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Abstract

This paper presents a class of Taylor–Galerkin (TG) finite element models on quadratic elements for solving a pure

convection equation which admits discontinuities. Six parameters are introduced to preserve scheme monotonicity and

control solution accuracy. In this paper we apply the M-matrix theory in the construction of monotone TG model. To

avoid making the scheme overly diffusive, the flux-corrected transport (FCT) technique of Boris and Book is applied

together with the underlying entropy-increasing principle and modified equation analysis developed for the TG models.

Reduction of post-discontinuities is the direct use of free parameters that can make the coefficients of the even and odd

derivative terms shown in the modified equation change signs alternately. Several benchmark problems are investigated

to confirm the integrity of the proposed characteristic model.
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1. Introduction

The pure advection equation has been frequently considered in the development of numerical models for

gas dynamics, shallow-water hydraulics, and aeroacoustics problems [1]. In the literature, upwind finite

element methods capable of suppressing convective instability include the characteristic finite element
method [2], discontinuous finite element method [3], characteristic-Galerkin finite element method [4], and

Petrov–Galerkin method [5,6]. In this paper the finite element model will be developed within the Taylor–

Galerkin (TG) framework [7], which has been applied with great success [8,9].

When solving a non-dispersive wave equation, the discretization error will inevitably make the corre-

sponding modified equation dispersive. The resulting numerical speed of propagation (or phase velocity)

becomes a function of wave numbers [10]. Knowledge of the discrete dispersion equation is, thus, essential
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in the model development [11,12]. To develop a less dispersive high-order finite element model, the entropy-
increasing principle and group velocity theory can be applied to minimize the dispersion error [13]. On

physical grounds, entropy is not allowed to decrease in the course of wave propagation, and we employ this

principle to control dispersive errors and, in turn, avoid continuous growth of the solution.

The remainder of this paper is organized as follows. Section 2 presents the essential features of the

generalized TG finite element model developed on quadratic elements. This is followed by the construction

of TG finite element models. In Section 4, free parameters used in the monotone TG model are determined

using the M-matrix theory. In Section 5, a less dispersive high-order model is developed by virtue of the

entropy-increasing principle. We then present validation results in Section 6. Finally, we draw conclusions
in Section 7.
2. Some fundamentals

We study in this paper the following scalar equation:

ou
ot

þ of
ox

¼ 0: ð1Þ

We assume that c shown in the physical flux term f ðuÞ ¼ cu is a positive constant. Subject to uðx; t ¼ 0Þ ¼
expðikxÞ, the analytic solution for Eq. (1) is derived as:

uexactðx; tÞ ¼ exp½iðkx� xtÞ�; ð2Þ
where S ð� kx� xtÞ is the phase function. In the above, k and x denote the wave number and the fre-

quency, respectively. The phase speed is, by definition, the speed at which the phase line advances normally

to itself. As a result, rS ð� oS=oxÞ ¼ k and oS=ot ¼ �x. Along a phase line Sðx; tÞ ¼ constant ð� S0Þ, we
have dS ¼ oS=otdt þrS dx ¼ 0 and, in turn, the phase speed c ¼ x

k . This analytic dispersion relation

x ¼ xðkÞ ¼ ck implies that the phase speed does not depend on k. The hyperbolic equation to be inves-

tigated is, therefore, non-dispersive.
Since any numerical method may introduce dissipation and dispersion errors, the computed nodal so-

lution at a spatial location xj in a domain of uniform mesh size Dx is assumed to have the following form

uðxj; tÞ ¼ exp

�
� c

kr
Dx

t
�
exp ik xj

��
� ki
kDx

ct
��

: ð3Þ

Here, kr and ki are introduced to signify the dissipation and dispersion errors, respectively. The consistency

property [14] requires that kr=Dx approach zero while ki=�aa approach 1, where �aa ¼ kDx is defined as the

modified wave number.
3. Consistent and stable quadratic Taylor–Galerkin finite element model

In this study we use the TG finite element model [7] to solve for u from the following weak equationXnel
el¼1

Z
Xel

Z tnþ1

tn

W ðxÞ ou
ot

�
þ of

ox

�
dtdXel ¼ 0: ð4Þ

Here, the weighting function W ðxÞ has the same form as the shape function for u. As the name implies, the

present model involves expanding f with respect to time t in a Taylor series and terminates the expansion to

yield third-order temporal accuracy. For the purpose of controlling dissipation and dispersion errors, six

parameters, a, b, c, l, x and j are employed in the expansion of f with respect to f n
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f ¼ f n þ c aA
ou
ot

�
� b

of
ox

�����nðt � tnÞ �
1

2
c2 c

o2u
oxot

�
� l

o2f
ox2

�����
n

ðt � tnÞ2

þ 1

6
c3 x

ou3

ox2 ot

��
� j

o3f
ox3

�������
n

ðt � tnÞ3 þOððt � tnÞ4Þ: ð5Þ

The remaining time derivative term is approximated by means of the Lax–Wendroff time-stepping scheme,

which is

ou
ot

¼ unþ1 � un

Dt
� Dt

2

o2u
ot2

� Dt2

6

o3u
ot3

: ð6Þ

In lieu of Eq. (1) and f ¼ cu, the time derivative terms shown above can be analytically replaced by the

spatial derivative terms o2u
ot2 ¼ �cutx ¼ c o2f

ox2 and
o3u
ot3 ¼ cftxx ¼ c2utxx � c2 o3f

ox3 .

