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SUMMARY

This paper presents a class of Taylor–Galerkin (TG) �nite-element models for solving the �rst-order
hyperbolic equation which admits discontinuities. Five parameters are introduced for purposes of con-
trolling stability, monotonicity and accuracy. In this paper, the total variation diminishing concept and
the theory of M -matrix are applied to construct a monotonic TG model for capturing discontinuities.
To avoid making the scheme overly di�usive, we apply a �ux-corrected transport (FCT) technique of
Boris and Book to overcome the di�culty with anti-di�usive �ux. In smooth �ow regions, our strategy
of developing the temporal and spatial high-order TG �nite-element model is based on modi�ed equa-
tion analysis. In regions where discontinuity is encountered, we resort to two dispersively more accurate
models to make the prediction accuracy as high as that obtained in smooth cases. These models are
developed using the entropy-increasing principle and the theory of group velocity. Guided by this the-
ory, a slower group velocity should be used ahead of the shock. To avoid a train of post-shocks, free
parameters should be chosen properly to obtain a group velocity which takes on a larger value than
the exact phase velocity. In this paper, we also apply the entropy-increasing principle to determine
free parameters introduced in the �nite-element model. Under the entropy-increasing requirement, it is
mandatory that coe�cients of the even and odd derivative terms shown in the modi�ed equation should
change signs alternatively in order to avoid non-physical wiggles. Several benchmark problems have
been investigated to con�rm the integrity of these proposed characteristic models. Copyright ? 2003
John Wiley & Sons, Ltd.
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1. INTRODUCTION

Study of pure advection equation is considered as an essential step towards suppressing con-
vective instabilities for problems in areas of gas dynamics, shallow-water hydraulics and
aeroacoustics. This explains why development of numerical models for �rst-order hyperbolic
equations has occupied the centre stage of computational �uid dynamics in the past few
decades [1]. In the �nite-element context, several upwind variants capable of preventing con-
vective instability have been proposed in the literature. Methods that are often referred to
include the characteristic �nite-element method [2], discontinuous �nite-element method [3],
and characteristic-Galerkin �nite-element method [4]. Another class of Petrov–Galerkin meth-
ods [5; 6] has also gained widespread acceptance. The main di�erence being the methodology
of introducing the upwind mechanism into the variational statement. In this study, the hyper-
bolic solver will be developed within the Taylor–Galerkin (TG) framework [7], which has
been applied with great success in many practical applications [8; 9].
When a numerical method is applied to solve a non-dispersive wave equation, the dis-

cretization error will make its modi�ed equation dispersive. The direct result is that the nu-
merical speed of propagation (or phase velocity) will be a function of wave number [10].
The prediction quality, thus, depends highly on the discrete dispersion relation. For this rea-
son, knowledge of group velocity is essential in the hyperbolic �nite-element development
[11; 12]. By exploiting group velocity theory, we will develop a dispersively more accurate
�nite-element model in this paper.
One can exploit another guideline to minimize the dispersion error. In physical terms,

entropy is not allowed to decrease when a wave propagates. By employing the entropy-
increasing principle [13], we are led to control dispersive errors and avoid continuous growth
of the solution due to anti-dissipative errors by assigning the correct signs of leading even
and odd derivative terms.
The remainder of this paper is organized as follows. Section 2 presents the essential fea-

tures of the �ve-parameter TG �nite-element model. This is followed by the construction
of TG �nite-element models. In Section 4, free parameters used in the low-order TG �nite-
element model are determined using the total variation diminishing concept and the theory of
M -matrices. In Section 5, a high-order �nite-element model is developed by virtue of modi-
�ed equation analysis, entropy-increasing principle, and the theory of group velocity. We then
present validation results in Section 6. Finally, we draw conclusions in Section 7.

2. SOME FUNDAMENTALS

We consider in this paper the following model equation:

@u
@t
+
@f
@x
=0 (1)

Note that c in the physical �ux term f(u)= cu is a positive constant. Subject to u(x; t=0)=
exp(ikx), the analytic solution uexact(x; t) for (1) can be expressed in terms of the phase
function S(≡ kx −!t):

uexact(x; t)= exp[i(kx −!t)] (2)

In the above, k and ! denote the wave number and the frequency, respectively.
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The phase speed is, by de�nition, the speed of phase line advancing normally to itself.
As a result, ∇S(≡ @S=@x)= k and @S=@t=−!. Along a phase line S(x; t)= constant (≡ S0),
we have dS= @S=@t dt + ∇S dx=0, and, in turn, the phase speed c=!=k. As a result, the
analytic dispersion relation for (1) is

!=!(k)= ck (3)

In the light of the above dispersion relation, the phase speed is known to be independent of k.
The hyperbolic equation to be investigated is, therefore, a non-dispersive di�erential equation.
Like other numerical methods, �nite-element approximation of (1) may introduce dissipation

and dispersion errors. To account for both types of errors, we can represent the numerical
solution as follows:

u(xj; t)= exp
(
−c kr
�x

t
)
exp

[
ik

(
xj − ki

k�x
ct
)]

(4)

Here, kr and ki signify the amounts of dissipation and dispersion errors, respectively. The
consistency property [14] requires that kr=�x approach zero while ki= �� approach 1, where
��= k�x is known as the modi�ed wave number.

