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The present study aims to develop an effective finite-difference model for solving in-

compressible Navier–Stokes equations. For the sake of programming simplicity, dis-

cretization of equations is made on nonstaggered grids without oscillatory solutions arising

from the decoupling of the velocity and pressure fields. For the sake of computational ef-

ficiency, both segregated and alternating direction implicit (ADI) solution algorithms are

employed to reduce the matrix size and, in turn, the CPU time. For the sake of numerical

accuracy, a convection-diffusion-reaction finite-difference scheme is employed to provide

nodally exact solutions in each ADI solution step. The convective instability problem is thus

eliminated, since each convective term is modeled analytically even in multidimensional

cases. The validity of the proposed numerical model is rigorously justified by solving one-

and two-dimensional problems, which are amenable to analytical solutions. The simulated

solutions for the scalar prototype equation agree well with the exact solutions and provide a

very high spatial rate of convergence. The same is true for the simulated results of the

Navier–Stokes equations.

1. INTRODUCTION

The numerical simulation of incompressible viscous flows remains an area of
continuous importance owing to its wide range of industrial applications. A direct
use of centered differences to discretize the advective terms in the flow equation is
known to yield oscillations primarily in the velocity field. To eliminate this pro-
blem, one can use advective discretization schemes which possess the upwinding
characteristics [1]. As the spatial dimension exceeds one, numerical approximation
of these advective terms can, however, give rise to problems with false diffusion
error [2]. Therefore, it is essential that the flux discretization scheme employed in
this article dispense with this type of error without sacrificing scheme stability. To
achieve this goal, splitting of equations is done so that solutions can be more
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efficiently and accurately obtained using the analytical one-dimensional scheme
described in Section 4.1. Another concurrent benefit is the saving of disk storage
and computing time.

When simulating incompressible Navier–Stokes equations in primitive vari-
ables, checkerboard oscillations occur on a nonstaggered (collocated) grid if central
difference is used to approximate the pressure gradient term in the momentum
equation and the cell-face velocity in the continuity equation [3]. The oscillatory
solution is a manifesting of two separate pressure solutions at alternating nodes.
Such a node-to-node oscillatory solution pattern arises from decoupling of the
velocity and pressure fields. This provided motivation for discretizing equations on a
staggered grid. With the staggered mesh, it permits coupling of the u, v, and p
solutions at adjacent grid points and, in turn, prevents the appearance of oscillatory
pressure solutions [4].

In the literature, there exist several approaches which can be used to resolve
the checkerboarding problem without resorting to staggered grids. A representative
example was given by Rhie and Chow [5], who interpolated the cell-face velocities
by virtue of the momentum interpolation and approximated pressure gradient
terms using the central differencing scheme. The enhanced discrete stability is
attributed to the fourth-order dissipation added into the pressure field [6]. Because
of its wider applicability, there are some variants of this original momentum
interpolation method (MIM) (see, for example, [7–14]). The second class of non-
staggered approaches introduces the weighted upwinding interpolation to
approximate the pressure gradient term. This idea was applied with success to a
variety of flow problems [15, 16]. The consistent physical interpolation is the third
class of methods developed to circumvent checkerboard oscillations in the pressure
field. A significant contribution in this analysis is due to Schneider and Raw [17].
With some modifications, this method has been extended by Deng et al. [18, 19]. In
the literature, there are several assessment studies of the collocated and staggered-
grid approaches. Among these studies are the works of Peric et al. [20] and
Melaaen [21].

The need to suppress oscillations of different origins (velocity and pressure)
without deteriorating prediction accuracy motivated the present study. In Section 2,
the working equations in primitive variables are described along with implementa-
tion of boundary conditions for the pressure Poisson equation. This is followed by
the presentation of the rationale for advocating the segregated solution algorithm on
nonstaggered grids. In Section 4, the underlying convection-diffusion-reaction
(CDR) alternating direction implicit (ADI) model is presented to solve the solution

NOMENCLATURE

erfðmÞ error function

f boundary force per unit volume

k diffusion coefficient defined in Eq. (7)

km wave-number defined in Eq. (19)

L characteristic length

n unit outward normal vector

Pe Peclet number defined in Eqs. (26–28)

Re Reynolds number (� r u1L=m)
ulid characteristic velocity

u1 reference velocity

a modified wave-number defined in Eq.