Upon employing the quadratic polynomial for basis and test functions, the discretized equation for (1) at

xi can be derived in terms of the Courant number m ð� uDt
2DxÞ and the six introduced parameters:X

j¼0;�1;�2

ai�j dUn
i�j ¼

X
j¼0;�1;�2

bi�jUn
i�j: ð7Þ

In the above, dUn
i�j ¼ Unþ1

i�j � Un
i�j. The coefficients shown above are summarized in Appendix A.

We can now derive the modified equation (second kind) for the model equation by performing Taylor

series expansion on each term shown in Eq. (7). After some algebra, the following modified equation is

derived:

ut þ cux ¼ s2uxx þ s3uxxx þ s4uxxxx þ � � � ð8Þ

The coefficients s2 � s4 derived at the center and corner nodes are given in Appendix B. In light of the
above modified equation, the proposed finite element model is found to accommodate the consistency

property [15].

We now conduct Fourier (or von Neumann) stability analysis. The amplification factor for Eq. (7) is

found to have the following form:

G ¼ aþ bi

cþ di
: ð9Þ

Coefficients a, b, c, and d are summarized in Appendix C. It can be shown that jGj6 1 no matter what the

chosen parameters are. The discrete equation (7) is, therefore, unconditionally stable. Having derived a

consistency-preserving finite element model, stability is the necessary and sufficient condition for conver-

gence according to the Lax equivalence theorem [16]. Therefore, the convergent solution for (1) can be
obtained using the proposed quadratic TG finite element model. Note that the convergence property can be

obtained at any chosen free parameters [16].

It now remains to specify a, b, c, l, x and j for obtaining monotone (low-order) and less dispersive

(high-order) solutions, which are necessary to obtain the FCT finite element solution. In the subsequent two

sections, the M-matrix theory, modified equation analysis, and the entropy-increasing principle will be

employed in the model development.
4. M-matrix finite element model

Within the FCT finite element framework, development of a high-order model in the smooth flow regime

and a monotone model in the flow where discontinuities may develop is indispensable. One way of
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obtaining the monotone solution for Eq. (1) is to apply the M-matrix theory [17,18]. Our derivation begins
with rewriting Eq. (7) as

M
c
unþ1 ¼ Cf þM

c
un: ð10Þ

According to Ahu�ees and Telias [18], a monotone solution can be obtained on condition that bothfMM
c
ð� M

c
� IÞ, where M

c
and I are known as the consistent-mass matrix and identity matrix, respectively,

and C shown in (10) fall into the M-matrix category. By definition, fMM
c
is an M-matrix if the following two

conditions hold:

(i) fMM
c
is an L-matrix, which implies that diagðfMM

c
ÞP 0 and diagðfMM

c
Þ � fMM

c
P 0.

(ii) There exists a diagonal matrix D ð� diagðdijÞÞ such that DfMM
c
is columnwise strictly diagonal dominant

(
P

i aijdj > 0), or such that AD is rowwise strictly diagonal dominant (
P

j aijdj > 0).

The above two constraints guide our selection of free parameters to obtain a monotone solution at the

center and corner nodes. The derivations are detailed below.

4.1. Monotone model at the center node

We first lump bi�j in (7) to obtain biþ1 ¼ bi�1 ¼ 0 and bi ¼ 2
3
. Enforcing

a ¼ 3ðh1 � h2Þ
2m

; ð11Þ

c ¼ 6� 45h1 � 45h2
40m2

; ð12Þ

coefficients ai and ai�1 in (A.1)–(A.3) become aiþ1 ¼ h1, ai ¼ 2
3
� h1 � h2, and ai�1 ¼ h2. Note that the re-

sulting modified equation, namely, ut þ cux ¼ s2ux2 þ s3ux3 þ s4ux4 þ � � � is obtained at

h2 ¼
�4m
3

þ h1: ð13Þ

While examining the modified equation, we find that the TG model is uniformly convergent (in a sense that

s2 ¼ s3 ¼ s4 ¼ 0 as Dt ! 0 and Dx ! 0) provided that

h1 ¼ �vm: ð14Þ
In the above, v is a user�s specified positive constant since h1 should be negative to make the discretization

scheme an M-matrix type. We will set v ¼ 1 in all the subsequent calculations. Coefficients s2 and s3 in Eq.

