twice. These differenti-
ations enable us to derive

q ′(u) = F ′(u)�(u) + F(u)�′(u) (9)

r ′(v) = G′(v)h(v) + G(v)h′(v) (10)

q ′′(u) = F ′′(u)�(u) + 2F ′(u)�′(u) + F(u)�′′(u) (11)

r ′′(v) = G′′(v)h(v) + 2G′(v)h′(v) + G(v)h′′(v) (12)

In the course of iteratively calculating u and v, we set F(u) = G(v) = 0 as the acceleration
means to have convergent solutions from the respective non-linear differential equations. As a
consequence of this acceleration, q ′′(u) and r ′′(v) turn out to be zero owing to q = F� and
r = Gh.
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Now, q(uk+1) and r(vk+1) are expanded with respect to uk and vk , respectively, and
the Taylor series expansion is terminated up to the third-order term. The superscript k + 1
shown above represents the updated iteration number. Taking q ′′(uk) and r ′′(vk) into account,
we have

uk+1 = uk + F(u)�(uk)

F ′(u)�(u) + F(u)�′(u)
(13)

vk+1 = vk + G(v)h(vk)

G′(v)h(v) + G(v)h′(v)
(14)

As Equations (13) and (14) reveal, equations for �(uk) and h(vk) must be derived to accomplish
the linearization of advective terms.

Substitution of q ′′ = r ′′ = 0 into Equations (11) and (12), respectively, renders

F ′′(u)�(u) + 2F ′(u)�′(u) = 0 (15)

G′′(v)h(v) + 2G′(v)h′(v) = 0 (16)

F ′′ and G′′ are then approximated by

F ′′(u) = F ′(uk) − F ′(uk−1)

uk − uk−1 (17)

G′′(v) = G′(vk) − G′(vk−1)

vk − vk−1 (18)

By substituting (17) and (18) into (15) and (16), the updated �(u) and h(v) are obtained as
follows from the resulting two coupled equations:

�(uk) = 2F ′(uk)

3F ′(uk) − F ′(uk−1)
�(uk−1) (19)

h(vk) = 2G′(vk)

3G′(vk) − G′(vk−1)
h(vk−1) (20)

By definitions of q and r as given in (7) and (8), Equations (13) and (14) can be rewritten as

uk+1 = uk + q(uk)

q ′(uk)
(21)

vk+1 = vk + r(vk)

r ′(vk)
(22)
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The derivation is followed by addition and subtraction of F(uk)/F ′(uk) and G(vk)/G′(vk) in
Equations (21) and (22), leading to

uk+1 = uk − F(uk)

F ′(uk)
+ F(uk)

F ′(uk)
+ q(uk)

q ′(uk)
(23)

vk+1 = vk − G(vk)

G′(vk)
+ G(vk)

G′(vk)
+ r(vk)

r ′(vk)
(24)

Now, we can calculate uk − (F (uk)/F ′(uk)) and vk − (G(vk)/G′(vk)) using the conventional
Newton linearization method. In other words, the updated velocities in (23) and (24) are
rewritten as

uk+1 = uCNL + F(uk)

F ′(uk)
+ q(uk)

q ′(uk)
(25)

vk+1 = vCNL + G(vk)

G′(vk)
+ r(vk)

r ′(vk)
(26)

where the conventional Newton linearization terms uCNL and vCNL are given by

uCNL = uk − F(uk)

F ′(uk)
(27)

vCNL = vk − G(vk)

G′(vk)
(28)

Approximate F ′(uk), G′(vk), q(uk) and r(vk) by

A′(uk) = A(uCNL) − A(uk−1)

uCNL − uk−1 (A = F ′ or q) (29)

B ′(vk) = B(vCNL) − B(vk−1)

vCNL − vk−1 (B = G′ or r) (30)

We then substitute them into (25) and (26) to derive

uk+1 = (1 + �)uCNL − �uk−1 (31)

vk+1 = (1 + �)vCNL − �vk−1 (32)
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where � and � are expressed as follows:

� = F(uk)

F (uk) − F(uk−1)
+ q(uk)

q(uk) − q(uk−1)
(33)

� = G(vk)

G(vk) − G(vk−1)
+ r(vk)

r(vk) − r(vk−1)
(34)

3. NUMERICAL METHOD

3.1. Flux discretization scheme

Subject to the divergence-free equation (1), Equation (2) can be rewritten as

(u2)x + (uv)y = −px + 1

Re
(uxx + uyy) (35)

(uv)x + (v2)y = −py + 1

Re
(vxx + vyy) (36)

An arbitrarily chosen continuous function st is considered and expanded in terms of the Taylor
series about its current iteration state. By truncating the resulting series expansion after the
first-derivative terms, the expansion for st reads as

sk+1 tk+1 = sktk +
[

�
�s

(st)k
]

(sk+1 − sk) +
[

�
�t

(st)k
]

(tk+1 − tk) + · · · + H.O.T.

