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Abstract

In this paper a finite difference scheme is developed within the nine-point semi-discretization framework for the con-

vection–diffusion equation. The employed Pade approximation renders a fourth-order temporal accuracy and the spa-

tial approximation of convection terms accommodates the dispersion relation. The artificial viscosity introduced in the

two-dimensional convection–diffusion-reaction (CDR) equation for stability reasons is analytically derived. Constraints

on the mesh size and time interval for rendering a monotonic matrix are also rigorously derived. To validate the pro-

posed method, we investigate several problems that are amenable to the exact solutions. The results with good rates of

convergence are obtained for the investigated scalar and Navier–Stokes problems.

� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

A theoretically rigorous semi-discretization method for accurately solving the practically and academi-

cally important time-dependent convection–diffusion transport equation and Navier–Stokes equations is

presented. For the time derivative term, Pade�s approximation [1] is employed to render a fourth-order tem-

poral accuracy. The remaining partial differential equation, which takes the convection–diffusion-reaction

(CDR) form, involves only the spatial derivative terms. A reliable CDR scheme must have the ability to

avoid convective instability problem for the convection dominated case. The theory adopted to minimize
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the dispersion error is to take the dispersive nature of the investigated partial differential equation into con-

sideration [2].

A scheme used for the approximation of convection terms is called dispersion-relation-preserving (DRP)

[2] if it accommodates the same dispersion relation as that of the original first-order partial derivative term.

This relation, which is derived by taking the spatial Fourier transform of the first derivative term, reveals
how the angular frequency relates with the wavenumber of the spatial variable [3]. The underlying reason of

employing DRP convective scheme is that the dispersiveness, dissipation, group and phase velocities of

each wave component supported by the first-order derivative can be well modelled [4]. In the above light,

we combine the standard modified equation analysis, which involves truncated Taylor series, with the Fou-

rier transform analysis [5], which enables us to derive the same or almost the same dispersion relation as the

original partial differential equation, in the approximation of convective terms.

As many two-dimensional high-order convection–diffusion schemes show, the dispersion error, which is

defined as the difference between the effective and actual wave numbers, cannot be completely eliminated
using the presently developed two-dimensional DRP scheme. To enhance numerical stability we introduce

the artificial viscosity into the semi-discretized equation to damp these non-resolved oscillations. For the

sake of accuracy, we employ the general solution to the currently investigated two-dimensional transport

equation for determining the introduced artificial viscosity.

This paper is organized as follows. Section 2 presents the working Navier–Stokes equations in primitive

variable form. This is followed by applying the four-step Pade time stepping scheme [6]. The transient con-

vection–diffusion equation can then be transformed into the steady-state convection–diffusion-reaction

equation. In Section 4 the two-dimensional DRP scheme developed for the first-order derivative term is pre-
sented. A rigorous determination of artificial viscosity is also provided. Section 5 addresses the dispersion

and Fourier (or von Neumann) stability analyses of the proposed discretization scheme. Section 6 presents

the simulated results, from which the proposed two-dimensional conditionally monotonic convection–dif-

fusion scheme is validated. In Section 7 we give concluding remarks.
2. Working equations

In this study we investigate the viscous incompressible fluid flow, which is governed by the following

continuity equation and the Navier–Stokes equations for the chosen primitive variables (u,p):
r � u ¼ 0; ð2:1Þ

ou

ot
þ ðu � rÞu ¼ �rp þ 1

Re
r2uþ f: ð2:2Þ
The velocity vector u and pressure p are sought subject to the initial divergence-free velocity field and the

boundary velocity. The length is scaled by L, the velocity components by U, the time by L/U, and the pres-

sure by qU2, where q denotes the fluid density. The Reynolds number Re shown in (2.2) is the consequence

of the above normalization.

Momentum equations can be directly solved together with the constraint equation (2.1). While fluid
incompressibility can be unconditionally ensured, the eigenvalues of the resulting matrix system becomes

poorly distributed. Convergent solutions for (u,p) are very difficult to obtain using the computationally

less expensive iterative solver [7]. Very often, the peripheral storage required for the matrix equations

may exceed the available computer power and disk space. These drawbacks prompt use of the pressure

Poisson equation (PPE) approach [8] to overcome difficulty encountered in the mixed formulation. In this

manner, the following Poisson equation for p is derived to replace Eq. (2.1) by applying a curl operator

on Eq. (2.2):
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r2p ¼ r � ou

ot
þ 1

Re
r2u� ðu � rÞuþ f

� �
: ð2:3Þ
The above approach is not without complication since the elliptic system of equations is subject to a com-

putationally more challenging integral boundary condition [9]. For this reason, we adopt the following

Neumann-type pressure boundary condition:
op
on

¼ � ou

ot
þ 1

Re
r2u� ðu � rÞuþ f

� �
� n: ð2:4Þ
In the above, n denotes the unit outward normal vector to the domain boundary.
3. Fourth-order accurate semi-discretization scheme

We consider the following model equation for / due to its close resemblance to each momentum equa-

tion shown in (2.2):
/t þ a/x þ b/y � kr2/ ¼ f ; ð3:1Þ
where a and b denote the x- and y-direction velocities, respectively. Let F(” f � a/x � b/y + k$2/) be suf-

ficiently differentiable, Eq. (3.1) can be rewritten as /t = F(/). In contrast to the method of lines, we begin

with approximating the time derivative term /t. By expanding /n + 1 in Taylor series with respect to /n at

t = nDt, it is trivial to have /nþ1 ¼ ð1þ Dt o
ot þ

ðDtÞ2
2!

o2

ot2 þ
ðDtÞ3
3!