(13) are, thus, derived as

s2 ¼
cDxð5þ 4mÞ

4
; ð15Þ

s3 ¼
�cDx2ð1þ 8m2 þ 15mÞ

6
: ð16Þ

With Eqs. (13) and (14), a and c can be derived as follows by virtue of Eqs. (11) and (12):

a ¼ 2; ð17Þ

c ¼ 3ð1þ 25mÞ
2

: ð18Þ

20m
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At the center node, ai and ai�1 in the discrete equation can then be derived as

aiþ1 ¼ �m; ð19Þ

ai ¼
2ð1þ 5mÞ

3
; ð20Þ

ai�1 ¼
�7m
3

: ð21Þ
4.2. Monotone model at the corner node

We first lump bi�j in (7) to obtain bi�1 ¼ bi�2 ¼ 0 and bi ¼ 1
3
. Note that the bandwidth of the matrix

equation is now five. More free parameters other than a and c should be used owing to the two additional
off-diagonal terms present in the matrix equation. The shortage of available free parameters motivates us to

partially lump ai�2 into ai, resulting in

ai�2 ¼ 0; aiþ1 ¼
3þ 15am� 20cm2 � 15m3x

45
; ai ¼

1

5
þ 8cm2

9
and

ai�1 ¼
3� 15am� 20cm2 þ 15m3x

45
:

The derivation is followed by conducting the analysis similar to that performed at the center nodes. The

resulting free parameters are derived as

a ¼ 1; ð22Þ

c ¼ 3ð1þ 20mÞ
20m2

: ð23Þ

With a and c thus derived, ai and ai�1, which hold at the corner node of a quadratic element, become

aiþ1 ¼ �m; ð24Þ

ai ¼
1þ 8m

3
; ð25Þ

ai�1 ¼
�5m
3

: ð26Þ

The leading coefficients in the modified equation are as follows:

s2 ¼ cDxð2þ mÞ; ð27aÞ

s3 ¼
�cDx2

6
ð1þ 8m2 þ 24mÞ; ð27bÞ

s4 ¼
cDx3

6
ð1þ 26mþ 48m2 þ 12m3Þ: ð27cÞ
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5. High-order finite element models

5.1. Fourth/seventh-order model

According to Eqs. (B.1)–(B.3), enforcement of

a ¼ 1; ð28aÞ

b ¼ �4� 5m2 þ 5jm2

5
; ð28bÞ

c ¼ �1� 5m2

10m2
; ð28cÞ

can eliminate the first three discretization error terms in the modified equation (8) derived at the center

node. By Eqs. (B.4)–(B.6), enforcement of

a ¼ 3ð�33þ 34m2 þ 8m4Þ
14m2ð13þ 2m2Þ ; ð29aÞ

b ¼ �ð�1881þ 7066m2 þ 1504m4 þ 16m6Þ
630m2ð13þ 2m2Þ ; ð29bÞ

c ¼ �3ð�53þ 58m2 þ 40m4Þ
140m2ð13þ 2m2Þ ; ð29cÞ

l ¼ 79þ 10m2 � 8m4

�156m2 � 24m4
; ð29dÞ

x ¼ �891þ 376m2 þ 4m4 þ 16m6

210m4ð13þ 2m2Þ ; ð29eÞ

j ¼ 1287� 6241m2 þ 7826m4 þ 1088m6

8190m4 þ 1260m6
; ð29fÞ

can similarly eliminate the six leading discretization error terms in the modified equation at the corner node.

Substituting (28a)–(28c) into (8) and (29a)–(29f) into (8), the derived si in the derived modified equations at

the center and corner nodes are detailed in Appendix D. In light of the derived modified equation, the

orders of the proposed TG model are OðDx4;Dt4Þ at the center node and OðDx7;Dt7Þ at the corner node.

5.2. Third-order less dispersive model

We first enforce

b ¼ 1� 5a� 10m2 þ 5am2 þ 5jm2

5
ð30Þ

and

c ¼ �ð1� 10m2 þ 15am2Þ
10m2

ð31Þ
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to eliminate the first two discretization error terms at the center node. By the same token, enforcement of

b ¼ 2� 45a� 20m2 þ 20jm2 þ 60m2x
35

; ð32aÞ

c ¼ 1� 5a� 10m2 � 70am2 þ 45jm2 þ 30m2x
70m2

; ð32bÞ

l ¼ 13þ 5a� 130m2 þ 280am2 � 45jm2 � 30m2x
210m2

; ð32cÞ

enables us to eliminate the three leading discretization error terms at the corner node. Substituting (30) and

(31) into coefficients shown in (8), we have the coefficients shown in the modified equation at the center node:

s2 ¼ s3 ¼ 0; ð33aÞ

s4 ¼
�cDx3mð�1þ aÞð�1þ 4m2Þ

12
; ð33bÞ

s5 ¼
cDx4ð�1þ 4m2Þ½�1þ ð16� 30aþ 15a2Þm2�

180
; ð33cÞ

s6 ¼
�cDx5mð�1þ aÞð�1þ 4m2Þ½�1þ 2ð4� 6aþ 3a2Þm2�

72
: ð33dÞ

From (33a)–(33d), we are led to know that the modified equation varies only with a. The other three

undetermined free parameters, l, x, and j, have no effect on the modified equation. For simplicity, we may

assign l ¼ x ¼ j ¼ 0 at the center node.