= sk+1tk + sktk+1 − sktk + · · · + H.O.T. (37)

Terms with the superscripts k and k + 1 are those evaluated at the previous and the present
iteration counters, respectively. According to Equation (37), we can linearize (u2)k+1

x and
(uv)k+1

y as

(u2)k+1
x = (uk+1uk + ukuk+1 − ukuk)x

= ukuk+1
x + uk+1uk

x − ukuk
x + uk+1uk

x + ukuk+1
x + ukuk

x (38)

(uv)k+1
y = (uk+1vk + ukvk+1 − ukvk)y

= vkuk+1
y + vk+1uk

y − vkuk
y + uk+1vk

y + ukvk+1
y + ukvk

y (39)

Note that the terms with the underbar ‘—’ originate from the high-order terms which are
introduced to refine the classical linearization method. Substitution of (38) and (39) into
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(35) and (36) results in the following linearized x- and y-momentum equations, respectively

ukuk+1
x + vkuk+1

y − 1

Re
(uk+1

xx + uk+1
yy ) + uk

xu
k+1 = −pk+1

x + ukuk
x + vkuk

y − uk
yv

k+1 (40)

ukvk+1
x + vkvk+1

y − 1

Re
(vk+1

xx + vk+1
yy ) + vk

yv
k+1 = −pk+1

y + ukvk
x + vkvk

y − vk
xu

k+1 (41)

In the light of above two equations, it is important to consider the following constant-coefficient
convection–diffusion–reaction (CDR) equation:

u�x + v�y − k(�xx + �yy) + c� = f (42)

where k and c denote the diffusion coefficient and the reaction coefficient, respectively.
The finite difference solution for � is sought consecutively from (42) according to the two

steps given below

u�∗
x − k�∗

xx + c�∗ = s1 (43)

v�n+1
y − k�n+1

yy + c�n+1 = s2 (44)

In the above, s1 = f −v�n
y −k�n

yy and s2 = f −u�∗
x −k�∗

xx . Application of splitting technique
to multi-dimensional equations typically generates a tri-diagonal system of equations that can
be efficiently solved using the Thomas algorithm. This is the motivation for the use of splitting
method of Peaceman and Rachford [5].

As Equations (43) and (44) show, it is essential to develop a discretization scheme for the
following one-dimensional equation when solving the two-dimensional CDR equation (42)

u�x − k�xx + c� = f (45)

For illustrative purposes, f is a known constant throughout. The discretized equation for the
above model equation at an interior node i is assumed to take the following form:

(
− u

2h
− �k

h2 + c

6

)
�i−1 + 2

(
�k

h2 + c

3

)
�i +

(
u

2h
− �k

h2 + c

6

)
�i+1 = f (46)

where h is the mesh size. The resulting tri-diagonal system of algebraic equations for � can be
solved by Thomas algorithm, which requires only 5N − 4 operations where N is the number
of coupled algebraic equations. To determine �, we take the following general solution into
consideration:

� = c1e�1x + c2e�2x + f

c
(47)

where c1 and c2 are constants. Substituting (47) into Equation (45), it is easy to have �1,2 =
(u/2k) ± (

√
u2 + 4ck/2k). The exact values of �i and �i±1 are then substituted into (46)
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to derive � analytically in terms of R1 = ch2/2k and R2 = uh/2k [6]

� = (R1/3) + (R1/3) cosh(�1) cosh(�2) + R2 sinh(�1) cosh(�2)

cosh(�1) cosh(�2) − 1
(48)

In the above, (�1, �2) = (R2,
√

(R2)2 + 2R1). It is now apparent that the numerical error
stems solely from the approximation of f .