(28)

n Courant number defined in Eq. (24)

r fluid density
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of the transient momentum equations. In Section 5, validation of the model is
accomplished by solving three problems, which are all amenable to analytical
solutions. Finally, some conclusions are drawn in Section 6.

2. WORKING EQUATIONS

In this study we will restrict our attention to viscous incompressible flows,
which are governed by the following continuity equation and the Navier–Stokes
equations:

H � u ¼ 0 ð1Þ

qu
qt

þ u � Hu ¼ �Hpþ 1

Re
H2uþ f ð2Þ

The primitive variables are sought subject to the initially divergence-free velocity
field and the boundary velocity. All lengths are scaled by L, the velocity components
by u1, the time by L=u1, and the pressure by ru21, where r denotes the fluid density.
The Reynolds number Reð� ru1L=m) appears as a result of the above normal-
ization.

Momentum conservation equations can be solved along with the divergence-
free constraint equation (continuity equation), thereby unconditionally ensuring
fluid incompressibility. Despite the widespread use of the coupled solution algorithm
to solve the incompressible flow equations, the eigenvalues of the resulting matrix
equation may be poorly distributed. The solutions are thus very difficult to obtain
using a computationally less expensive iterative solver [22]. Besides this dis-
advantage, the amount of peripheral storage required for the global system of matrix
equations can be excessive, typically exceeding the available computer power and
disk space. This drawback may discourage use of the coupled formulation in favor of
other, computationally less demanding methods. The well-known pressure Poisson
equation (PPE) approach [23] was developed to eliminate pressure from the
momentum equations by applying a curl operator. In this manner, the following
Poisson equation for the pressure is derived in lieu of the divergence-free continuity
equation (1):

H2p ¼ H � qu
qt

þ 1

Re
H2u� u � Huþ f

� �
ð3Þ

The above approach is not without complication, since a theoretically rigorous
integral boundary condition for p must be used [24]. This is a trade-off between the
benefit of gaining computational efficiency and the drawback of having to solve for
the pressure using Eq. (3), subject to a computationally more challenging integral
pressure boundary condition. For this reason, we adopt in this study the following
Neumann-type pressure boundary condition [25]:

qp
qn

¼ � qu
qt

þ 1

Re
H2u� u � Huþ f

� �
� n ð4Þ

In the above, n denotes the unit outward normal vector to the domain boundary.
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3. IMPLEMENTATION OF INCOMPRESSIBLE NAVIER–STOKES
EQUATIONS ON NONSTAGGERED GRIDS

While staggered-grid approaches have been used successfully to suppress
oscillations arising from even–odd coupling, using them increases the coding com-
plexity and consumes more computational time. This provided motivation for
discretizing the partial differential equations over a domain in which both velocities
and pressure are stored at the same point. With the nonstaggered mesh, special care
must be taken with Hp; otherwise, spurious oscillations in the pressure field will be
inevitable.

The basic idea behind avoiding even–odd decoupling solutions is to employ the
nodal value of pj when approximating Hp at an interior node j. Rather than
attempting to approximate px at node j explicitly, the value of pxjj is obtained
implicitly along with two adjacent values pxjj�1. Define Fj as

Fj ¼ h pxjj ð5Þ

where h denotes the uniform mesh size. The method adopted in the present study for
solving the above defined nodal value of F is the following implicit equation:

aFjþ1 þ bFj þ gFj�1 ¼ a pjþ2 � pjþ1

� �
þ b pjþ1 � pj

� �
þ c pj � pj�1

� �
þ d pj�1 � pj�2

� �
ð6Þ

To determine the seven undetermined coefficients, we start by expanding Fj�1 in
Taylor series with respect to Fj, and pj�1 and pj�2 with respect to pj. Substituting
these expansions into Eq. (6), and using Eq. (5), a simultaneous set of algebraic
equations can be obtained for uniquely determining a, b, g, a, b, c, and d. On
physical grounds, it is legitimate to set a ¼ g, since p is elliptic in nature, as revealed
by the Poisson equation given in (3). Having set a ¼ g, other coefficients can be
determined as a ¼ 1

5, b ¼ 3
5, a ¼ 1

60, b ¼ 29
60, c ¼ 29

60, and d ¼ 1
60. As for the derivation of

a working equation for F at a node immediately adjacent to the right boundary
point (for example), we employ Eq. (6) at the limiting condition of a ¼ a ¼ b ¼ 0.
With the expression for boundary F via Eq. (6), interior values of Fj (2 � j � jmax � 1)
can be obtained with less computational expense from the banded tridiagonal
matrix equations.