We set x ¼ j ¼ 0 at the corner node as we did at the center node. By substituting (32) into coefficients

shown in (8), at the corner node the coefficients in the modified equation can be derived as follows:

s2 ¼ s3 ¼ s4 ¼ 0; ð34aÞ

s5 ¼
cDx4½�37� 436m2 þ 248m4 þ 5að�5þ 85m2 þ 28m4Þ�

1260
; ð34bÞ

s6 ¼
�cDx5m
1260

�
� 13þ 674m2 � 400m4 þ 5a2ð � 5þ 85m2 þ 28m4Þ þ 2að28� 563m2 þ 40m4Þ

�
: ð34cÞ

Note that the accuracy order at the corner node is one order higher than that at the center node.
Subject to the initial condition given in Section 2, the exact solution to the modified equation

ou
ot þ c ou

ox ¼
P1

n¼2 sn
onu
oxn can be derived as [19]

uðx; tÞ ¼ epteikðx�qtÞ; ð35Þ
where sn ¼ knDxn�1 and

p ¼
X1
m¼1

s2mð�1Þmk2m; ð36Þ

q ¼ c�
X1
m¼1

s2mþ1ð�1Þmk2m: ð37Þ

Control of amplitude and propagation speed arising from the TG finite element approximation depends,

thus, on sm and s2mþ1 shown in (36) and (37) and, in turn, solely on a.
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To minimize the erroneous wave propagation speed and to prevent continuous growth of the amplitude
error, we exploit the entropy-increasing principle [20]. On the left side of the discontinuity, we demand thatX1

m¼1

s2mþ1ð�1Þmk2m < 0: ð38Þ

As the mesh size Dx approaches zero, smð� kmðDxÞm�1Þ becomes negligibly small at a larger integer m. For
this reason, the higher-order terms shown above can be neglected to yield the following approximated

expression:

ð�1Þms2mþ1 < 0: ð39Þ
On the right side of the discontinuity, we can also develop a dispersively more accurate model by enforcingX1

m¼1

s2mþ1ð�1Þmk2m > 0: ð40Þ

The higher-order terms shown in Eq. (40) become negligibly small as Dx approaches zero. To meet the

entropy-increasing requirement, the following approximated equation can, thus, be used:

ð�1Þms2mþ1 > 0: ð41Þ
In summary, Eqs. (39) and (41) guide our dispersion error reduction, in particular, in the high frequency
range.

An improper specification of a can cause the TG model to be anti-dissipative. It is, thus, essential to

enforce the following equation (or ept < 1) to make the TG model dissipative:X1
m¼1

s2mð�1Þmk2m < 0: ð42Þ

Consider only the leading term shown in the above equation; we then have

s2mð�1Þm < 0: ð43Þ
Under these circumstances, solutions with increasing magnitude are not permitted. In what follows, a is

specified according to the following two equations, which meet the constraint requirements given in (39),

(41) and (43):
ν

α

0.1 0.2 0.3 0.4

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

α = 1
x

(a)
ν

α

0.1 0.2 0.3 0.4

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

α = -0.98
X

(b)

Fig. 1. The entropy-increasing regions (the sign is correct up to s6), obtained at m ¼ 0:2 for the proposed model at the center node, are

marked by the shaded color. (a) Ahead of the discontinuity; (b) behind the discontinuity. Note that ða; mÞ marked by ‘‘·’’ is chosen in

the calculation.
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α

0.1 0.2 0.3 0.4

-2.5
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-1.5
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-0.5

0

0.5

1

1.5

α = 0.68
x

(a) ν

α

0.1 0.2 0.3 0.4

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

α = 0.702
x

(b)

Fig. 2. The entropy-increasing regions (the sign is correct up to s6), obtained at m ¼ 0:2 for the proposed model at the corner node, are

marked by the shaded color. (a) Ahead of the discontinuity; (b) behind the discontinuity. Note that ða; mÞ marked by ‘‘·’’ is chosen in

the calculation.