3.2. Non-staggered incompressible Navier–Stokes calculation

By theory, −∇p in (2) should be approximated by a centred scheme. The resulting approxima-
tion of �p/�x and �p/�y can cause spurious even–odd oscillations to occur on a non-staggered
grid [7, 8]. Therefore, in the incompressible flow simulation we have to eliminate the checker-
boarding problem in a collocated grid system [9]. In this study the even–odd decoupling is
eliminated by calculating Fj (≡ h�x) and Sj (≡ h2�xx) from the two equations given below

�0Fj+1 + �0Fj + �0Fj−1 = a0(�j+2 − �j+1) + b0(�j+1 − �j )

+ c0(�j − �j−1) + d0(�j−1 − �j−2) (49)

and

�1Sj+1 + �1Sj + �1Sj−1 = a1�j+2 + b1�j+1 + c1�j + d1�j−1 + e1�j−2 (50)

After some straightforward analyses, we are led to have the sixth-order accurate approximations
of �x and �xx provided (�0, �0, �0, a0, b0, c0, d0) = ( 1

5 , 3
5 , 1

5 , 1
60 , 29

60 , 29
60 , 1

60

)
and

(�1, �1, �1, a1, b1, c1, d1, e1) =
(

1, 11
2 , 1, 3

8 , 6, − 51
4 , 6, 3

8

)
.

The implicit equations for F and S at nodes immediately adjacent to the left or right boundary
are derived by specifying d0 = e1 = 0 and a0 = a1 = 0, respectively. By virtue of the Taylor
series expansion, the coefficients can be analytically derived as (�0, �0, �0, a0, b0, c0, d0) =( 3

10 , 3
5 , 1

10 , 1
30 , 19

30 , 1
3 , 0

)
and

( 1
10 , 3

5 , 3
10 , 0, 1

3 , 19
30 , 1

30

)
at nodes next to the left and

right boundaries, respectively. In addition, coefficients shown in Equation (50) are analytically
derived as (�1, �1, �1, a1, b1, c1, d1, e1) = (1, 10, 1, 0, 12, −24, 12, 0).

4. NUMERICAL RESULTS

In what follows, the prescribed tolerance, [1/N
∑

(unew − uold)2]1/2, for each non-linear cal-
culation is 10−13. Here, N denotes the number of grid points.

4.1. Non-linear advection–diffusion scalar equation

We are now in a position to validate and then assess the proposed high-order Newton lin-
earization method by solving u from the following non-linear convection–diffusion equation
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Figure 1. The computed rate of convergence for Equation (51).

in 0 � x, y � 1:

uux + vuy − k(uxx + uyy) = f (51)

The solution to Equation (51) at k = 10−3, v = (x cos(2xy) − y sin(2xy)) exp(x2 − y2) and
f = − 1

2 (x2 + y2) exp[2(x2 − y2)] is exactly derived as

u(x, y) = (x sin(2xy) + y cos(2xy)) exp(x2 − y2) (52)

In Figure 1, we plot the rate of convergence for u, which is calculated from

C = ln ||err1|| − ln ||err2||
ln |h1| − ln |h2| (53)

The simulated error is cast in its discrete L2-norm as

E =
[

1

M

M1/2∑
i=1

(ui − Ui )
2

]1/2

(54)

where Ui denotes the exact solution at a nodal point i and ui is the corresponding numerical
solution.

For the sake of assessment of different linearization methods, the conventional Newton
linearization method and the standard relaxation method, namely, unew = wunew + (1 − w)uold,
where w is the user’s specified constant linearzation parameter are considered. As Figure 2
shows, the required non-linear iteration number has been considerably reduced, compared with
those needed for other two linearization methods. We also compare in the same figure the
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Figure 2. The plots of convergence histories and the needed inner iteration numbers for the three
linearization methods used to solve for the non-linear advection–diffusion equation given in (51).

(inner) iteration numbers required to reach the convergent ADI solution at each non-linear
(outer) iteration. It is seen that much fewer ADI iterations are required in each non-linear
iteration when applying the presently proposed Newton linearization method.

4.2. Steady-state Navier–Stokes equations

Now, the Navier–Stokes equations at f = 0 are solved. In the unit square, it is easy to derive
the analytic pressure as follows:

p = −2

(1 + x)2 + (1 + y)2 (55)

This pressure is obtained when the boundary velocities u and v are specified according to

u = −2(1 + y)

(1 + x)2 + (1 + y)2 (56)

v = 2(1 + x)

(1 + x)2 + (1 + y)2 (57)

The simulated rates of convergence in Figure 3 show the validity of the method. Similar to the
conclusion drawn from the previous scalar problem, much fewer non-linear and ADI iteration
numbers are needed to obtain the convergent solutions, as seen from Figure 4.
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Figure 4. Comparison of the convergence histories and the needed numbers of inner iteration for
three investigated linearization methods in the calculation of non-linear Navier–Stokes problem,
which has the analytic solutions given in (55)–(57) at Re = 1000: (a) convergence histories

for u; and (b) convergence histories for v.