o3

ot3 þ � � �Þ/n. By virtue of expðsÞ ¼
1þ sþ 1

2!
s2 þ 1

3!
s3 þ � � �, /n + 1 can be exactly expressed as
/nþ1 ¼ expðsÞ/n; ð3:2Þ

where s ¼ Dt o

ot. In this study we apply the following fourth-order accurate Pade approximation [1] for

exp(s):
expðsÞ ¼
1þ 1

2
sþ 1

12
s2

1� 1
2
sþ 1

12
s2
: ð3:3Þ
Substitution of Eq. (3.3) into (3.2) yields
1� s
2

1� 1

6
s

� �� �
/nþ1 ¼ 1þ s

2
1þ 1

6
s

� �� �
/n: ð3:4Þ
Using /nþ1
6 ¼ ð1þ s

6
Þ/n and s ¼ Dt o

ot allows us to derive /nþ1
6 ¼ /n þ Dt

6
/n

t . Scheme development is followed

by employing /nþ1
2 ¼ /n þ s

2
/nþ1

6 and /nþ5
6 ¼ ð1� s

6
Þ/nþ1 to derive
/nþ1
2 ¼ /n þ Dt

2
/

nþ1
6

t ; ð3:5Þ

/nþ5
6 ¼ /nþ1 � Dt

6
/nþ1

t : ð3:6Þ
Eqs. (3.4) and (3.5) are then combined to derive
1� s
2

1� s
6

� �h i
/nþ1 ¼ /nþ1

2: ð3:7Þ
By virtue of (3.6), the above equation can be rewritten as
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/nþ1 � Dt
2
/

nþ5
6

t ¼ /nþ1
2: ð3:8Þ
In summary, the following two explicit and two implicit equations constitute the Pade scheme for the

passive scalar / [6]:
/nþ1
6 ¼ /n þ Dt

6
F n; ð3:9Þ

/nþ1
2 ¼ /n þ Dt

2
F nþ1

6; ð3:10Þ

Dt
6
F nþ1 � /nþ1 ¼ �/nþ5

6; ð3:11Þ

Dt
2
F nþ5

6 � /nþ1 ¼ �/nþ1
2: ð3:12Þ
The calculation steps are given below:

(1) Calculate /nþ1
6 according to Eq. (3.9)
/nþ1
6 ¼ /n þ Dt

6
f n � a/n

x � b/n
y þ kr2/n

� �
: ð3:13Þ
(2) Calculate /nþ1
2 according to Eqs. (3.10) and (3.13)
/nþ1
2 ¼ /n þ Dt

2
f nþ1

6 � a/nþ1
6

x � b/nþ1
6

y þ kr2/nþ1
6

� �
: ð3:14Þ
(3) Guess /n + 1 according to
/nþ1 ¼ /n þ Dt f n � a/n
x � b/n

y þ kr2/n
� �

: ð3:15Þ
(4) Calculate /nþ5
6 implicitly from Eq. (3.12) using the updated values of /nþ1

2 and /n + 1
a/nþ5
6

x � b/nþ5
6

y þ kr2/nþ5
6

� �
Dt ¼ f nþ5

6Dt þ 2 /nþ1
2 � /nþ1

� �
: ð3:16Þ
(5) Calculate /n + 1 implicitly from
a/nþ1
x þ b/nþ1

y � kr2/nþ1
� �

Dt þ 6/nþ1 ¼ f nþ1Dt þ 6/nþ5
6: ð3:17Þ
(6) Substitute /n + 1 into Eq. (3.16) to obtain /nþ5
6. This is followed by substituting /nþ5

6 into (3.17) to
obtain /n + 1. The above procedures are repeated until the L2-norm of the computed difference

between the consecutive iterations is less than the user�s specified tolerance (10�15 is chosen in this

study).
4. Discretization of spatial terms

As Eq. (3.17) reveals, the efficacy of the proposed semi-discretization scheme for Eq. (3.1) depends on the

solution quality for the following convection–diffusion-reaction equation
a/x þ b/y � kr2/þ c/ ¼ f : ð4:1Þ
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In the above, ða; b; k; c; f Þ ¼ ðaDt; bDt; kDt; 0; f nþ5
6Dt þ 2ð/nþ1

2 � /nþ1ÞÞ and ðaDt; bDt; kDt; 6; f nþ1Dt þ 6/nþ5
6Þ

for Eqs. (3.16) and (3.17), respectively. For simplicity, Eq. (4.1) is solved subject to the prescribed boundary

solution / = g.

4.1. Optimum dispersion-relation-preserving scheme for the first-order derivative term

The first-order spatial derivative terms shown in (4.1) will be approximated in the nine-point grid system

schematic in Fig. 1. Take /x as an example, it can be approximated as follows for the case of Dx = Dy = h
/xðx; yÞ �
1

h
ða1/i�1;j�1 þ a2/i;j�1 þ a3/iþ1;j�1 þ a4/i�1;j þ a5/i;j þ a6/iþ1;j þ a7/i�1;jþ1

þ a8/i;jþ1 þ a9/iþ1;jþ1Þ: ð4:2Þ
We apply the Taylor series expansion method for /i ± 1,j, /i,j ± 1, /i ± 1,j ± 1 to eliminate the leading eight

error terms shown in the resulting modified equation. Eliminating coefficients for /, /x, /y, /xx, /xy,

/yy, /xxy and /xyy allows us to derive the following algebraic equations:
a1 þ a2 þ a3 þ a4 þ a5 þ a6 þ a7 þ a8 þ a9 ¼ 0; ð4:3Þ
� a1 þ a3 � a4 þ a6 � a7 þ a9 ¼ 1; ð4:4Þ
� a1 � a2 � a3 þ a7 þ a8 þ a9 ¼ 0; ð4:5Þ
a1 þ a3 þ a4 þ a6 þ a7 þ a9 ¼ 0; ð4:6Þ
a1 � a3 � a7 þ a9 ¼ 0; ð4:7Þ
a1 þ a2 þ a3 þ a7 þ a8 þ a9 ¼ 0; ð4:8Þ
� a1 � a3 þ a7 þ a9 ¼ 0; ð4:9Þ
� a1 þ a3 � a7 þ a9 ¼ 0; ð4:10Þ
One more equation is needed for the unique determination of coefficients ai (i = 1,2, . . ., 9) shown in (4.2).