Table 2

Equation numbers for the six free parameters used in the M-matrix model, fourth/seventh model and entropy-increasing model

Nodal

classification

Model classification

Low-order model High-order models

M-matrix model Fourth/seventh model Less dispersive model

Center node Corner node Center node Corner node Center node Corner node

a (17) (22) (28a) (29a) – –

b 0 0 (28b) (29b) (30) (32a)

c (18) (23) (28c) (29c) (31) (32b)

l 0 0 0 (29d) 0 (32c)

x 0 0 0 (29e) 0 0

j 0 0 0 (29f) 0 0

Table 1

Free parameters used in the M-matrix model, fourth/seventh model and entropy-increasing model

Nodal

classification

Model classification

Low-order model High-order models

M-matrix model Fourth/seventh model Less dispersive model

Ahead of the discontinuity Behind the discontinuity

Center

node

Corner

node

Center

node

Corner

node

Center

node

Corner

node

Center

node

Corner

node

a 2 1 1 )12.953 1 0.68 )0.98 0.702

b 0 0 )0.84 4.841 )1 )0.68 )2.98 )0.702
c 22.5 18.75 )3 2.073 )40.5 47.844 37.53 49.998

l 0 0 0 )12.644 0 11.036 11.732 11.036

x 0 0 0 )199.312 0 0 0 0

j 0 0 0 79.634 0 0 0 0

Note that in the less dispersive model, a falls into the shaded area shown in Fig. 1 for the center node and in Fig. 2 for the corner node.
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Table 3

Equation numbers for the coefficients of eight leading discretization errors shown in the modified equation for the three developed

models

Nodal

classification

Model classification

Low-order model High-order models

M-matrix model Fourth/seventh model Less dispersive model

Center node Corner node Center node Corner node Center node Corner node

s2 (15) (27a) 0 0 0 0

s3 (16) (27b) 0 0 0 0

s4 – (27c) 0 0 (33b) 0

s5 – – (D.2) 0 (33c) (34b)

s6 – – 0 0 (33d) (34c)

s7 – – (D.3) 0 – –

s8 – – – (D.5) – –

s9 – – – (D.6) – –
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ahead of the discontinuity: s4 < 0; s5 > 0; s6 > 0; s7 < 0; ð44Þ

behind the discontinuity: s4 < 0; s5 < 0; s6 > 0; s7 > 0: ð45Þ

The regions at which the entropy-increasing principle is satisfied ahead of and behind the discontinuity are

shown in Fig. 1 at the center node and in Fig. 2 at the corner node. As far as the present less dispersive

model is concerned, parameters used in regions ahead of and behind the discontinuity are tabulated in

Table 1. For the sake of completeness, free parameters used in the TG model and coefficients shown in the

modified equations at the center and corner nodes are summarized in Tables 2 and 3.
6. Computed results

As a first step towards verifying the proposed finite element model, we will investigate the pure advection

equation in 06 x6 1. To demonstrate different features of the proposed TG models, the problems under

investigation involve smooth as well as discontinuous profiles given below

uðx; 0Þ ¼ 0:5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 100ðx� 0:2Þ2

q
ð46aÞ

¼ 0:5 ð46bÞ

¼ 0:25 cos
ðx� 0:8Þp

0:1

� ��
þ 1

�
: ð46cÞ

All the calculations were carried out at Dx ¼ 0:005 and Dt ¼ 0:005.
We plot first in Figs. 3–5(a) the simulated solutions obtained from M-matrix equations (17), (18) and

(22), (23) for the above three investigated initial profiles. It is seen that the computed solutions are smeared

at the sharply varying region but are, indeed, oscillation-free. This demonstrates the integrity of the de-

veloped monotone TG finite element model, which is critical in the development of a FCT model. We also

plot the less dispersive finite element solutions. As Figs. 3(b), 4(b) and 5(b) show, the improved accuracy is,

however, contaminated by oscillations in the vicinity of discontinuities. Clearly revealed by these figures is

that post-discontinuity oscillations are severer than those found ahead of the shock. The advantage of using
the entropy-increasing TG model is confirmed by comparing solutions plotted in Figs. 3(b), 4(b) and 5(b)



x

U

0 0.25 0.5 0.75 1
0

0.1

0.2

0.3

0.4

0.5
M-matrix solution
Exact solution

(a) x

U
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Fig. 3. Results obtained for the case involving a high gradient wave profile. (a) The computed M-matrix solution; (b) the computed

entropy-increasing solution; (c) the computed fourth/seventh-order solution; (d) a close look at three solutions obtained at the bottom-

right corner.
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with the fourth/seventh finite element solutions plotted in Figs. 3(c), 4(c) and 5(c). Oscillations in the vici-

nity of discontinuity have been apparently reduced as a result of applying the less dispersive finite element

model.

We also investigate a more stringent problem, subject to the initial profile defined by (46a) in

0:1 < x6 0:3, (46b) in 0:4 < x6 0:6, (46c) in 0:7 < x6 0:9, and 0 elsewhere. The solutions plotted in Fig. 6

show that a non-oscillatory high-order solution can by no means be obtained from the proposed high-order
TG model. For the sake of completeness, two different error norms are tabulated together with those

obtained from Lax–Wendroff and Van Leer difference solutions [21,22] in Tables 4 and 5.