Copyright � 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2005; 62:1559–1578



1570 T. W. H. SHEU AND R. K. LIN

∆X

L 2-
er

ro
r

no
rm

s

0.06 0.08 0.1 0.12 0.14 0.16

5E-05

0.0001

0.00015

0.0002

velocity u
velocity v
pressure

rate of convergence = 3.226465

rate of convergence = 2.977596

rate of convergence = 2.200051

Figure 5. The computed rates of convergence for u, v and p.

Then the classical Kovasznay flow problem is investigated [10], which is amenable to the
following analytic solutions:

u = 1 − e�x cos(2�y) (58)

v = �

2�
e�x sin(2�y) (59)

p = 1
2 (1 − e2�x) (60)

where � = Re/2−((Re2/4)+4�2)1/2. Numerical calculations have been carried out in a square
which is covered with uniform grids. At Re = 1000, it is observed from Figure 5 the simulated
high rates of convergence for pressure and velocity fields. The residual reduction plots, shown in
Figure 6, indicate that the required non-linear iteration number has been considerably reduced.
In Figure 6, the inner ADI iteration number in each outer non-linear iteration is also seen to
have been considerably reduced, thus clearly demonstrating the advantage of using the proposed
high-order Newton linearization method.

We also consider the analytic lid-driven cavity flow problem [11] in a square domain. The
Navier–Stokes equations are solved subject to the following Dirichlet-type velocity boundary
conditions at x = 0, 1 and y = 0, 1:

u = 8(x4 − 2x3 + x2)(4y3 − 2y) (61)

v = −8(4x3 − 6x2 + 2x)(y4 − y2) (62)
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Figure 6. Comparison of the convergence histories and the needed numbers of inner iteration for
three investigated linearization methods in the calculation of non-linear Navier–Stokes problem, which
has the analytic solutions given in (58)–(60) at Re = 1000: (a) convergence histories for u; and

(b) convergence histories for v.

If the body force f = (f1, f2) is given by

f1 = 0 (63)

f2 = 8

Re
[24J1(x) + 2I ′

1(x)I ′′
2 (y) + I ′′′

1 (x)I2(y)] + 64[J3(x)J4(y) − I2(y)I ′
2(y)J2(x)] (64)

the exact pressure takes the following form:

p = 8

Re
[J1(x)I ′′′

2 (y) + I ′
1(x)I ′

2(y)] + 64J3(x)[I2(y)I ′′
2 (y) − (I ′

2(y))2] (65)

where I1(x) = x4 − 2x3 + x2, I2(y) = y4 − y2, J1(x) = 1
5x5 − 1

2x4 + 1
3x3, J2(x) = −4x6 +

12x5 − 14x4 + 8x3 − 2x2, J3(x) = 1
2 (x4 − 2x3 + x2)2 and J4(y) = −24y5 + 8y3 − 4y.

For the case considered at Re=1000, our proposed Newton linearization method can render a
much faster convergent solution (Figure 7). From Figure 8, it is seen that much of the CPU time
has been saved. In addition, the proposed model can offer good accuracy without deteriorating
convergence, as seen in the simulated streamlines, pressure contours and the mid-sectional
profiles for u and v plotted in Figure 9.

In this paper the incompressible Navier–Stokes fluid flow in the cavity, which is subjected
to a constant lid velocity ulid, is also considered. The geometrical simplicity and physical
complexity have made this problem attractive to benchmark the incompressible Navier–Stokes
model. With L as the characteristic length, ulid the characteristic velocity, the Reynolds number
under investigation is taken as 5000.

Copyright � 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2005; 62:1559–1578



1572 T. W. H. SHEU AND R. K. LIN

Relaxation
Conventional Newton Linearization
High-Order Newton Linearization

10 20 30 10 20 30
0

100

200

300

400

500

600

700

Relaxation
Conventional Newton Linearization
High-Order Newton Linearization

R
es

id
u

al

10-4

10-5

10-6

10-7

10-8

10-9

10-10

10-11

10-12

R
es

id
u

al

10-4

10-5

10-6

10-7

10-8

10-9

10-10

10-11

10-12

A
D

I i
te

ra
ti

o
n

 n
u

m
b

er
s

0

100

200

300

400

500

600

700A
D

I i
te

ra
ti

o
n

 n
u

m
b

er
s

Nonlinear iteration numbersNonlinear iteration numbers

(b)(a)

Figure 7. Comparison of the convergence histories and the needed numbers of inner iteration for
three investigated linearization methods in the calculation of non-linear Navier–Stokes problem, which
has the analytic solutions given in (61)–(65) at Re = 1000: (a) convergence histories for u; and

(b) convergence histories for v.
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Figure 8. Comparison of the CPU time required to obtain the convergent solutions using the proposed
nodally exact finite difference scheme.

