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Finite-element simulation of incompressible �uid �ow
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SUMMARY

Finite-element simulation was performed to predict the incompressible Navier–Stokes �ow in a domain,
partly bounded by an elastic vessel, which is allowed to vary with time. Besides satisfying the physical
conservation laws, both surface and the volume conservation laws are satis�ed at the discrete level for
ensuring the balance between physical and geometrical variables. Several problems which are amenable
to analytical solutions were tested for validating the method. The simulated results are observed to
agree favourably with analytical solutions. Having veri�ed the applicability of the �nite-element code
to problems involving moving grids, we consider an incompressible �uid �ow bounded by rigid and
elastic vessel walls. Our emphasis was placed on the validation of the formulation developed within
the moving-grid framework. Copyright ? 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

During the cardiac cycle the change in vessel diameter is observed to be approximately
5–10% in most of the healthy major arteries [1]. In some diseased vessels, the arteries
are, however, less compliant and can be treated as being rigid. Flow motion due to the
opening=closing of aortic heart valves is a typical example which involves a much larger
deformation than that seen in the large arteries [2]. In those problems, the solid structure is
driven by the motion of a �uid and, in turn, the �uid domain that moves with time. Under
these circumstances, nodes where the solutions are to be evaluated change their co-ordinate
values at every time on the boundary as well as in the �ow interior. The necessity of taking
into account the deformable physical boundary, which is part of the solution procedures, adds
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modelling complexity and computational di�culty. To develop a theoretically rigorous �uid–
structure model for modelling �ows in deformable domain is the main objective of the present
study.
The �uid–structure interaction problem can be numerically analysed by global and coupled

approaches [3]. In 1989, Peskin and McQueen [4] proposed the �rst global approach, known
as the immersed boundary method. As the name indicates, the structure is considered as
the immersed solid, allowing us to consider Navier–Stokes equations in the whole �uid–
structure domain. Since the solid immersed in the �uid is modelled by a momentum forcing
term in the Navier–Stokes equations, this method is applicable to model complex geometry
problems on orthogonal grids. The advantage is that the moving-boundary problems can be
tackled straightforwardly without resorting to mesh regeneration with time [5]. Both computing
resources (memory and CPU time) and man hours can be considerably saved. The distributed
Lagrange–multiplier method is another class of global approaches. In the �ctitious domain,
the rigid-body motion of a structure is constrained by the employed Lagrange multiplier [6],
which is considered as the body force to maintain the rigid-body motion. The immersed
interface method [7] is one of the well-known variants of the immersed boundary method.
The underlying idea of constructing a coupled approach is to couple the �ow model with

the structure model through some suitable matching conditions. Amongst of this class of
methods, the arbitrary Lagrangian–Eulerian (ALE) [8] and space–time methods [9] are of-
ten referred to. On physical grounds, the �uid phase is described in Eulerian co-ordinates
and the Lagrangian formulation is more appropriate for use in the solid phase. These two
formulations are, however, incompatible. In the early 1980s, Hughes et al. [10] and Donea
[8] combined the nice features of each formulation in their ALE �nite-element simulations
of �uid structure interaction. This combined model is manifested by a continuous adapt ion
of the mesh and requires, in theory, no time-consuming mesh regeneration. Under the large
deformation conditions, a mesh of good quality is di�cult to maintain without considerable
remeshing. The dispensable interpolation of �eld variables on the newly updated mesh may
introduce arti�cial di�usivity, in particular for large deformation problems. The added error
to the formulation can even make the ALE method unstable. The �ctitious domain=mortar
element has been proposed to resolve this di�culty [11, 12]. This class of methods solves the
�ow equations in Eulerian description in a �xed mesh and analyses the structure equations in
a Lagrangian setting. As said earlier, the velocity constraint associated with the rigid internal
boundaries is imposed by means of the Lagrange multiplier.
The space–time �nite-element method is another class of moving methods for solving

moving-boundary problems. This method, �rstly proposed by Hughes and Hullbert [9] in
solving the elastic-dynamic problem, approximates the temporal derivative using the �nite-
element method. The advantage of this method is its generality. One can view the ALE
�nite-element model as a special case of the space–time model, as discussed by Hansbo [13]
and Behr and Tezduyar [14]. Besides the above two major coupled methods, the recently de-
veloped lattice Boltzmann method [15] and the front tracking method [16] are good methods
for simulating a large number of solid objects in the �ow. One can refer to Hu et al. [17]
for more information.
We employ in the study the ALE-coupled approach for two reasons. Firstly, physically