3. TAYLOR–GALERKIN FINITE-ELEMENT MODEL WITH CONSISTENCY
AND STABILITY PROPERTIES

Our approximation of Equation (1) starts with

nel∑
el=1

∫
�el

∫ tn+1

tn
W (x)

(
@u
@t
+
@f
@x

)
dt d�el=0 (5)

Here, the weighting function W (x) has the same form as the shape function for u. In this
study, we choose the TG �nite-element model due to its applicability to multi-dimensional
analyses. As the name implies, TG model development involves expanding f with respect to
time t in Taylor series. In this study, the expansion is terminated at the third-order accuracy.
Inspired by the work of Baker and Kim [15], we introduce �ve parameters �; �; �; �; ! to
approximate f for purposes of controlling dissipation and dispersion errors.

f=fn + c
(
�
@u
@t

− � @f
@x

)n
(t − tn)

+
1
2
c2

(
!
@2f
@t2

+ �
@2u
@t@x

− � @
2f
@x2

)n
(t − tn)2 +O((t − tn)3) (6)

Note that the introduced free parameters in Equation (6) are constrained by � + �=1 and
�+ �+!=1.
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The derivation is followed by substituting

unt =
1
�t
(un+1 − un)− c2�t

2
unxx (7a)

untt =
2
�t2

(un+1 − un) + 2c
�t
unx (7b)

into (6) to render the following ordinary di�erential equation:

f=fn + c
(
�
(
1
�t
(un+1 − un)− c2�t

2
unxx

)
− � @f

@x

)n
(t − tn)

+
1
2
c2

(
!
(
2
�t2

(un+1 − un) + 2c
�t
unx

)

+ �
@u
@x

(
1
�t
(un+1 − un)− c2�t

2
unxx

)
−� @

2f
@x2

)n
(t − tn)2 +O((t − tn)3) (8)

In this paper, we consider the linear element. As a result, � in Equation (6) plays no role
and is, thus, not considered. The resulting TG representation of (1) can be rewritten in terms
of the Courant number �(≡ �t=�x) and the free parameters:

1
2

(
1−!
3

+
(
1− �−!+ �

2

)
�+ ��2

)
un+1j+1 +

(
2(1−!)

3
− ��2

)
un+1j

+
1
2

(
1−!
3

+
(
−1 + �+!− �

2

)
�+ ��2

)
un+1j−1

=
(
1−!
6

+
(−�+ �=2)�

2
+ �2

(
1
2
+
!
2
− �

))
unj+1

+2
(
(1−!)
3

− �2
(
1
2
+
!
2
− �

))
unj

+
(
1−!
6

+
(�− �=2)�

2
+ �2

(
1
2
+
!
2
− �

))
unj−1 (9)

De�ne �+unj = u
n
j+1 − unj and �−unj = u

n
j − unj−1, Equation (9) can be further written in the

�-form as

un+1j − C̃j+1=2�+un+1j + C̃j−1=2�−un+1j = unj + Cj+1=2�
+unj − Cj−1=2�−unj (10)

where

C̃j+1=2 =−1
6
− (1− �−!+ �=2)�

2(1−!) − ��2

2(1−!) (11a)
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C̃j−1=2 =−1
6
− (−1 + �+!− �=2)�

2(1−!) − ��2

2(1−!) (11b)

Cj+1=2 =
1
6
+
(−�+ �=2)�
2(1−!) +

�2( 12 +!=2− �)
1−! (11c)

Cj−1=2 =
1
6
+
(�− �=2)�
2(1−!) +

�2( 12 +!=2− �)
1−! (11d)

We conduct �rst the modi�ed equation analysis of second kind by performing Taylor series
expansion on each term in Equation (9). After some algebra, we can obtain the following
modi�ed equation for the model equation (1):

ut + cux= �2uxx + �3uxxx + �4uxxxx + · · · (12)

where

�2 =
�x2�2(−1 + �+ �)
�t(−1 +!)