We now combine the monotone but diffusive model properly with the high-order model through the

filtering process. Of two FCT transport solutions, FCT 1 combines the entropy-increasing and M-matrix

models, while FCT 2 employs the fourth/seventh model together with the M-matrix model. A comparison

of exact and simulated results is shown in Fig. 7, and the associated error norms are tabulated in Table 6.

Solutions obtained from FCT 1 and FCT 2 are seen to retain the monotone property without deterioration

of accuracy. This test demonstrates that the FCT model has the ability to resolve discontinuities.
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Fig. 4. Results obtained for the case involving a semi-ellipse wave profile. (a) The computed M-matrix solution; (b) the computed

entropy-increasing solution; (c) the computed fourth/seventh-order solution; (d) a close look at three solutions obtained at the bottom-

right corner.
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The second test considers the non-linear system given by

ut þ uux ¼ 0: ð47Þ
Subject to the piecewise continuous initial condition

uðx; 0Þ ¼
1 x6 1:5;
2:5� x 1:5 < x6 2:5;
0 x > 2:5;

8<
: ð48Þ

the exact solution in 06 x6 4 takes the following form [23]

uðx; t < 1Þ ¼

1 x6 1:5þ t;
2:5� x
1� t

1:5þ t < x6 2:5;

0 x > 2:5;

8>><
>>: ð49Þ
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Fig. 5. Results obtained for the case involving a square wave profile. (a) The computed M-matrix solution; (b) the computed entropy-

increasing solution; (c) the computed fourth/seventh-order solution; (d) a close look at three solutions obtained at the top-left corner.
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and

uðx; t > 1Þ ¼ 1 x6 2þ 0:5t;
0 x > 2þ 0:5t:

	
ð50Þ

Note that at t ¼ 1 the initially smooth solution will evolve to show a discontinuous profile at x ¼ 0:25 due

to equation non-linearity. Non-oscillatory and monotone solutions, which were obtained at Dx ¼ 0:04 and

Dt ¼ 0:005 (m ¼ 0:125), are shown in Fig. 8 at three arbitrarily chosen times.
7. Concluding remarks

This paper has presented a hyperbolic finite element model in quadratic elements. Six parameters in-

troduced into the generalized TG model have been rigorously determined for obtaining physically correct

and numerically accurate solutions in smoothly and sharply varying regions. Following the M-matrix
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Fig. 6. Results obtained for the case involving three different wave profiles. (a) The computed M-matrix solution; (b) the computed

entropy-increasing solution; (c) the computed fourth/seventh-order solution; (d) a close look at three solutions obtained at the top of

center square wave.

Table 4

Error norms for models developed on the basis of modified equation analysis, theM-matrix theory and the entropy-increasing principle

Initial conditions Error norm Lax–Wendroff

model [21]

Von Leer flux

limiter model [22]

M-matrix model Entropy-

increasing model

Fourth/

seventh model

Eq. (46a) L2 2.981· 10�3 3.501· 10�4 4.961· 10�4 3.719· 10�4 5.213· 10�4

Eq. (46b) L1 1.000· 10�1 6.973· 10�1 9.144· 10�1 1.033 1.331

Eq. (46c) L2 2.431· 10�3 2.472· 10�4 1.712· 10�4 5.011· 10�5 1.854· 10�6

Combined wave L1 2.981· 10�1 8.181· 10�1 6.911· 10�1 6.442· 10�1 1.651

For the initial conditions (46a) and (46c), L2-norm was applied; while L1-norm was used for profile (46b) and the combined wave case.

Here, L1- and the L2-norms are defined as
P

ðjuexact � unumericaljÞ and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

d:o:f :

P
ðuexact � unumericalÞ2

q
, respectively.
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Table 6

Error norms computed using the FCT 1 and FCT 2 models for the combined wave case

Test problem FCT 1 FCT 2

L1-norm L2-norm L1-norm L2-norm

Combined wave (Fig. 7) 5.91· 10�1 3.14· 10�2 5.68· 10�1 2.99· 10�2

Table 5

Error norms for models developed on the basis of modified equation analysis, theM-matrix theory and the entropy-increasing principle

Initial

conditions

Error

norm

Lax–Wendroff

model [21]

Von Leer flux

limiter model [22]

M-matrix model Entropy-increasing

model

Fourth/

seventh model

Eq. (46a) L2 3.012· 10�3 3.521· 10�4 5.011· 10�4 3.882· 10�4 5.618· 10�4

Eq. (46b) L1 1.010· 10�1 7.033· 10�1 9.446· 10�1 1.231 1.361

Eq. (46c) L2 2.451· 10�3 2.432· 10�4 1.927· 10�4 5.192· 10�5 2.018· 10�6

Combined wave L1 3.014· 10�1 8.226· 10�1 6.871· 10�1 6.371· 10�1 1.541

For the initial conditions (46a) and (46c), L2-norm was applied; while L1-norm was used for profile (46b) and the combined wave case.