As the mesh is sufficiently refined to obtain a grid-independent solution, we plot the mid-
plane velocity profiles u (0.5, y) and v (x, 0.5) in Figure 10. These simulated profiles are
compared with the steady-state benchmark solution obtained by Ghia [12]. The excellent agree-
ment between the simulated and exact solutions and the much improved convergence histo-
ries seen in Figure 11 further confirm the suitability of employing the proposed linearization
method.
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Figure 9. The simulated solutions for the analytic lid-driven cavity flow problem given in Section 4.2:
(a) streamlines; (b) pressure contours; and (c) mid-sectional velocity profiles for u and v.

4.3. Unsteady Navier–Stokes equations

Encouraged by the above success in validating the proposed transport scheme for the steady-
state problems, the transient Navier–Stokes equations are solved in this section. The method
presented in Section 3 can be directly applied to the unsteady Navier–Stokes problem. Take the
linearized model equation, namely �t + a�x + b�y − k(�xx + �yy) + c� = f , as an example,

we can approximate �t by �t = (�n+1 − �n)/�t . The resulting equation involving only the
spatial derivative terms takes the convection–diffusion–reaction form given by

a�n+1
x + b�n+1

y − k(�n+1
xx + �n+1

yy ) + c�n+1 = f (66)
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Figure 11. Comparison of the convergence histories and the needed numbers of inner iteration for
three investigated linearization methods in the calculation lid-driven cavity flow problem at Re = 5000:

(a) convergence histories for u; and (b) convergence histories for v.

The coefficients (a, b), k, c and f are as follows: (a, b) = (a�t, b�t), k = k�t , c = c�t + 1
and f = f �t + �n. We can then apply the CDR scheme presented earlier to solve for the
resulting Newton linearized momentum equations. In a square of unit length, the problem under
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Figure 12. The simulated contours for the unsteady Navier–Stokes
equations at t = 1: (a) u; (b) v; and (c) p.

investigation has the following exact solutions:

u = 1 + 2 cos[2�(x − t)] sin[2�(y − t)]e−8�2	t (67)

v = 1 − 2 sin[2�(x − t)] cos[2�(y − t)]e−8�2	t (68)

p = c2 − {cos[4�(x − t)] + cos[4�(y − t)]}e−16�2	t (69)

All the solutions are obtained in 0 � x, y � 1. In Figure 12, we plot the simulated contours for
u, v and p at t = 1 under the specified conditions 	 = 10−3, �x = �y = 1

20 and �t = 10−2.
Computations are also performed on a range of mesh sizes h = 1/2n, where n = 4, 5, 6, 7, at
	 = 10−3 and �t = 1

100 for the sake of completeness. In view of the simulated L2-norm errors
in Figure 13, the proposed method can be applied to unsteady flow simulation. The save in
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Figure 13. The simulated L2-error norms and the resulting rates of convergence for the investigated
unsteady Navier–Stokes equations based on the solutions obtained at t = 1.
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Figure 14. The CPU times for three chosen linearization methods applied to solve for the unsteady
Navier–Stokes equations at t = 1 at different meshes N × N , where N = 10, 20, 40, 60, 80, 100.

CPU time is clearly seen in Figure 14. The non-linear iteration numbers against time are
also plotted in Figure 15 to show the advantage of applying the proposed high-order Newton
linearization method to simulate the unsteady Navier–Stokes equations.
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Figure 15. The plots of needed numbers of outer iteration against time (0 � t � 1)
in the assessment of three linearization methods chosen for solving the unsteady

Navier–Stokes equations at 40 × 40 mesh system.

5. CONCLUDING REMARKS

This study aims to accelerate non-linear convergence to the incompressible Navier–Stokes
solutions using the proposed high-order Newton linearization method. For all the linearized
equations, they are solved on a non-staggered grid system using the computationally very
accurate and efficient CDR scheme. By virtue of the present assessment studies for steady
as well as unsteady problems, much faster convergence to the convergent solutions can be
obtained for all test problems.
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