�3 =
−�x3�3

12�t(−1 +!)2

(4− 12�+ 12�2 + 12�� − 8!+ 4!2 − 12��− 6��+ 6!�+ 3�2)

�4 =
�x4�2

24�t(−1 +!)3

(−2�+ 2!+ 4�!− 4!2 − 2�!2 + 2!3 − 6�2 + 24��2 − 36�2�2

+ 24�3�2 + 24�2��2 + 12�2�2 + 18!�2 − 48�!�2 + 12�2!�2

− 24�!�2 − 12�2!�2 − 6!2�2 + 24�!2�2 + 24�!2�2 − 6!3�2

+ 12���2 − 36�2��2 − 12���2 − 24����2 + 12!��2 + 12�!��2

+ 12�!��2 − 12!2��2 + 3�2�2 + 18��2�2 + 6��2 �2 − 9!�2�2 − 3�3�2)

Thanks to the above modi�ed equation, the proposed �nite-element model is con�rmed to ac-
commodate the consistency property [16] since discretization errors diminish as �x approaches
zero.
We then conduct the Fourier (or von Neumann) stability analysis. The ampli�cation factor

for the present TG model is shown to have the following form:

G=
a+ bi
c+ di

(13)
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where

a=2((2− 2!+ 3(2� − 1−!)�2) + (1−!− 3(2� − 1−!)�2) cos(�))
b=−3(2�− �)� sin(�)
c=4− 4!− 6��2 + (2− 2!+ 6��2) cos(�)
d=−3(−2 + 2�+ 2!− �)� sin(�)

Note that |G|61 for all chosen parameters and the scheme is unconditionally stable. The
exhibited consistency and stability properties ensure that convergent TG solutions can be
obtained irrespective of the chosen free parameters [17].
It now remains to decide what values of the free parameters are desirable for obtaining low-

and high-order TG solutions. These two solutions are necessary to obtain the �ux corrected
transport (FCT) �nite-element solution. The M -matrix and total variation diminishing theories
for the monotonic model and the modi�ed equation analysis, group velocity theory and entropy
increasing principle for the less dispersive model will be used to achieve di�erent goals.

4. MONOTONIC SOLUTIONS

Within the FCT framework, the key to successful development of the TG �nite-element model
lies in applying a dispersively more accurate model in the smooth �ow regime and a monotonic
model in the �ow where discontinuities may develop. Pursuit of high accuracy is another
important task to make the discontinuity-capturing model robust.

4.1. Total variation diminishing model

According to Lax [15], the total variation of a physically possible solution u(x; t) to the linear
hyperbolic equation (1) is de�ned as TV=

∫ |@u=@x| dx. For suppressing oscillations in the
vicinity of discontinuities, TV(u) is not allowed to increase with time. One way to achieve
this goal is to employ a total variation diminishing (TVD) discrete model. We say that a
discrete model is total variation diminishing in time if

TV(un+1)6TV(un) (14)

where the discrete de�nition of the total variation is expressed as

TV(un)=
∞∑
−∞

|uni+1 − uni | (15)

The su�cient conditions leading to an implicit TVD scheme is that C̃j±1=2 and Cj±1=2 in
Equation (10) should satisfy [18]

C̃j+1=2¿0; C̃j−1=2¿0 (16)

Cj+1=2¿0; Cj−1=2¿0; Cj+1=2 + Cj−1=261 (17)
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Subject to (16)–(17), free parameters chosen to obtain a TVD solution are as follows:

−1
3
− (1− �−!+ �=2)�

(1−!) − ��2

(1−!)¿0 (18a)

−1
3
− (−1 + �+!− �=2)�

(1−!) − ��2

(1−!)¿0 (18b)

1
6
+
(−�+ �=2)�
2(1−!) +

(12 +!=2− �)�2
1−! ¿0 (18c)

1
6
+
(�− �=2)�
2(1−!) +

(12 +!=2− �)�2
1−! ¿0 (18d)

1−!+ 3�2(!− 2�)
3(1−!) 61 (18e)

For purposes of completeness, we plot in Figures 1(a) and 1(b) the TVD-satisfying range in
the shaded areas at two arbitrarily chosen Courant numbers.
The explicit TG �nite-element equation can be derived by enforcing C̃j+1=2 = C̃j−1=2 = 0.

Depending on the Courant number �; � falling into the following equations should be chosen
if the TVD solution is sought:

−(�(2 + 6�) + (1− 6�2)(1−!− �))
�

¿0 (19a)

−(�(2− 6�) + (1− 6�2)(1−!− �))
�

¿0 (19b)

−(2�+ (1− 6�2)(1−!− �))
6�

61 (19c)

Thus, the TVD-region is found in the range of

06
−(2�+ (1− 6�2)(1−!− �))

6�
61 (20)

The above TG �nite-element model, while making the discrete model unconditionally mono-
tonic, may simultaneously add arti�cial viscosity and make the discrete model overly di�usive
in the sense that �+ � + ! can by no means be equal to one. Therefore, it is impossible to
obtain very accurate solutions using the proposed TVD �nite-element model.