Here, L1- and the L2-norms are defined as
R T
0
½
R xR
xL

juðx; tÞjdx�dt and ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR T
0
½
R xR
xL

juðx; tÞj2 dx�dt
q

, respectively.
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Fig. 7. Three simulated FCT solutions obtained from the (a) less dispersive model; (b) fourth/seventh-order model.
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theory, the bounds for free parameters can be determined. The resulting monotonicity-preserving finite
element model, while making the solution unconditionally monotone, simultaneously adds quite a large

positive artificial viscosity to the non-dispersive hyperbolic system. To avoid making the model overly

diffusive, two high-order finite element models, which must be built into the FCT filtering procedures, have

also been rigorously developed by virtue of the respective entropy-increasing principle and modified

equation analysis. Thanks to the entropy-increasing principle, in the less dispersive model we can properly

control the signs of the coefficients in the leading error terms of the modified equation. Calculations have

shown the integrity of all the theoretically supported TG finite element models.
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Fig. 8. The computed FCT solutions for the investigated non-linear problem at (a) t ¼ 0:5; (b) t ¼ 1; (c) t ¼ 1:5; (d) t ¼ 2.
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Appendix A

The coefficients aij and bij in Eq. (7) are shown below for nodes at centered and corner points respec-

tively.
Center node

aiþ1 ¼
1

5
þ am� 4cm2

3
; ðA:1Þ

ai ¼
8

5
þ 8cm2

3
; ðA:2Þ
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ai�1 ¼
1

5
� am� 4cm2

3
; ðA:3Þ

biþ1 ¼ �2mþ 4ð1þ bÞm2 þ 8 a



þ c� j
2

�
m4; ðA:4Þ

bi ¼ �8ð1þ bÞm2 � 16 a



þ c� j
2

�
m4; ðA:5Þ

bi�1 ¼ 2mþ 4ð1þ bÞm2 þ 8 a



þ c� j
2

�
m4: ðA:6Þ

Corner node

aiþ2 ¼
1

2

�
� 1

5
� am

2
þ cm2

3
þ xm3

�
; ðA:7Þ

aiþ1 ¼
1

5
þ am� 4cm2

3
� xm3; ðA:8Þ

ai ¼
4

5
þ 7cm2

3
; ðA:9Þ

ai�1 ¼
1

5
� am� 4cm2

3
þ xm3; ðA:10Þ

ai�2 ¼
1

2

�
� 1

5
þ am

2
þ cm2

3
� xm3

�
; ðA:11Þ

biþ2 ¼
m
2
� ð1þ bÞm2

2
� ð2� 3aþ 2lÞm3 � 4 a



þ c� j

2

�
m4; ðA:12Þ

biþ1 ¼ �2mþ 4ð1þ bÞm2 þ 2ð2� 3aþ 2lÞm3 þ 4 a



þ c� j
2

�
m4; ðA:13Þ

bi ¼ �7ð1þ bÞm2 � 8 a



þ c� j
2

�
m4; ðA:14Þ

bi�1 ¼ 2mþ 4ð1þ bÞm2 � 2ð2� 3aþ 2lÞm3 þ 8 a



þ c� j
2

�
m4; ðA:15Þ

bi�2 ¼
�m
2

� ð1þ bÞm2
2

þ ð2� 3aþ 2lÞm3 � 4 a



þ c� j
2

�
m4: ðA:16Þ

Appendix B

The coefficients shown in Eq. (8) at the center and corner nodes are shown, respectively, below.

Center node

s2 ¼ cDxmðaþ bþ 2am2 þ ð2c� jÞm2Þ; ðB:1Þ

s3 ¼
�cDx2

15
ð1þ 5ð�2þ 3a2 þ 3að�1þ bÞ � 6bþ 2cÞm2 þ 15ð�2þ aÞð2aþ 2c� jÞm4Þ; ðB:2Þ
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s4 ¼
�cDx3m

60
ð9� 60m2 þ 60b2m2 þ 42cm2 � jm2 � 240cm4 � 80c2m4 þ 120jm4

þ 40cjm4 þ 240c2m6 � 240cjm6 þ 60j2m6 � 60a3ðm2 þ 2m4Þ
þ 60a2m2ð2� bþ ð8� 2cþ jÞm2 þ 4m4Þ þ bð1� 40ð3þ cÞm2 þ 120ð2c� jÞm4Þ
þ 2að�4þ ð1þ 120b� 40cÞm2 þ 40ð�3þ 3bþ 5c� 3jÞm4 þ 120ð2c� jÞm6ÞÞ: ðB:3Þ