As convection highly dominates diffusion, approximation of /x by the standard truncated Taylor ser-

ies is not necessarily logical from the propagation point of view. Instead, how to preserve the dispersion

relation, which signifies the functional relation between the angular frequency of the wave and the
Fig. 1. Schematic of the nine stencil points.
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wavenumber of the spatial variable for /x, becomes crucial to suppress the possible convective instabil-

ity in the approximation of /x [10]. The right-hand side of (4.2) is, thus, desirable to have nearly the

same Fourier transform in space as the original partial derivative term shown in the left-hand side of

Eq. (4.2). Following the DRP method [2,11], which has been applied with success to approximate /x

within the one-dimensional context, define the Fourier transform and its inverse for /(x,y) in two space
dimensions as follows:
~/ða; bÞ ¼ 1

ð2pÞ2
Z þ1

�1

Z þ1

�1
/ðx; yÞe�iðaxþbyÞ dx dy; ð4:11Þ

/ðx; yÞ ¼
Z þ1

�1

Z þ1

�1

~/ða; bÞeiðaxþbyÞ da db: ð4:12Þ
By applying the spatial Fourier transform to terms on both sides of (4.2), we are led to derive a in the actual

wavenumber vector a = (a,b)
a � �i

h
a1e�iðahþbhÞ þ a2e�ibh þ a3eiðah�bhÞ þ a4e�iah þ a5 þ a6eiah þ a7e�iðah�bhÞ þ a8eibh þ a9eiðahþbhÞ� �

:

ð4:13Þ
In view of the above equation, the right-hand side of (4.13) is defined as the effective wavenumber ~a in
~a ¼ ð~a; ~bÞ:
~a ¼ �i

h
a1e�iðahþbhÞ þ a2e�ibh þ a3eiðah�bhÞ þ a4e�iah þ a5 þ a6eiah þ a7e�iðah�bhÞ þ a8eibh þ a9eiðahþbhÞ� �

;

ð4:14Þ
where i ¼
ffiffiffiffiffiffiffi
�1

p
. Similarly, we can derive
~b ¼ �i

h
b1e�iðahþbhÞ þ b2e�ibh þ b3eiðah�bhÞ þ b4e�iah þ b5 þ b6eiah þ b7e�iðah�bhÞ þ b8eibh þ b9eiðahþbhÞ� �

:

ð4:15Þ

Note that ~a can be regarded as an approximation to a in the sense that it is effectively the wavenumber of

Fourier transform of the finite difference equation shown in the right-hand side of (4.2) [2].

To assure that the current Fourier transform of the finite-difference equation in (4.2) is a proper repre-

sentation for /x over an adequate range of wavenumbers, we demand that a be close to ~a. In the weak

sense, j~ah� ahj2 (or the following integrated error E) should approach zero over a proper range of wave

numbers [2,3,10]:
EðaÞ ¼
Z p

2

�p
2

Z p
2

�p
2

j~ah� ahj2 dðahÞ dðbhÞ ¼
Z p

2

�p
2

Z p
2

�p
2

ji ~c1 � c1j
2
dc1 dc2; ð4:16Þ
where (c1,c2) = (ah,bh). In the discrete system for /x, the modified wavenumber range should be adequate

to define a period of sine (or cosine) wave. This explains why the integral range shown in (4.16) is chosen to

be �p
2
6 c1; c2 6

p
2
. To make E a minimum value, we enforce the following equation:
oE
oa6

¼ 0: ð4:17Þ
Employing the above extreme condition at point 6 schematic in Fig. 1 enables us to obtain the nine intro-

duced coefficients from Eqs. (4.17) and (4.3)–(4.10):
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a1 ¼ a3 ¼ a7 ¼ a9 ¼
p

4ðp� 2Þ ; ð4:18Þ

a2 ¼ a8 ¼
�p

2ðp� 2Þ ; ð4:19Þ

a4 ¼
1� p
p� 2

; ð4:20Þ

a6 ¼
�1

p� 2
; ð4:21Þ

a5 ¼
p

p� 2
: ð4:22Þ
Note that ~a ¼ ~aða;bÞ evaluated at a = 0 is equal to zero according to Eqs. (4.14) and (4.18)–(4.22). As for

~aða; 0Þ and ~aða ¼ bÞ, their values are expressed as 1
h sinðc1Þ and 1

h½sinðc1Þ � ið p
2ðp�2Þ cosð2c1Þ � 2p

p�2
cosðc1Þ

þ 3p
2ðp�2ÞÞ�, respectively.
Based on the nine determined coefficients shown in (4.18)–(4.22), the modified equation for /x is shown

to have the spatial accuracy order of two:
/x ¼
h2

6
/xxx þ

ph3

4ðp� 2Þ/xxyy þ
h4

120
/xxxxx þ � � � þHOT: ð4:23Þ
Similarly, the nine-point stencil approximation equation for /yð� 1
h

Pþ1

i;j¼�1bk/ðxþ ih; y þ jhÞ;
k ¼ 1; 2; . . . ; 9Þ accommodates dispersion feature on conditions that b4 = b6 = a2, b2 = a4, b8 = a6 and

bj = aj(j = 1,3,5,7,9). The modified equation for /y is /y ¼ h2

6
/yyy þ ph3

4ðp�2Þ/xxyy þ h4

120
/yyyyy þ � � � þHOT.

To reveal that the proposed finite difference equation can approximate /x over the range of wavenum-

bers of interest, we plot in Fig. 2 the contour values of j~ah� ahj=p; j~bh� bhj=p and j j~ajh� jajhj=p against
(c1,c2). It is seen that only the small wave number components can be well resolved within the acceptable

accuracy. Such scheme�s inability prompts us to derive the artificial viscosity in Section 4.2 for suppressing

the unresolved convective instability. We also plot in Fig. 3 the values of


~a
a � 1



; 

 ~bb � 1


 and 

 j~ajjaj � 1




against (c1,c2) for showing the degree of unresolved dispersion errors.