4.2. M -matrix model

Another way of obtaining a monotonic solution for Equation (1) is to apply the M -matrix
theory [19; 20]. For descriptive purposes, we can rewrite Equation (9) as

M
c
un+1 =C f +M

c
un (21)

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 42:439–463
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Figure 1. The shaded area of free parameters � and � that satisfy the TVD and M -matrix conditions
for the proposed consistent-mass TG �nite-element model at di�erent �: (a) Region that satis�es TVD
condition at �=0:1, (b) region that satis�es TVD condition at �=0:7, (c) region that satis�es M -matrix

condition at �=0:1, (d) region that satis�es M -matrix condition at �=0:7.

According to Ahu�es and Telias [20], the key to obtaining a monotone solution from a system
of algebraic equations is that M̃

c
(≡M

c
− I, where M

c
and I are known as the consistent

mass and identity matrix, respectively) and C shown in (21) must be of M -matrix type. By
de�nition, a matrix M̃

c
is said to be an M -matrix if the following conditions hold:

(i) M̃
c
is an L-matrix, which implies diag(M̃

c
)¿0 and diag(M̃

c
)− M̃

c
¿0.

(ii) There exists a diagonal matrix D(≡ diag(dij)) such that D M̃
c
is columnwise strictly

diagonal dominant (
∑

i aijdj¿0), or that AD is rowwise strictly diagonal dominant
(
∑

j aijdj¿0).

The above theorem guides our selection of free parameters to obtain a monotone solution
from the discrete equation. Given a Courant number �, the range of validity for �, �, �, and
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TAYLOR–GALERKIN FINITE-ELEMENT MODEL 447

! is determined from the following equations:

1−!
3

+
(
1− �−!+ �

2

)
�+ ��2¿0 (22a)

2(1−!)
3

− ��260 (22b)

1−!
3

+
(
−1 + �+!− �

2

)
�+ ��2¿0 (22c)

The M -matrix-satisfying regions are plotted in the shaded areas of Figures 1(c) and 1(d). As
expected, the TVD region in Figures 1(a) and 1(b) falls entirely within the M -matrix region.
We can, therefore, say that the shaded areas schematic in Figures 1(c) and 1(d) are M -matrix
and TVD satisfying regions.

5. HIGH-ORDER SOLUTIONS

According to modi�ed equation (12) for the investigated model equation, enforcement of
�+�=1; �+�+!=1; �=2�=7 and != 1

7 (7−12�) can eliminate three leading discretization
error terms. Considering �=1−�; != 1

7 (7−12�); �=2�=7 and �=7�=10 in the high-order
TG �nite-element model, we need only to specify � to close the model development. Our
strategy of assigning value of � is to make the high-order TG model less dispersive. Two
theoretically rigorous theories, known as the group velocity theory and entropy increasing
principle, are employed.
Subject to the initial condition u(x; t=0)= exp (ikx), we can substitute (4) for u(xj; t) into

the �nite-element equation (9). After some algebra, ki and kr can be derived in terms of ��
and � as follows:

ki =−�−1 tan−1(C1) (23)

kr =−�−1 log(D1 +D2) (24)

In the above, C1 and Di (i=1; 2) are expressed as

C1 =
e1
e2

(25a)

D1 =
f1
f2

(25b)

D2 =
g1
g2

(25c)
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where

e1 = 3�(4− �2 + (2 + �2) cos( ��))(cos( ��) + sin( ��))
e2 = (−4 + �2)2 + (2 + �2)2 cos( ��)2 + cos( ��) (16 + 4�2 − 2�4 − 9�2 sin( ��))
f1 = 9�2 (4− �2 + (2 + �2) cos( ��))2(cos( ��) + sin( ��))2

f2 = ((−4 + �2)2 + (16 + 4�2 − 2�4) cos( ��) + (4 + 13�2 + �4) cos( ��)2)2

g1 = ((−4 + �2)2 + (2 + �2)2 cos( ��)2 + cos( ��) (16 + 4�2 − 2�4 − 9�2 sin( ��)))2

g2 = ((−4 + �2)2 + (16 + 4�2 − 2�4) cos( ��) + (4 + 13 �2 + �4) cos( ��)2)2

5.1. Entropy-increasing �nite-element model

Recall that the modi�ed equation for the model equation has been derived as

@u
@t
+ c

@u
@x
=

∞∑
n=2
�n
@nu
@xn

(26)

where �n is the coe�cient of the nth derivative term. Under the conditions �=1 − �; �= 1
3

and !=1− 3�=2− 3�=4, which are used to eliminate the �rst two discretization error terms
shown in Equation (12), the resulting four leading coe�cients in the modi�ed equation are
expressed by