4. NUMERICAL MODEL

The advection-diffusion schemes have been developed to discretize the one-
dimensional transport equation containing convective and diffusive terms. However,
it is rather difficult, if not impossible, to develop a truly multidimensional convec-
tion-diffusion flux discretization scheme which is not susceptible to false diffusion
errors. For this reason, we will resort to the idea of operator splitting, so that cal-
culation can be carried out alternatingly in each spatial direction. Within this ana-
lysis framework, many well-established one-dimensional flux discretization schemes
can be applied directly. Besides reducing false diffusion errors, another benefit of
applying the ADI scheme is a substantial save of CPU time and disk space.
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The ADI solution algorithm we exploit is due to the work of Peaceman and
Rachford [26]. Take the following scalar transport equation, which involves constant
velocity components u, v, the reaction coefficient c, and constant diffusion coefficient
k, as an illustrative example,

Ft þ uFx þ vFy � kðFxx þ FyyÞ þ cF ¼ 0 ð7Þ

The use of the ADI solution algorithm permits us to calculate F via the following
two steps.

1. Predictor step:

F� þ Dt
2
ð uF�

x � kF�
xx þ cF� Þ ¼ Fn � Dt

2
ð vFn

y � kFn
yy Þ ð8Þ

2. Corrector step:

Fnþ1 þ Dt
2
ð vFnþ1

y � kFnþ1
yy þ cFnþ1 Þ ¼ F� � Dt

2
ð uF�

x � kF�
xx Þ ð9Þ

Define (�uu, �vv) ¼ (uDt=2, vDt=2), �kk ¼ kDt=2, and �cc ¼ 1þ cDt=2; the above two-step
ADI scheme can then be rewritten as

�uuF�
x � �kkF�

xx þ �ccF� ¼ f1 ð10aÞ

�vvFnþ1
y � �kkFnþ1

yy þ �ccFnþ1 ¼ f2 ð10bÞ

In the above, the two source terms f1 and f2 are as follows:

f1 ¼ fn � �vvFn
y þ �kkFn

yy ð11aÞ

f2 ¼ f� � �uuF�
x þ �kkF�

xx ð11bÞ

4.1. Flux Discretization Scheme

As Eqs. (10a) and (10b) show, to obtain an accurate solution for the convec-
tion-diffusion equation (7), it is necessary to develop an effective discretization
scheme for the following model equation:

uFx � kFxx þ cF ¼ f ð12Þ

With the aim of suppressing convective instability, we employ the general solution
for Eq. (12) as

F ¼ a1 e
l1x þ b1 el2x þ f

c
ð13Þ

where a1 and b1 are constants. Substituting Eq. (13) into Eq. (12), we can derive two
equations for l1 and l2. Their expressions are then obtained as follows:
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l1 ¼
uþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ 4ck

p

2k
ð14aÞ

l2 ¼
u�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ 4ck

p

2k
ð14bÞ

Derivation of the discrete equation at an interior node i is followed by use of
the following center-like expression:

u

2h
Fiþ1 � Fi�1ð Þ � m

h2
Fiþ1 � 2Fi þ Fi�1ð Þ þ c

6
Fi�1 þ 4Fi þ Fiþ1ð Þ ¼ f ð15aÞ

or

� u

2h
� m

h2
þ c

6

� �
Fi�1 þ 2

m

h2
þ c

3

� �
Fi þ

u

2h
� m

h2
þ c

6

� �
Fiþ1 ¼ f ð15bÞ

Then the exact solutions Fi ¼ a1 e
l1xi þ b1 e

l2xi þ f=c, Fiþ1 ¼ a1 e
l1h el1xiþ

b1 e
l2h el2xi þ f=c, and Fi�1 ¼ a1 e�l1h el1xi þ b1 e

�l2h el2xi þ f=c are substituted into
Eq. (15b) to derive m as follows [27]:

m ¼ h2
ðc=3Þ þ ðc=6Þ coshðl1Þ coshðl2Þ þ ðu=2hÞ sinhðl1Þ coshðl2Þ

coshðl1Þ coshðl2Þ � 1

" #
ð16Þ

where

l1 ¼
uh

2k
ð17aÞ

l2 ¼
uh

2k

� �2

þ ch2

k

" #1=2

ð17bÞ

To shed additional light on the dispersive nature of the above scheme, we
consider the model equation in the subsequent dispersion analysis:

Ft þ uFx � kFxx ¼ 0 ð18Þ

Given the initial condition of Fðx; t ¼ 0Þ ¼ exp ikmxð Þ, Eq. (18) can be easily shown
to have the exact solution given by

Fðx; tÞ ¼ exp �k k2m t
� �

exp ikm x� u tð Þ½ � ð19Þ

where km denotes the wave number. With h (� Dx) as the mesh size and Dt as the
time increment, the discrete equation for (18) is as follows:

AFnþ1
i�1 þ BFnþ1

i þ CFnþ1
iþ1 ¼ Fn

i ð20Þ

In the above, A, B, C are expressed as

A ¼ � �mm

h2
� n
2
þ 1

6
ð21Þ
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B ¼ 2
�mm

h2
þ 1

3

� �
ð22Þ

C ¼ � �mm

h2
þ n
2
þ 1

6
ð23Þ

where n ¼ uDt=h. Defining Pe ¼ uh=k, then �mm shown in Eqs. (21)–(23) can be
expressed as

�mm ¼ h2
ð1=3Þ þ ð1=6Þ coshð�aaÞ coshð�bbÞ þ ðn=2Þ sinhð�aaÞ coshð�bbÞ

coshð�aaÞ coshð�bbÞ � 1

� 	
ð24Þ

where

�aa ¼ Pe

2
ð25Þ

�bb ¼ Pe

2

� �2

þPe

n

" #1=2

ð26Þ

Owing to the possible amplitude and phase errors, the exact solution to the
finite-difference equation (20) is assumed to take the following form:

Fðx; tÞ ¼ exp �k k2m
k1
a2

t

� �
exp ikm x� u

k2
a
t

� �
 �
ð27Þ

where the modified wave number a is expressed as

a ¼ km h ð28Þ

Dispersion analysis is conducted by substituting Fj and Fj�1, which are obtained
from Eq. (27), into Eq. (20). After some algebra, k1 and k2, which stem from
amplitude and phase errors, are derived as

k1 ¼ �Pe

n
p ð29Þ

k2 ¼ � q

n
ð30Þ

where Pe ¼ uh=k, n ¼ uDt=h, and

q ¼ tan�1 ðA� CÞ sinðaÞ
ðAþ CÞ cosðaÞ þ B


 �
ð31Þ

p ¼ ln
1

cosðqÞ ðAþ CÞ cosðaÞ þ B½ � þ sinðqÞ ðA� CÞ sinðaÞ½ �

� 	
ð32Þ

Upon examination of Figures 1 and 2, which plot k1 and k2 against Pe and n,
we are led to know that k2 agrees perfectly with a in the range of low modified wave
number. The higher the modified wave number, the less satisfactory is the
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Figure 1. Plots of k1 against Pe and n: (a) n ¼ 0:01; (b) n ¼ 0:2; (c) n ¼ 0:5; (d) n ¼ 1:0.

Figure 2. Plots of k2 against Pe and n: (a) n ¼ 0:01; (b) n ¼ 0:2; (c) n ¼ 0:5; (d) n ¼ 1:0.
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performance of the scheme with regard to numerical phase. In contrast to k2,
amplitude error cannot be well resolved even in the low-wave-number range.

4.2. Multidimensional Solution Algorithm

Having developed the discretization scheme for the model Eq. (12), the cal-
culation of Fnþ1 from Eq. (7) proceeds as follows. Initially, the source term f1 is
calculated using the previous solutions computed at t ¼ nDt. This is followed by
calculating F� using the nodally exact one-dimensional CDR scheme. After
obtaining the value of F�, we can calculate f2 and then Fnþ1 using the same CDR
scheme employed in the predictor step.

For the sake of accuracy, all the source terms involved in the ADI scheme
should be calculated accurately. As an illustrative example, we consider ��aa�aa > 0 in the
approximation of ��aa�aa ux. The calculation of ux at j from Eq. (6) proceeds at a ¼ 0, since
the downwind value of u plays a less important role. Following the same metho-
dology as detailed in Section 3, we can theoretically determine the rest of introduced
coefficients and then the value of ��aa�aa uxjj.