The nine-point formula given in [12] will be employed to approximate /xx + /yy in the Cartesian coor-

dinate system with Dx = Dy = h:
r2/ ¼ 4ð/iþ1;j þ /i�1;jÞ þ 4ð/i;jþ1 þ /i;j�1Þ þ ð/i�1;j�1 þ /iþ1;j�1 þ /i�1;jþ1 þ /iþ1;jþ1Þ � 20/i;j: ð4:24Þ
The modified equation for $2/ can be derived as
r2/ ¼ h2

12
ð/xxxx þ 2/xxyy þ /yyyyÞ þ � � � þHOT: ð4:25Þ
4.2. Development of a nodally exact artificial viscosity model

We consider the following two-dimensional model equation for Eqs. (3.16) and (3.17):
a/x þ b/y � kr2/þ c/ ¼ f : ð4:26Þ
For the sake of accuracy, the general solution given below for the above model equation is employed
/ðx; yÞ ¼ c1ek1x þ c2ek2x þ c3ek3y þ c4ek4y þ
f
c
; ð4:27Þ
where ci (i = 1,2,3,4) are four constants. By substituting Eq. (4.27) into Eq. (4.26), k1, k2, k3 and k4 shown
above can be derived as
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Fig. 2. Plots of the contour values for / against (c1,c2), where / are (a) j~ah� ahj=p; (b) j~bh� bhj=p; (c) jj~ajh� jajhj=p.
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k1;2 ¼
a�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 4ck

p

2k
and k3;4 ¼

b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ 4ck

p
2k

: ð4:28Þ
To enhance convective stability, we introduced an artificial viscosity m to rewrite Eq. (4.26) as
a/x + b/y � (k + m)$2/ + c/ = f. This is followed by substituting the exact solutions for /i,j, /i ± 1,j,

/i,j ± 1 and /i ± 1,j ± 1 into the nine-point DRP equation to yield
A1/i�1;j�1 þ A2/i;j�1 þ A3/iþ1;j�1 þ A4/i�1;j þ A5/i;j þ A6/iþ1;j þ A7/i�1;jþ1 þ A8/i;jþ1 þ A9/iþ1;jþ1 ¼ f :

ð4:29Þ

Nine coefficients Ai (i = 1,2, . . ., 9) are derived in terms of ai(i = 1,2, . . ., 9) and bi(i = 1,2, . . ., 9), which take

the same forms as ai, given in (4.18)–(4.22) as
Ai ¼
aiaþ bib

h
� k þ m

h2
þ c
28

; i ¼ 1; 3; 7; 9; ð4:30Þ

Aj ¼
ajaþ bjb

h
� 4ðk þ mÞ

h2
þ c
14

; j ¼ 2; 4; 6; 8; ð4:31Þ

A5 ¼
a5aþ b5b

h
þ 20ðk þ mÞ

h2
þ 4c

7
: ð4:32Þ
The artificial viscosity m shown in (4.30)–(4.32) is expressed as
m ¼
ah
2
sinh k1 cosh k2 þ bh

2
sinh k3 cosh k4 þ ch2

7
cosh k1 cosh k2 þ cosh k3 cosh k4 þ 5
� �

6 cosh k1 cosh k2 þ cosh k3 cosh k4 � 2
� � � k; ð4:33Þ
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Fig. 3. Plots of the contour values for / against (c1,c2), where / are (a) j~aa � 1j; (b) j~bb � 1j; (c) jj~ajjaj � 1j.
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Fig. 3 (continued)
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where ðk1; k2Þ ¼ ah
2k;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðah
2kÞ

2 þ ch2

k

q� �
and ðk3; k4Þ ¼ bh

2k;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbh
2kÞ

2 þ ch2

k

q� �
. The modified equation for Eq. (4.26)

can be derived as
a/x þ b/y � kr2/þ c/ ¼ ch2

7
/xx þ /yy

� �
þ h2

6
a/xxx þ b/yyy

� �
þ h2

ch2

84
� k þ m

12

� �
/xxxx þ /yyyy

� �
þ h2

ch2

28
þ pðaþ bÞh

2ðp� 2Þ � k þ m
6

� �
/xxyy þ

h4

120
a/xxxxx þ b/yyyyy

� �
þ � � � þHOT:

ð4:34Þ
5. Dispersion and Fourier (or von Neumann stability) analyses

Theoretical study of the proposed DRP scheme detailed in Sections 2 and 3 starts with adding Eqs. (3.11)

and (3.12) together and then employing the definitions given in (3.9) and (3.10) to derive the equivalent one-

step implicit equation
/nþ1 ¼ 1

2
/nþ1

6 þ /nþ5
6

� �
þ Dt
12

F nþ1 � F n þ 3F nþ1
6 þ 3F nþ5

6

� �
: ð5:1Þ
Given /(x,y, t = 0) = exp[i(ax + by)], Eq. (3.1) with f = 0 can be easily shown to have the following exact

solution:
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/ðx; y; tÞ ¼ exp � k a2 þ b2
� �

þ c
� �

t
 �

exp i a x� atð Þ þ b y � btð Þ½ �f g; ð5:2Þ
where (a,b) denotes the wavenumber vector. The discrete equation for (5.1) is expressed as follows by virtue

of the definition given in F(/) and the discretizations described in Section 4 for /x, /y and $2/
Xþ1

i;j¼�1

Ak/
nþ1ðxþ ih; y þ jhÞ ¼ 6 /nþ1

6 þ /nþ5
6

� �
þ
Xþ1

i;j¼�1

Bk/
nðxþ ih; y þ jhÞ � 3Bk/

nþ1
6ðxþ ih; y þ jhÞ

h

� 3Bk/
nþ5

6ðxþ ih; y þ jhÞ
i
; k ¼ 1; 2; . . . ; 9; ð5:3Þ
where ðmx; myÞ ¼ ðaDth ; bDth Þ and
Ai ¼ aimx þ bimy
� �

� 1

2

mx
Pex

þ my
Pey

� �
� mþ mxRx þ myRy þ 12

56
; i ¼ 1; 3; 7; 9; ð5:4Þ

Aj ¼ ajmx þ bjmy
� �

� 2
mx
Pex

þ my
Pey

� �
� 4mþ mxRx þ myRy þ 12

28
; j ¼ 2; 4; 6; 8; ð5:5Þ

A5 ¼ a5mx þ b5my
� �

þ 10
mx
Pex

þ my
Pey

� �
þ 20mþ 2ðmxRx þ myRy þ 12Þ

7
; ð5:6Þ

Bi ¼ aimx þ bimy
� �

� 1

2

mx
Pex

þ my
Pey

� �
þ mxRx þ myRy

56
; i ¼ 1; 3; 7; 9; ð5:7Þ

Bj ¼ ajmx þ bjmy
� �

� 2
mx
Pex

þ my
Pey

� �
þ mxRx þ myRy

28
; j ¼ 2; 4; 6; 8; ð5:8Þ

B5 ¼ a5mx þ b5my
� �

þ 10
mx
Pex

þ my
Pey

� �
þ 2ðmxRx þ myRyÞ

7
: ð5:9Þ
In the above, m is expressed as
m ¼
mx
2
sinh k1

�
cosh k2

� þ my
2
sinh k3

�
cosh k4

�

6 cosh k1
�
cosh k2

� þ cosh k3
�
cosh k4

� � 2
� �� 1

2

mx
Pex

þ my
Pey

� �

þ
mxRxþmyRyþ12

14
cosh k1

�
cosh k2

� þ cosh k3
�
cosh k4

� þ 5
� �

6 cosh k1
�
cosh k2

� þ cosh k3
�
cosh k4

� � 2
� � ; ð5:10Þ
where ðPex; PeyÞ ¼ ðahk ; bhk Þ; ðRx;RyÞ ¼ ðcha ; chb Þ; ðk1
�
; k2