�4 =
�x4�2(−1 + �2)(−7 + 6�)

72�t(1 + 6�)
(27a)

�5 =
1

540(1 + 6�)2�t
(�x5�(−1 + �2)

(−3 + 62�2 + 36�2(−3 + 2�2)− 12�(3 + 8�2))) (27b)

�6 =
(−7 + 6�)�x6�2(−1 + �2)

1296(1 + 6�)3�t

(−3 + 26�2 + 36�2(−3 + 2�2)− 12�(3 + 2�2)) (27c)

Subject to the initial condition given in Section 2, the exact solution to the modi�ed equation
(26) can be derived as

u(x; t)= epteik(x−qt) (28)

where

p=
∞∑
m=1
�2m(−1)mk2m (29a)
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q= c −
∞∑
m=1
�2m+1(−1)mk2m (29b)

Equations (28) and (2) reveal incorrect amplitude and propagation speed arising from the TG
�nite-element approximation. The task now is to control � so as to minimize the erroneous
wave propagation speed and prevent continuous growth of the amplitude error. In this study,
we exploit the entropy-increasing principle [21] to achieve this goal.
Ful�llment of the theoretically plausible entropy-increasing principle requires that qL¿

c¿qR, where qL = (dx=dt)L and qR = (dx=dt)R. On the left side of the discontinuity, qL−c¿0,
thus enabling us to obtain the following inequality relation:

∞∑
m=1
�2m+1(−1)mk2m¡0 (30)

As the mesh size �x approaches zero, �m(≡ km(�x)m−1) becomes negligibly small at larger
m. Therefore, we can neglect the higher-order terms, shown in Equation (30), to obtain the
following approximated expression:

(−1)m�2m+1¡0 (31)

On the right side of the discontinuity, one can obtain a less dispersive solution using the
same idea as that applied at the left side. Enforcing qR − c¡0, we demand satisfaction of the
following equation on the right side of the discontinuity:

∞∑
m=1
�2m+1(−1)mk2m¿0 (32)

As �x approaches zero, the higher-order terms shown in Equation (32) can be omitted. For
this reason, it su�ces to apply the following approximated equation for a better agreement of
the entropy-increasing principle:

(−1)m�2m+1¿0 (33)

Provided that discontinuities appear, constraint conditions (31) and (33) are employed to
minimize the dispersion error. The reduction of errors is particularly pronounced at high-
frequency components.
Any improper speci�cation of � can cause the scheme to be anti-dissipative. Therefore,

ept¡1 is enforced for making the TG model dissipative. That is,

∞∑
m=1
�2m(−1)mk2m¡0 (34)

Consider only the leading term shown in Equation (34), we then have

�2m(−1)m¡0 (35)

Solutions which increase in magnitude with time are, thus, not permitted.
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450 T. W. H. SHEU AND P. H. LEE

Figure 2. The range of � against the Courant number � that satis�es the entropy-increasing
principle (Up to the coe�cient of uxxxxxxxx in the modi�ed equation). The dashed box is the

chosen entropy-increasing-satisfying region.

Through the above entropy-increasing principle, choice of � is constrained by the following
two equations for simultaneously satisfying equations (31), (33) and (35):

ahead of the discontinuity �4¡0; �5¿0; �6¿0; �7¡0 (36)

behind the discontinuity �4¡0; �5¡0; �6¿0; �7¿0 (37)

The stability regions ahead of and behind the discontinuity are shown in Figure 2. For the sake
of completeness, the range of (�; �) that is suitable for choice in the subsequent calculation
is also schematic in the same �gure.

5.2. Finite-element model based on the group velocity theory

As the modi�ed equation (12) shows, use of TG model makes the modi�ed equation dissipa-
tive and dispersive. The introduced dissipation error causes frequency-dependent attenuation
of the Fourier components to occur; while the dispersion error results in erroneous wave
number-dependent phase velocity. Therefore, it is necessary to derive the dispersion relation
for the TG equation (9).
Our derivation starts with substitution of the analytic solution (2) into Equation (9).