Throughout this article, the second-derivative terms for the pressure and
velocities are approximated in a similar manner. Take Fxx at node j as an example;
the calculation of Fxxjj starts by assuming Fxxjj ¼ Sj=h

2. The value of Sj is then
calculated implicitly from

h2 �aaSjþ1 þ �bbSj þ �ggSj�1

� �
¼ �aa� Fjþ2 þ �bb

�
Fjþ1 þ �cc� Fj

þ �dd
�
Fj�1 þ �ee� Fj�2

ð33Þ

Expanding Sj�1 with respect to Sj and Fj�1, Fj�2 with respect to Fj in Taylor series,
followed by substituting them into the expression for Sj, we can obtain eight alge-
braic equations for �aa, �bb, �gg, �aa�, �bb�, �cc�, �dd

�
, and �ee�, from which we can get (�aa, �bb, �gg, �aa�, �bb�,

�cc�, �dd
�
, �ee�) ¼ (1, 11

2 , 1,
3
8, 6, � 51

4 , 6,
3
8).

Since the CDR scheme developed here is not applicable to the limiting case of
u ¼ 0 and c ¼ 0, discretization of Eq. (3) should be treated differently. One way to
approximate pxx and pyy accurately is to adopt Eq. (33), where �aa and �gg are assigned
to be zero a priori. Other free parameters can be similarly determined using the same
method described earlier. The resulting discrete equation for H2p at an interior point
(i, j) reads

H2pji; j ¼ piþ1; jþ1 þ pi�1; jþ1 þ piþ1; j�1 þ pi�1; j�1 � 20 pi; j

þ 4 piþ1; j þ pi�1; j þ pi; jþ1 þ pi; j�1

� � ð34Þ

The prediction quality for the PPE solution depends highly on the convective term
shown on the right-hand side of (4). Depending on the sign of u, the value of u ux at
the left boundary is obtained by assuming �aa ¼ �gg ¼ 0 in Eq. (33). The other
coefficients are determined as �bb ¼ 1, �aa� ¼ � 1

12,
�bb� ¼ 4

3, �cc
� ¼ � 5

2,
�dd
� ¼ 4

3 and �ee� ¼ � 1
12.
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5. NUMERICAL RESULTS

As is normally the case when a new scheme is presented for solving a differ-
ential equation, we will validate the scheme by considering the model equation
ut þ ux ¼ Duxx. Subject to the initial condition

uðx; t ¼ 0Þ ¼
1; 0:2 � x � 0:7

0; otherwise

(
ð35Þ

the analytical solution can be derived as

uðx; tÞ ¼ 1

2
erf

x� t� 0:2ffiffiffiffiffiffiffiffi
4Dt

p
� �

� erf
x� t� 0:7ffiffiffiffiffiffiffiffi

4Dt
p

� �
 �
ð36Þ

In the above, the error function erfðmÞ is defined as

erfðmÞ ¼ 2ffiffiffi
p

p
Z m

0

expð�s2Þds ð37Þ

Calculations are carried out at D ¼ 10�4 and Dx ¼ 1
10,

1
20,

1
40,

1
80, and

1
160. For

each case, the computed error, cast in its L2-error norm form, is plotted by way of
logðerr1=err2Þ against logðh1=h2Þ, where the errors err1 and err2 are obtained at
Dx ¼ h1 and h2. The computed rate of convergence shown in Figure 3a shows good

Figure 3. Computed results for the inhomogeneous time-dependent convection-diffusion equation con-

sidered in Section 5: (a) spatial rate of convergence plot; (b) temporal rates of convergence at different

times; (c) solution computed at Dx ¼ 1
160.
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agreement with its theoretical value shown in Figure 3b and fast convergence to the
analytical solution.

After verifying the proposed one-dimensional CDR scheme, we demonstrate
proper use of the ADI operator splitting technique by solving the following two-
dimensional steady convection-diffusion equation in 1 � x; y � 1:

Figure 4. Boundary conditions for the two-dimensional validation test problem.

Figure 5. Rate of convergence plots for the two-dimensional scalar transport equation: (a) u ¼ v ¼ 1; (b)

u ¼ v ¼ 10; (c) u ¼ v ¼ 100.
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Figure 6. Comparison of disk space and CPU time for the proposed nodally exact finite-difference scheme:

(a) real CPU times; (b) user CPU times; (c) system CPU times; (d) disk space.