�Þ ¼ ðPex
2
;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðPex

2
Þ2 þ PexRx

q
Þ and ðk3

�
; k4

�Þ ¼ ðPey
2
;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðPey
2
Þ2 þ PeyRy

q
Þ. For completeness, we plot in Fig. 4 the contour values of m

k
against (mx,my) at Rx = Ry = 0,

Pex = Pey = 2, 10, 103, 104.

Due to the inevitable amplitude and phase errors, the exact solution for the proposed finite difference

equation (3.1) is assumed to take the following form:
~/ðx; y; tÞ ¼ exp � ka2 þ c
2

� � kr
c21

þ kb2 þ c
2

� � kr
c22

� �
t

� �
exp i a x� a

ki
c1
t

� �
þ b y � b

ki
c2
t

� �� �� �
: ð5:11Þ
As already defined in Section 4.1, (c1,c2) = (ah,bh). Dispersion analysis of the discrete equation

for (3.1) involves substituting /i,j, /i ± 1,j and /i,j ± 1, which are obtained from Eq. (5.11), into Eq.

(3.1). After some algebra, kr and ki accounting for the respective amplitude and phase errors are de-
rived as



Fig. 4. Plots of the ratio m
k against the Courant numbers (mx,my) at Rx = Ry = 0 and (a) Pex = Pey = 2; (b) Pex = Pey = 10;

(c) Pex = Pey = 102; (d) Pex = Pey = 103.

R.K. Lin, T.W.H. Sheu / Journal of Computational Physics 208 (2005) 493–526 505



Fig. 4 (continued)

506 R.K. Lin, T.W.H. Sheu / Journal of Computational Physics 208 (2005) 493–526



R.K. Lin, T.W.H. Sheu / Journal of Computational Physics 208 (2005) 493–526 507
kr ¼
�p

mx
Pex

þ mx
Pex

þ 1
2

mxRxþ12

c2
1

þ myRyþ12

c2
2

� � ; ð5:12Þ

ki ¼
�q

mx þ my
; ð5:13Þ
where
p ¼ ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 2 þ Y 2

pn o
; ð5:14Þ

q ¼ tan�1 Y
X

� �
: ð5:15Þ
In the above, X and Y are derived as
X ¼ a � S1 � b � S2

a2 þ b
2

; ð5:16Þ

Y ¼ b � S1 þ a � S2

a2 þ b
2

; ð5:17Þ
where
a ¼ A1 þ A9

� �
cosðc1 þ c2Þ þ A2 þ A8

� �
cos c2 þ A3 þ A7

� �
cosðc1 � c2Þ þ A4 þ A6

� �
cos c1 þ A5;

ð5:18Þ

b ¼ A1 � A9

� �
sinðc1 þ c2Þ þ A2 � A8

� �
sin c2 þ A7 � A3

� �
sinðc1 � c2Þ þ A4 � A6

� �
sin c1; ð5:19Þ

S1 ¼ 6� 3‘1ð Þ e
p
6 cos

q
6
þ e

5p
6 cos

5q
6

� �
þ ‘1 þ 3‘2 e

p
6 sin

q
6
þ e

5p
6 sin

5q
6

� �
; ð5:20Þ

S2 ¼ 6� 3‘1ð Þ e
p
6 sin

q
6
þ e

5p
6 sin

5q
6

� �
� ‘2 þ 3‘2 e

p
6 cos

q
6
þ e

5p
6 cos

5q
6

� �
: ð5:21Þ
Coefficients ‘1 and ‘2 shown in (5.20) and (5.21) are detailed in Appendix A.

We plot kr and ki against (mx,my) and (Pex,Pey) (fixed (Rx,Ry)) in Fig. 5. It is seen that ki agrees perfectly

with (c1,c2) in the small wavenumber range. The larger the wavenumber, the less satisfactory is the pre-

dicted phase. In contrast to ki, the amplitude error is exhibited even in the small wavenumber range. In
Fig. 6, we plot the ratio of the numerical group velocity Cgð� 1

2
ðdx
dc1

þ dx
dc2
ÞÞ with respect to the analytical wave

velocity, where xð� aaki
c1
þ bbki

c2
Þ is obtained from the dispersion equation. In the shaded region (or phase-

leading region), the value of
Cg

Ce
is larger than 1. It is found that Cg always has a value smaller than the ana-

lytical propagation speed in the larger range of (c1,c2). The proposed scheme of the fourth-order temporal

accuracy is, thus, phase-lagging or phase-leading, depending on the values of (c1,c2).
We also conduct Fourier (or von Neumann) stability analysis [13]. Let vx ¼ vy ¼ 2pm

2L h
ðm ¼ 0; 1; 2; . . . ;MÞ, h be the grid size, and 2L be the period of fundamental frequency (m = 1), the ampli-

fication factor Gð� /nþ1
i;j

/n
i;j
Þ is derived as
G ¼ ep cos qþ i sin qð Þ: ð5:22Þ

As seen in Fig. 7(a), |G| is always smaller than one. The proposed scheme is, thus, unconditionally stable.