After cancelling out common factors, the dispersion equation for the proposed �nite-element
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equation is obtained as

tan(!�t)=
cos( ��) sin( ��)A1 + sin( ��)A2

cos( ��)2A3 + cos( ��)A4 + A5 + sin( ��)2A6
(38)

Note that the analytic dispersion equation is tan(!�t)= tan(� ��). Coe�cients shown in
Equation (38) are as follows:

A1 =
−�
9
(3 + (1 + 6�− 18�2)�2 + !2(3 + �2)− 2!(3 + (1 + 3�)�2)) (39a)

A2 =
�
9
(−6 + (1 + 6�− 18�2)�2 + !2(−6 + �2)− 2!(−6 + (1 + 3�)�2)) (39b)

A3 =
(−1 +!− 3��2)(−1 + (−1 + 3�)�2 +!(1 + �2))

9
(39c)

A4 =
1
9
(4 + �2 + 6�(−1 + 3�)�4 + !2(4 + �2) + 2!(−4− �2 + 3��4)) (39d)

A5 =
−((−2 + 2!+ 3��2)(2 + (−1 + 3�)�2 +!(−2 + �2)))

9
(39e)

A6 =
−((−1 +!− 3�)(−2 + 2!+ 3�)�2)

9
(39f)

The energy spectrum over a length of 2�k, centred at k0, transmits at a speed of Cg(!)
(≡ d!=dk|k0) [10]. By de�nition, the group velocity for the proposed TG model can be derived
by di�erentiating the dispersion equation, given in Equation (38), with respect to the wave
number. The result is

D=
Cg( ��; �)
c

=−
(
B1 + B2
B3

)
(40)

In the above,

B1 =
B1a; ·B1b
B1c

(41a)

B2 =
A2 cos( ��) + A1 cos( ��)2 − A1 sin( ��)2

A5 + A4 cos( ��) + A3 cos( ��)2 + A6 sin( ��)2
(41b)

B3 = �
(
1 +

(A2 sin( ��) + A1 cos( ��) sin( ��))2

(A5 + A4 cos( ��) + A3 cos( ��)2 + A6 sin( ��)2)2

)
(41c)

B1a =−(A2 sin( ��) + A1 cos( ��) sin( ��)) (41d)

B1b =−(A4 sin( ��))− 2A3 cos( ��) sin( ��) + 2A6 cos( ��) sin( ��) (41e)

B1c = (A5 + A4 cos( ��) + A3 cos( ��)2 + A6 sin( ��)2)2 (41f)
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Figure 3. Plot of Cg=c against � and � for the proposed TG model applied in regions ahead and behind
of the discontinuity. The dashed box is the chosen group-velocity-theory-satisfying region.

By virtue of the above-derived group velocity, we can plot in Figure 3 regions with D¿1
and D¡1 against the modi�ed wave number �� at di�erent values of � and �. Given a value
of �, this plot helps to determine � mostly suited to yield the less dispersive solutions. Ahead
of the discontinuity, the region with D¡1 is chosen. In contrast, the region with D¿1 is
considered for parameters used behind the discontinuity. The range that can be chosen to
obtain the group-velocity-theory-satisfying solution is also schematically given in Figure 3.
Taking Figures 2 and 3 into consideration, the (�; �) regions that satisfy both entropy

increasing and group velocity theories ahead and behind of discontinuities are plotted in
Figures 4(a) and 4(b), respectively. The region of �, which is a function of �, that can be
chosen to obtain the theoretically rigorous less dispersive solution is given in Figure 5. Two
sets of (�; �) at points marked by ‘X’ in the �gure are used in the regions ahead of and
behind the discontinuity, respectively.
The � thus far determined is subject to an additional constraint for obtaining an even better

solution. For stability reasons, it is required that kr¿0 for making the TG model dissipative.
For this reason, we plot kr against �� in Figure 6, from which it is demonstrated that kr¿0 for
all �. In the whole wave-number spectrum, the computed non-constant group velocities explain
why oscillations are seen in the numerical solution. It is, thus, important to judiciously select
� so as to control the phase velocity and, thus, avoid non-physical oscillations. Figure 7,
which plots the ki against the modi�ed wave number ��, reveals that @ki=@ �� is fairly close
to one in the vicinity of ��=0, implying that ki approaches �� in the small wave-number
range no matter what the Courant number is. While ki increasingly deviates from �� at a
very large wave number, the Fourier coe�cients in the Euler formula [22] asymptotically
approach zero. Under the circumstances, large wave number are, fortunately, of no signi�cant
contribution to the evolving solution. As Figure 7 reveals, the erroneous dispersive nature of
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Figure 4. The range of � against the Courant number � that satis�es both the entropy-
increasing principle and group velocity theory: (a) Ahead of the shock, the shaded
areas satisfy the entropy-increasing and group velocity theories, (b) behind the shock,

the shaded area satis�es the entropy-increasing and group velocity theories.