Figure 7. Simulated solutions at n ¼ 10�2 and t ¼ 1:0 (— present solution; - - - exact solution) given in

Eq. (40): (a) velocity u; (b) velocity v; (c) pressure contours; (d) convergence history for the case with

64� 64 mesh points.
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uFx þ vFy ¼ k Fxx þ Fyy

� �
ð38Þ

In the above, u and v are constant along the x and y directions, respectively. Given
the Dirichlet-type boundary conditions shown schematically in Figure 4, the exact
solution to the above linearized Burgers equation is given by [28]

Fðx; yÞ ¼ 1� exp ðx� 1Þ u=k½ �
1� expð�u=kÞ

� �
1� exp ðy� 1Þ v=k½ �

1� expð�v=kÞ

� �
ð39Þ

Based on the simulated errors obtained at Dx ¼ Dy ¼ 1
10,

1
20,

1
40,

1
80, and

1
160, the rate

of convergence is obtained as shown in Figure 5. Good agreement with the
theoretical results and fast convergence to the analytical solution are demonstrated.

Figure 8. Rates of convergence for the two-dimensional Navier–Stokes problem with solutions given in

Eq. (40).

Figure 9. Computed velocity profiles for uðx; 0:5Þ and vð0:5; yÞ at Re ¼ 400.
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For the sake of completeness, both CPU time and disk space used are plotted in
Figure 6.

Encouraged by the above success in validating the proposed transport scheme,
the Navier–Stokes equations are solved in a unit square. The numerical method is
validated using the problem which has the following exact solutions:

u ¼ 1þ 2 cos 2p x� tð Þ½ � sin 2p y� tð Þ½ �e�8p2nt ð40aÞ

v ¼ 1� 2 sin 2p x� tð Þ½ � cos 2p y� tð Þ½ �e�8p2nt ð40bÞ

p ¼ � cos 4p x� tð Þ½ � þ cos 4p y� tð Þ½ �f ge�16p2nt ð40cÞ

Figure 10. Computed velocity profiles for uðx; 0:5Þ and vð0:5; yÞ at Re ¼ 1; 000.

Figure 11. Computed velocity profiles for uðx; 0:5Þ and vð0:5; yÞ at Re ¼ 3; 000.
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All the solutions are obtained in 0 � x; y � 1. In Figure 7, we plot the simulated
contours for u, v, and p at t ¼ 1, n ¼ 10�2, Dx ¼ Dy ¼ 1

20, and Dt ¼ 10�2. Compu-
tations are also performed on a range of mesh sizes h ¼ 1=2n, where n ¼ 4, 5, 6, 7, at
n ¼ 10�2, and Dt ¼ 1=100 for the sake of completeness. In view of the L2-norm
errors plotted in Figure 8, the proposed method is validated.

The flow, which is driven by a constant upper lid velocity u1, in a square
cavity, is then investigated owing to its geometric simplicity but physical complexity.
Computations are performed under a range of Reynolds numbers so that we could
compare the simulated results with those obtained in the previous computations.
With L as the characteristic length, ulid as the characteristic velocity, and r as the

Figure 12. Computed velocity profiles for uðx; 0:5Þ and vð0:5; yÞ at Re ¼ 5; 000.

Figure 13. Schematic of the eddy centers.
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fluid viscosity, the driven cavity flow problem is investigated at Re ¼ 400, 1,000,
3,000, and 5,000. It is essential for the mesh to be continuously refined to obtain a
grid-independent solution for each test case. The mid-plane velocity profiles u(0:5; y)
and v(x; 0:5) are plotted in Figures 9–12, and compared with the steady-state
benchmark solutions of Ghia [29]. For the sake of completeness, the centers of three
eddies at T, BL, and BR are shown schematically in Figure 13. As Table 1 shows,
good agreement with the comparison data [29] confirms the applicability of the
proposed scheme.

6. CONCLUSIONS

A key feature of the present Navier–Stokes method for incompressible fluid
flow is its ability to circumvent any spurious pressure oscillation on a nonstaggered
grid. This helps to facilitate coding of the program. Another distinct feature of the
proposed method is the transformation of the convection-diffusion differential
equation into its convection-diffusion-reaction counterpart. For the sake of com-
putational efficiency, the ADI scheme of Peaceman and Rachford is adopted, and
the nodally exact one-dimensional scheme can be easily developed from the con-
vection-diffusion-reaction equation. Solution accuracy and stability can be obtained
simultaneously. Good agreement between the simulated and analytical solutions is
demonstrated for all the test problems. In addition, the spatial rate of convergence is
shown to be very high.
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