The amplification factor shown in (5.22) can be rewritten in its exponential form as G = |G| eih, where h is

the phase angle



Fig. 5. Plots of kr and ki against ðc21; c22Þ and (c1,c2), respectively, for the first-order and fourth-order temporal schemes (summarized in

Table 1) at Pex = Pey = 104, Rx = Ry = 0 and mx = my = 0.1 (a) kr; (b) ki.
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Fig. 6. Plots of the group velocity ratio
Cg

Ce
against the modified wave-number (c1,c2) at Pex = Pey = 104, Rx = Ry = 0 and mx = my = 0.1

for two temporal schemes (summarized in Table 1) of different accuracy orders. The shaded region denotes the phase-leading region.
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h ¼ tan�1 ImðGÞ
ReðGÞ










: ð5:23Þ
The exact phase angle he can be derived as �(vxmx + vymy). Therefore, the relative phase shift error over an
arbitrary time interval can be defined as
h
he

¼
tan�1 ImðGÞ

ReðGÞ




 



� vxmx þ vymy
� � : ð5:24Þ
We plot h
he
against (vx,vy), (mx,my), (Pex,Pey), and (Rx,Ry) in Fig. 7(b).

Finally, we will demonstrate that the proposed implicit DRP finite difference scheme can conditionally

resolve sharp solution profile. Under the circumstances that aij 6 0 with i 6¼ j and jaiij P
P

jaijjði 6 jÞ,
the banded matrix A shown in Eq. (4.29) or (5.3) is, by definition, irreducible diagonally dominant.

The matrix of this type is called an M-matrix. Monotone solutions can be computed from the M-matrix
equation due to the inherent property A�1 > 0. By following the M-matrix theory [14], we plot in Fig. 8

the M-matrix regions. It is seen that the shaded monotone region changes very litter with the Courant

number as the Peclet number becomes larger than 10. The proposed conditionally monotonic scheme

can, as a result, resolve any possible sharp gradient as mx and my become smaller than 0.23. For the



Fig. 7. Plots of |G| and h
he
against (c1,c2) at Pex = Pey = 104, Rx = Ry = 0 and mx = my = 0.1 for two temporal schemes summarized in

Table 1. (a) Amplification factor |G|; (b) phase angle ratio h
he
.
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Fig. 8. In the shaded regions, the matrix equations are classified as being monotonic at Rx = Ry = 0. (a) Pex = Pey = 2;

(b) Pex = Pey = 10; (c) Pex = Pey = 103; (d) Pex = Pey = 104.

Table 1

Comparison of the first- and fourth-order temporal schemes Aij/
nþ1
ij � F

nþ1

ij ¼ Bij

First-order Fourth-order Equation no.

Aij 1 12 (5.1)

Bij /n
ij 6ð/nþ1

6

ij þ /
nþ5

6

ij Þ � F
n
ij þ 3ðF nþ1

6

ij þ F
nþ5

6

ij Þ (5.1)

kr
�p

mx
Pex

þ my
Pey

þ1
2
ðRxmxþ1

c2
1

þRy myþ1

c2
2

Þ
�p

mx
Pex

þ my
Pey

þ1
2
ðRx mxþ12

c2
1

þRy myþ12

c2
2

Þ
(5.12)

ki
�q

mxþmy
�q

mxþmy
(5.13)

p lnf 1

a cos qþb sin q
g lnf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 2 þ Y 2

p
g (5.14)

q tan�1fbag tan�1fYXg (5.15)

X 0 a�S1�b�S2
a2þb

2 (5.16)

Y 0 b�S1þa�S2
a2þb

2 (5.17)

R.K. Lin, T.W.H. Sheu / Journal of Computational Physics 208 (2005) 493–526 511



Fig. 10. Schematic of the advection–diffusion problem considered in Section 6.2.

Fig. 9. The simulated solutions for the two problems considered in Section 6.1: (a) the Gaussian solution profile; (b) the hyperbolic

tangent solution profile; (c) the rate of convergence for the problem given in (6.1); (d) the rate of convergence for the problem given in

(6.2).
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Fig. 11. The simulated solutions for / and their sectional profiles at x ¼ 1
5
; 2
5
; 3
5
; 4
5
. (a) and (b) k = 10�1; (c) and (d) k = 10�3.

Fig. 12. Schematic of the Smith–Hutton problem considered in Section 6.3.
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comparison of the currently proposed fourth-order temporal scheme with the conventional first-order

temporal scheme used in the results, we summarized two schemes in expressions as well as in scheme nat-

ure in Table 1 for completeness.
Fig. 13. The simulated / at different k for the problem considered in Section 6.3 using the monotone DRP finite-difference model.

(a) and (b) k = 10�8; (c) and (d) k = 10�10; (e) and (f) k = 10�12.
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6. Numerical studies

6.1. Gaussian and hyperbolic tangent problem

The model equation (4.26) in [0,1] · [0,1] is solved at the given values of (a,b) = (1,0), k = 10�10 and
c = 0. Two different source terms f are specified to render their respective exact solutions given below [15]:
Fig. 14

differen

Fig. 15
/ðx; yÞ ¼ exp �ðx� 0:5Þ2

0:2
� 3ðy � 0:5Þ2

0:2

 !
; ð6:1Þ

/ðx; yÞ ¼ 1

2
1� tanh

x� 0:5

0:05

� �� �
: ð6:2Þ
. The simulated / at y = 0 against x (0 6 x 6 1). (a) Solutions obtained at different k; (b) solutions obtained at k = 10�12 and

t mesh resolutions.

. (a) Schematic of the solid-body rotation test problem; (b) three-dimensional illustration of the prescribed initial scalar field.
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Simulations were carried out at Dx ¼ Dy ¼ 1
10
; 1
20
; 1
40
; 1
80

and 1
160

to obtain the finite difference errors cast in L2-

norm form. This is followed by plotting in Fig. 9 the value of logðerr1err2
Þ against logðh1h2Þ, where err1 and err2

error norms are obtained at consecutively refined mesh sizes h1 and h2, to obtain the scheme�s spatial rate of
convergence. Good agreement with the exact solutions and the rapid convergences are both demonstrated

in the two simulated solutions.

6.2. Skew convection–diffusion problem

The problem schematic in Fig. 10 has been a good scenario for validating the upwinding method [16].