solution in regions immediately behind the shock warrants a care owing to its less accurate
representation.
The coe�cients for the Fourier components with a large wave number are large in mag-

nitude. Any dispersive error can cause the solution to deteriorate considerably. In the small
wave-number case, u can quickly disperse into a train of oscillations at the back of the wave.
The higher the wave number, the severer the oscillation since ki, as shown in Equation (23),
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Figure 5. The shaded area is the region for obtaining solutions that satisfy the
entropy-increasing and group velocity theories.

deviates from its exact value in the direction of increasing wave number. Such oscillatory
solutions are due mainly to phase lagging if the Fourier component for a high wave number
is not negligibly small. When specifying free parameters which can render dki=d ��¡1, it is
expected to see a train of oscillations behind the pulse [11]. Therefore, free parameters are
sought to yield @ki=@ ��¿1, thus preventing oscillations from occurring behind a pulse wave. In
contrast to oscillations found behind the pulse wave, the oscillations ahead of the pulse are the
direct result of a faster numerical group velocity [11]. The cure for this upstream oscillation
being the avoidance of @ki=@ ��¿1. Therefore, it is imperative that dki=d ��¡1 in front of the
pulse while dki=d ��¿1 behind the pulse for controlling high-frequency (or high wave number)
oscillations in the vicinity of high gradient solutions. The fact that @2u=@x2@u=@x¡0 ahead of
the shock and @2u=@x2@u=@x¿0 behind the shock [1] provides us impetus to suppress much
of the high-frequency oscillation found in the vicinity of discontinuity by enforcing

dki
d ��
¿1 if SS(u)¿0 (42)

dki
d ��
¡1 if SS(u)¡0 (43)

In the above, the shock structure function SS(u)(≡sign(@2u=@x2@u=@x)) is adopted. As for the
smooth �ow case where |SS(u)|¡� (Here, � is a small positive number), we choose free
parameters that can render a solution of high-order accuracy.
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Figure 6. Plot of Kr against the modi�ed wave number for the proposed TG model at
di�erent Courant numbers �: (a) Plot of Kr against the modi�ed wave number for the TG
model applied ahead of the discontinuity, (b) plot of Kr against the modi�ed wave number

for the proposed TG model applied behind the discontinuity.

6. COMPUTED RESULTS

Based on the theories summarized in Figures 1 and 5, all results presented below were
obtained at �=0:6. The reason is that all free parameters can be rigorously chosen to render
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Figure 7. Plot of Ki against the modi�ed wave number for the proposed TG model at di�erent Courant
numbers �: (a) Plot of Ki against the modi�ed wave number for the proposed TG model applied ahead
of the discontinuity, (b) plot of Ki against the modi�ed wave number for the proposed TG model

applied behind the discontinuity.

both monotonic and high-order solutions (refer to Figures 5 and 8). In Table I, we tabulate
the chosen parameters for the monotonic TG model. In addition, parameters used in the high-
order model in regions ahead of and behind the discontinuity are all tabulated in the same
table.
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Figure 8. The shaded area is the TVD and M -matrix satisfying region. The values at X are
used in the monotonic �nite-element model.

Table I. Parameters used in the calculations.

Less dispersive high-order Less dispersive high-order
Free Monotonic model ahead of the model behind the
parameter model discontinuity discontinuity

� 0.4 −1:986 −0:81
� 0.6 2.986 1.81
� −0:6896 0.3333 0.3333
� 1.84 −3:0683 −1:29833
! 0.2551 3.729 1.965

As a �rst step towards verifying the proposed �nite-element model, we considered a pure
advection equation in the speci�ed �ow. The problem de�ned in −16x61 involves smooth
as well as discontinuous pro�les

u(x; 0)=




0:5
√
1− 100(x − 0:2)2; 0:1¡x60:3

0:5; 0:4¡x60:6

0:25[cos( (x−0:8)	0:1 ) + 1]; 0:7¡x60:9
0; otherwise

(44)

Given a mesh size of �x=0:01, the time increment was chosen to be �t=0:01. This test
serves to demonstrate that the FCT TG model can resolve discontinuities.
We will show a comparison of TG �nite-element solutions with the exact solution. It is

evident from Figure 9 that the solutions, which are obtained from the �nite-element models
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Figure 9. The computed entropy-increasing �nite-element solution (symbol) that satis�es the entropy
increasing and group velocity theories and the exact solution (dotted).

derived using the entropy-increasing principle and the group velocity theory, are in good
agreement with the exact solution, except in regions near the jump. Figure 10 shows the
low-order solutions, which are obtained in a sense that both TVD and M -matrix conditions
are satis�ed. As a result, solutions are all shown to be oscillation free. Having obtained the
accurate but dispersive solution and the unconditionally monotonic solution, we can apply
them in combination by virtue of the �ux corrected transport technique of Boris and Book
[23]. Numerical evidence, as shown in Figure 11, clearly shows that solutions obtained at
t=1 were accurately predicted without observed oscillations.
The second test involved a propagating piecewise continuous pro�le in the following non-

linear system:

ut + uux=0 (45)