Corner node

s2 ¼ �ðcDxmð�a� bþ 4am2 þ 4cm2 � 2jm2ÞÞ; ðB:4Þ

s3 ¼
cDx2

15
ð2� 5ð4þ 3a2 þ 3að�4þ bÞ � 6bþ 2cþ 6lÞm2 þ 30ð�2þ aÞð2aþ 2c� jÞm4Þ; ðB:5Þ

s4 ¼
�cDx3m

30
ð�9þ 90m2 þ 30b2m2 þ 114cm2 � 47jm2 þ 120lm2 þ 240cm4 þ 80c2m4 � 120jm4

� 40cjm4 þ 480c2m6 � 480cjm6 þ 120j2m6 þ 30a3m2ð�1þ 4m2Þ

þ 30a2m2ð5� bþ ð�16þ 4c� 2jÞm2 þ 16m4Þ � bð1þ 20ð3þ cÞm2 þ 120ð2c� jÞm4Þ

þ 2að4þ ð�73þ 60b� 20c� 30lÞm2 � 40ð�3þ 3bþ 5c� 3jÞm4 þ 240ð2c� jÞm6Þ � 30m2xÞ:
ðB:6Þ
Appendix C

Four coefficients shown in Eq. (9) for the derived amplification factor are shown, respectively, below for

nodes at the center and corner nodes.

Center node

a¼ 3þ 30m� 15amþ 60m2 þ 60bm2 � 20cm2

þ 120am4 þ 120cm4 � 60jm4 � 8
�
�3þ 5ð3þ 3b� cÞm2

þ 15ð2aþ 2c� jÞm4

cosðbÞ þ 3

�
þ 15ð �2þ aÞmþ 20ð3þ 3b� cÞm2 þ 60ð2aþ 2c� jÞm4


cosð2bÞ;

ðC:1Þ

b ¼ 2ð�4ð�3þ 5ð3þ 3b� cÞm2 þ 15ð2aþ 2c� jÞm4Þ
þ ð3þ 15ð�2þ aÞmþ 20ð3þ 3b� cÞm2 þ 60ð2aþ 2c� jÞm4Þ cosðbÞÞ sinðbÞ; ðC:2Þ

c ¼ 3� 15am� 20cm2 þ 8ð3þ 5cm2Þ cosðbÞ þ ð3þ 15am� 20cm2Þ cosð2bÞ; ðC:3Þ

d ¼ �2ð�4ð3þ 5cm2Þ þ ð�3� 15amþ 20cm2Þ cosðbÞÞ sinðbÞ: ðC:4Þ
Corner node

a ¼ �2ð�12þ 105m2 þ 105bm2 � 35cm2 þ 120am4 þ 120cm4 � 60jm4

� 2ð3þ 20ð3þ 3b� cÞm2 þ 60ð2aþ 2c� jÞm4Þ cosðbÞ

þ ð3þ 5ð3þ 3b� cÞm2 þ 60ð2aþ 2c� jÞm4Þ cosð2bÞÞ; ðC:5Þ
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b ¼ 30mð2ð�2þ a� 6am2 þ m2ð4þ 4l� xÞÞ
þ að
�

�1þ 12m2Þ þ 2ð1þ m2ð �4� 4lþ xÞÞ

cosðbÞÞ sinðbÞ; ðC:6Þ

c ¼ 2 12
�

þ 35cm2 þ ð6� 40cm2Þ cosðbÞ � ð3� 5cm2Þ cosð2bÞ

; ðC:7Þ

d ¼ 30m 2a
�

� 2m2x� a cosðbÞ þ 2m2x cosðbÞ

sinðbÞ: ðC:8Þ
Appendix D

The coefficients of the discretization errors shown in the modified equation are shown below at the center

and corner nodes, respectively.
Center node

s2 ¼ s3 ¼ s4 ¼ 0; ðD:1Þ

s5 ¼
cDx4ð1� 5m2 þ 4m4Þ

180
; ðD:2Þ

s7 ¼
cDx6ð�1þ 7m2 � 14m4 þ 8m6Þ

1512
: ðD:3Þ

Corner node

s2 ¼ s3 ¼ s4 ¼ s5 ¼ s6 ¼ s7 ¼ 0; ðD:4Þ

s8 ¼
cDx7ð�891þ 4131m2 � 1660m4 � 2700m6 þ 1056m8 þ 64m10Þ

352; 800mð13þ 2m2Þ ; ðD:5Þ

s9 ¼
cDx8

44; 452; 800m2ð13þ 2m2Þ2
ð�793; 881þ 3; 209; 553m2 þ 545; 540m4 � 2; 454; 796m6 � 1; 256; 176m8

þ 651; 712m10 þ 93; 952m12 þ 4096m14Þ: ðD:6Þ
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