The cavity of unit length is divided into two by the line, which passes through (0,0) with a slope of
Fig. 16. The simulated solution profiles for the problem considered in Section 6.4.
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tan�1ðb=aÞ. The unit velocity vector (a,b) parallel to the dividing line is considered in a 40 · 40 uniformly

discretized mesh system for fluids with two different diffusivities k = 10�1 and 10�3. Subject to the boundary

condition schematic in Fig. 10 for the working variable, a shear layer is seen in the vicinity of the dividing

line. As Fig. 11 shows, non-oscillatory solutions are seen to be well predicted in regions near and away from

the dividing line.
Fig. 17. The simulated CPU times and L2-error norms for the problem considered in Section 6.4. (a) The CPU times; (b) the L2-error

norms.

Fig. 18. The simulated rates of convergence for the problem considered in Section 6.4. (a) The temporal rates of convergence; (b) the

spatial rates of convergence.
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6.3. Convection–diffusion problem of Smith and Hutton

The problem of Smith and Hutton [17] is investigated at a = 2y(1 � x2) and b = �2x(1 � y2). Along the

inlet schematic in Fig. 12, the working variable / is prescribed as follows:
/ð�1 6 x 6 0; y ¼ 0Þ ¼ 1þ tanh 10 2xþ 1ð Þð Þ: ð6:3Þ

Along x = �1, y = 1 and x = 1, we prescribe / = 1 � tanh(10) while at the outlet (0 6 x 6 1,y = 0) we spec-

ify a zero gradient condition for /. For the case with Dx = Dy = 10�2, the DRP solutions are obtained at

k = 10�12, 10�10, 10�8, 10�6, 10�4 and 10�2. As Fig. 13 reveals, the efficacy of the proposed finite difference

scheme is clearly demonstrated. We summarize the effects of Peclet number and grid size in Fig. 14 based on

the simulated solutions at the exit boundary.

6.4. Rotation of a cone-shaped scalar field

We will then consider the transient problem, schematic in Fig. 15, with the following initial condition:
/ðx; y; t ¼ 0Þ ¼ exp �ðx� xcÞ2 þ ðy � ycÞ
2

2M2

" #
: ð6:4Þ
In �0.5 6 x,y 6 0.5, the model equation investigated at (a,b) = (�4y, 4x) is amenable to the exact solution

given by
/ðx; y; tÞ ¼ 2M2

2M2 þ 4Dt
exp �ðx� xcÞ2 þ ðy � ycÞ

2

2M2 þ 4Dt

" #
; ð6:5Þ
where ðx; yÞ ¼ ðx cos 4t þ y sin 4t;�x sin 4t þ y cos 4tÞ, M2 = 2 · 10�3, k = D = 10�4 and (xc,yc) = (�0.25,0).

Solutions computed at Dt(=10�3), Dx = Dy(=10�2) are plotted in Fig. 16. It is clearly seen from the time-

evolving contours at t ¼ p
8
; p
4
; p
2
; p that solution symmetry can be well retained irrespective of the specified
Fig. 19. (a) Initial solution considered for the mixing of two fluid flows of different temperatures; (b) exact solution.
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rotating velocity field. As before, calculations were performed to obtain the L2-error norms at uniform grid

sizes and time increments.

For the sake of assessing two temporal schemes (tabulated in Table 1), we plot in Fig. 17 the needed

CPU times and L2-error norms against different mesh sizes. As seen from these simulated results, the in-

crease in prediction accuracy with a factor of 8 for the fourth-order accurate scheme is accompanied with
the increased CPU time with a factor of 16 (�24). The spatial and temporal rates of convergence for the

solution /(t = p,x,y) computed at Dt = 10�3 and Dx = Dy = 10�2 are also plotted in Fig. 18.

6.5. Mixing of hot and cold fronts

We also consider the mixing of cold and warm fluids in �4 6 x, y 6 4. Initially, the temperature /(x,y, t)
schematic in Fig. 19(a) is given by
Fig. 20. The simulated / for the mixing of hot and cold fluids considered in Section 6.5.



Fig. 21

spatial

Fig

520 R.K. Lin, T.W.H. Sheu / Journal of Computational Physics 208 (2005) 493–526
/ðx; y; t ¼ 0Þ ¼ � tanh
y
2

� �
: ð6:6Þ
The flow under investigation is centered at the origin ð�T y
r ; T

x
rÞ, where T � sech2ðrÞ tanhðrÞ

max½sech2ðrÞ tanhðrÞ�

� �
denotes the

ratio of the tangential velocity at a location that is distant from (0,0) with a length of r. For the sake of

comparison, we plot in Fig. 19(b) the exact solution at the limiting case (k = 0) [18]:
/ðx; y; tÞ ¼ � tanh
y
2
cosxt � x

2
sinxt

h i
: ð6:7Þ
In the above, x ¼ T
r denotes the rotation frequency.
. The simulated rates of convergence for the problem considered in Section 6.5. (a) The temporal rates of convergence; (b) the

rates of convergence.

. 22. The simulated rates of convergence for the Navier–Stokes problem with the exact solutions given in Eqs. (6.8)–(6.10).
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Fig. 20 shows the solution /(x,y, t = 5.0) obtained at c = 0, k = 0 and Dx = Dy = 10�2. In the

rotating velocity field, the simulated temperature is seen to take a spiral form and change sharply near

the interface of warm and cold fluids. The spatial and temporal rates of convergence for the solu-

tion computed at t = 5 are also plotted in Fig. 21 under the conditions of Dt = 10�3 and

Dx = Dy = 10�2.
Fig. 23. The simulated pressure contours and distributions for the unsteady problem considered in Section 6.6.
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6.6. Validation of the proposed Navier–Stokes method

Encouraged by the success of solving the scalar transport equation using the proposed scheme, the tran-

sient Navier–Stokes equations are solved in a square (0 6 x, y 6 1) for the problem amenable to the follow-

ing exact solution:
Fig. 24

(d) Re
. Comparison of the simulated and Ghia�s velocity profiles for u(x, 0.5) and v(0.5,y). (a) Re = 400; (b) Re = 1000; (c) Re = 3200

= 5000.
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u ¼ 1þ 2 cos 2pðx� tÞ½ � sin 2pðy � tÞ½ � exp �8p2