Subject to the initial condition given by

u(x; 0)=



1; x61:5
2:5− x; 1:5¡x62:5
0 x¿2:5

(46)

the exact solution in 06x64 takes the following form [24]:

u(x; t¡1)=



1; x61:5 + t
2:5−x
1−t ; 1:5 + t¡x62:5

0; x¿2:5

(47)

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 42:439–463



TAYLOR–GALERKIN FINITE-ELEMENT MODEL 459

0 0.25 0.5 0.75 1
x

0

0.1

0.2

0.3

0.4

0.5

φ

Numerical solution
Exact solution

Figure 10. The computed M -matrix and TVD-satisfying �nite-element solution (symbol) and exact
solution (dotted), at t=0:05 s under �=0:1 and �x=�t=0:01.

0 0.25 0.5 0.75 1
x

0

0.1

0.2

0.3

0.4

0.5

φ
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Figure 11. The computed FCT �nite-element solution (symbol) and exact solution (dotted)
at t=0:005 s under �=0:1 and �x=�t=0:001.
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Figure 12. The computed FCT solutions for the non-linear problem at
(a) t=0:5, (b) t=1, (c) t=1:5, (d) t=2.

or

u(x; t¿1)=

{
1; x62 + 0:5t
0; x¿2 + 0:5t

(48)

This problem is chosen since the non-linear term will evolve to show a discontinuity at
x=0:25 when t=1. Finite-element solutions, which were obtained at �x=0:04 and 0:005
(�=0:125), are shown in Figure 12 at t=0:5, 1, 1.5 and 2.

7. CONCLUDING REMARKS

This paper has presented a TG �nite-element model for the �rst-order hyperbolic equation.
Free parameters introduced into the model development have been theoretically determined to
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obtain solutions in regions of sharp pro�les using the theories of TVD and the M -matrix. The
resulting TG �nite-element models, while making the solutions unconditionally monotonic and,
thus, stable, e�ectively add positive arti�cial viscosity to the non-dispersive hyperbolic model
equation. To avoid making these models overly di�usive, high-order �nite-element model,
that is necessary to obtain the FCT solution, is also rigorously constructed. In the smooth
�ow, we employed the modi�ed equation analysis to construct the high-order model. In the
presence of discontinuities, we construct the dispersively more accurate �nite-element model
using the concept of group velocity. By theory, we demand that the group velocity of the
discrete model be larger than the analytic phase velocity behind the shock. In contrast, the
group velocity should be slower than the analytic phase velocity in front of the shock. Use
of these two constraint conditions helps us to reduce errors of the high-frequency (or high
wave number) type. Another guideline for developing the high-order TG model is the use of
entropy-increasing principle. Guided by this principle, we can properly choose free parameters
so as to render correct signs in the coe�cients of the �rst �ve leading discretization error
terms and, thus, eliminate much of the dispersive errors. Calculations have shown that all
theoretically supported TG models are well performed.

APPENDIX A

According to Equation (28), we can easily express u as

u=e(p−ikq)teikx (A1)

This is followed by performing time and spatial derivatives on u, leading to

ut = (p− ikq)u (A2)

ux = iku (A3)

uxx = (ik)2u=−k2u (A4)

uxxx = (ik)3u=−ik3u (A5)

uxxxx = (ik)4u= k4u (A6)

uxxxxx = (ik)5u= ik5u (A7)

...

By substituting Equations (A2) and (A3) into (1), we have

ut + cux = (p− ikq+ ick)u
= [p+ ik(c − q)]u (A8)
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According to Equations (29a) and (29b), we have

ut + cux =
[
p+ ik

∞∑
m=1
�2m+1(−1)mk2m

]
u

=
[∞∑
1
�2m(−1)mk2m + ik

∞∑
1
�2m+1(−1)mk2m

]
u (A9)

or

ut + cux =−�2k2 + �4k4 − �6k6 + �8k8 + · · ·
+ ik[−�3k2 + �5k4 − �7k6 + �9k8 + · · ·] (A10)

By substituting (A4)–(A7) into
∑∞

n=2 �n@
nu=@xn, we can have

∞∑
n=2
�n
@nu
@xn

=(−k2�2 − ik3�3 + k4�4 + ik5�5 + · · ·)u (A11)

Inspecting Equations (A10) and (A11), we can prove that Equation (28), together with equa-
tions (29a) and (29b), is the exact solution of (1).
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