Re
t

� �
; ð6:8Þ

v ¼ 1� 2 sin 2pðx� tÞ½ � cos 2pðy � tÞ½ � exp �8p2

Re
t

� �
; ð6:9Þ

p ¼ c1 � cos 4pðx� tÞ½ � þ cos 4pðy � tÞ½ �f g exp �16p2

Re
t

� �
: ð6:10Þ
In Fig. 22, we plot the computed rates of convergence for u and p according to
C ¼ logðE2=E1Þ
logðh2=h1Þ

; ð6:11Þ
where E is the error measured in its discrete L2-norm form
E ¼
XN
i¼1

/ij � Uij

� �2
DxiDyj

" #1=2
: ð6:12Þ
In the above, /i,j = /(xi,yj) denotes the finite difference solution at (i, j) and Uij is the corresponding exact

solution in 0 6 x,y 6 1. In Fig. 23, we plot the simulated contours for u and p at t = p, Re = 104,

Dx ¼ Dy ¼ 1
64

and Dt = 10�3. Computations are also performed at four mesh sizes h ¼ 1
2n
, where

n = 4,5,6,7 at Re = 104 and Dt = 10�3 for the sake of completeness. In view of the L2-norm errors plotted

in Fig. 22, the proposed method is validated.

6.7. Lid-driven cavity flow problem

With L as the characteristic length, U the characteristic velocity, the Reynolds number Re(”UL/l) for
the lid-driven fluid flow with viscosity l is 5000. We continuously refine the mesh in the square cavity and

plot the grid-independent velocity profiles u(0.5,y) and v(x, 0.5) in Fig. 24. Since the agreement between
Fig. 25. Schematic of the eddy centers in the lid-driven cavity.



Table 2

The simulated four eddy centers (primary eddy P, corner eddies BL and BR and the eddy T near the cavity roof) for the cases with

Re = 400, 1000, 3200 and 5000

Symbol Authors Re

400 1000 3200 5000

Primary Present 0.5579, 0.6112 0.5331, 0.5745 0.5235, 0.5357 0.5207, 0.5305

Ghia [19] 0.5547, 0.6055 0.5313, 0.5625 0.5165, 0.5469 0.5117, 0.5352

First Present – – 0.0561, 0.8951 0.0622, 0.8986

T Ghia [19] – – 0.0547, 0.8984 0.0625, 0.9102

BL Present 0.0548, 0.0438 0.0821, 0.0754 0.0835, 0.1097 0.0747, 0.1272

Ghia [19] 0.0508, 0.0469 0.0859, 0.0781 0.0859, 0.1094 0.0703, 0.1367

BR Present 0.8807, 0.1261 0.8542, 0.1187 0.9051, 0.0650 0.8048, 0.0726

Ghia [19] 0.8906, 0.1250 0.8594, 0.1094 0.8125, 0.0859 0.8086, 0.0742

Second Present 0.0036, 0.0037 – 0.0075, 0.0076 0.0107, 0.0076

BL Ghia [19] 0.0039, 0.0039 – 0.0078, 0.0078 0.0117, 0.0078

BR Present 0.9897, 0.0076 0.9897, 0.0076 0.9812, 0.0076 0.9795, 0.0189

Ghia [19] 0.9922, 0.0078 0.9922, 0.0078 0.9844, 0.0078 0.9805, 0.0195

Mesh points Present 81 101 101 129

Ghia [19] 257 129 129 257
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the simulated and benchmark solutions of Ghia et al. [19] is extremely good, the applicability of employ-

ing the proposed scheme to simulate the high Reynolds number flow is confirmed. For the sake of com-

pleteness, the centers of three eddies at T, BL and BR schematic in Fig. 25 are summarized in Table 2 for

Re = 400, 1000, 3200 and 5000. Good agreement with the comparison data [19] is also clearly revealed.
7. Concluding remarks

The present study employs the scheme of fourth-order temporal accuracy to solve the unsteady convec-

tion–diffusion transport equation. Employing Pade�s approximation results in two explicit and two implicit

spatial differential equations. For improving the convective stability, the two-dimensional dispersion-rela-

tion-preserving finite difference scheme is rigorously developed. For increasing the solution accuracy, a

nodally exact artificial viscosity is introduced into the two-dimensional formulation. Dispersive and dissi-

pative natures of the developed model have been extensively studied. Conditions that can result in the

monotonic matrix equation for the investigated unsteady convection–diffusion equation are also derived.

To validate the proposed scheme, we have considered problems amenable to exact solutions. The computed
L2-error norms and their resulting rates of convergence demonstrate the advantage of using the proposed

scheme to solve for problems having smooth as well as sharply varying solution profiles. Fluid flows in a

lid-driven cavity are also studied at different Reynolds numbers and the computed DRP solutions are

shown to have good agreement with the benchmark solutions.
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Appendix A

Coefficients ‘1 and ‘2 shown in (5.20) and (5.21) are expressed below in terms of Bi ði ¼ 1; 2; . . . ; 9Þ:

‘1 ¼ B1 þ B9

� �
cosðc1 þ c2Þ þ B2 þ B8

� �
cos c2 þ B3 þ B7

� �
cosðc1 � c2Þ þ B4 þ B6

� �
cos c1 þ B5;

ðA:1Þ

‘2 ¼ B1 � B9

� �
sinðc1 þ c2Þ þ B2 � B8

� �
sin c2 þ B7 � B3

� �
sinðc1 � c2Þ þ B4 � B6

� �
sin c1: ðA:2Þ
In the above, the coefficients Bi ði ¼ 1; 2; . . . ; 9Þ are
Bi ¼ aimx þ bimy
� �

� 1

2

mx
Pex

þ my
Pey

� �
þ mxRx þ myRy

56
; i ¼ 1; 3; 7; 9; ðA:3Þ

Bj ¼ ajmx þ bjmy
� �

� 2
mx
Pex

þ my
Pey

� �
þ mxRx þ myRy

28
; j ¼ 2; 4; 6; 8; ðA:4Þ

B5 ¼ a5mx þ b5my
� �

þ 10
mx
Pex

þ my
Pey

� �
þ 2ðmxRx þ myRyÞ

7
; ðA:5Þ
where ðmx; myÞ ¼ ðaDth ; bDth Þ; ðPex; PeyÞ ¼ ðahk ; bhk Þ and ðRx;RyÞ ¼ ðcha ; chb Þ.
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