correct equations governing the �uid and solid are used in their respective domain. In addition,
the stability of the ALE �nite-element formulation has been theoretically demonstrated [18].
Secondary, use of the coupled approach enables us to split the global computation into a
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sequence of computations for the �uid and the structure. A considerable reduction of the
computational complexity can be gained. Within the ALE framework, we can derive the
conservation equations for the �uid �ow in moving co-ordinates through transformation of
variables [3]. One can also derive the working equations in moving co-ordinates based on
the concept of the Lie derivative [19–21]. The grid �tted to the body moves in time. It
is important to satisfy the space conservation law (SCL) for properly relating the change
of the cell area to the co-ordinate frame velocity. Failure to satisfy the space conservation
law may cause the mass to accumulate or diminish. Thomas and Lombard [22] were among
the �rst to address the necessity of imposing this constraint when analysing the physical
conservation equations. Demirdizic and Peric [23] later justi�ed the necessity of satisfying the
SCL constraint condition when simulating problems on non-stationary grids. It is trivial that
the discrete geometric conservation law (GCL) condition is satis�ed in the constant �ow case
[24]. This requirement, in turn, constrains the geometrical quantities. For additional details,
one can refer to References [25, 26].
The remainder of this paper is organized as follows. In the next section, we derive the

working equations in the ALE description. Equations which govern the motion of a linearly
elastic, incompressible, isotropic vessel are also given. In the following section, we outline
the �nite-element method and provide analytical veri�cation. This is followed by presenting
the simulated results for an incompressible �uid �ow in a vessel which partly undergoes a
�nite-amplitude oscillation. Finally, we o�er some concluding remarks.

2. MATHEMATICAL MODELS

The incompressible equations governing a viscous Newtonian �uid �ow in grids �xed in space
are as follows:
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they stand for the x- and y-momentum equations, respectively. Equation (1) represents the
truly two-dimensional equation when �=0 and the angle-independent equation in cylindrical
co-ordinates when �=1. For simplicity of presentation the method we consider the following
equations written in x–y co-ordinates:
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=0 (2)
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The above equations involve a velocity vector u=(u; v) and pressure p for a �uid �ow having
a �xed kinematic viscosity �. One advantage of adopting the primitive-variable formulation
is due to its accommodation of closure initial and boundary conditions [27].
It is natural to adapt grid lines to the �ow when simulating a moving boundary �ow

problem. Let (X1, X2) and (x1, x2) be Lagrangian and Eulerian co-ordinates, respectively. One
can represent the material time derivative of a passive scalar � at a given point �i in the �uid
domain and at a time t as follows (i=1–2):

D�(�i; t)
Dt

=
��(�i; t)
�t

+ (ui − wi)@�(xi; t)@xi
(5)

In the above, D�=Dt represents the material derivative of � at a given point Xi. As for
��=�t(≡ (@=@t)�(�; t)|��xed), it stands for the referential time derivative keeping the co-ordinates,
�i, in the referenced domain constant. In addition, ui and (wi≡ (d=dt)x(�; t)) are known as
the material and reference velocities, respectively. Substituting Equation (5) into the unsteady
convection–di�usion transport equation for � in Lagrangian description, we can obtain the
following equation:

�t + (u− w1)�x + (v− w2)�y − �
�
(�xx + �yy)=0 (6)

The reference velocity wi(u=1–2) can be chosen arbitrarily. If wi is equal to zero, the above
transport equation for � becomes that in the Eulerian description. Note that speci�cation of
wi as the �uid particle velocity renders Equation (6) expressed in the Lagrangian description.
Let wi be the moving gird velocity vector (ug, vg), we can express the transport equation in
moving grids as

�t + (u− ug)�x + (v− vg)�y − �
�
(�xx + �yy)=0 (7)

Guided by the above theoretical basis, we can transform Equations (2)–(4) in �xed grids into
their moving co-ordinate counterparts:

ux + vy =0 (8)

ut + (u− ug)ux + (v− vg)uy =−1
�
px +

�
�
(uxx + uyy) (9)

vt + (u− ug)vx + (v− vg)vy =−1
�
py +

�
�
(vxx + vyy) (10)

Modelling of �ow–structure interaction problem is followed by deriving a di�erential system
in a compliant medium, which is subjected to a �nite deformation. To simplify the analysis, we

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 42:131–146



FE SIMULATION OF INCOMPRESSIBLE FLUID FLOW 135

consider that the elastic properties are identical in all directions. The equations of equilibrium
for such homogeneous isotropic elastic structures can be derived by invoking the D’Alembert
principle and adding the body force �F(≡Fi; i=1; 2) to the inertia force, yielding

�ij; j + Fi=�w �di (11)

In the above, �di denotes d2di=dt2, where d=(d1; d2) and �w are known as the displacement
vector and the density of the elastic vessel, respectively. To close the di�erential system for
modelling the wall motion, we consider the following stress–strain relation

�ij= ��ijdk;k +G(di;j + dj; i) (12)

The above constitutive equation involves two Lame’s constants (or elastic constants) G and
�. These material constants are, as usual, written in terms of the Young’s modulus E and the
Poisson ratio �	:
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Substituting Equations (12)–(14) into (11), we can obtain the so-called Navier equations
for a linearly elastic medium given below [28]:
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where F1 and F2 are as the prescribed �uid forces. To close the above di�erential system, we
specify @di=@xi=0, where i=1; 2, at two ends of the elastic material. On physical grounds,
stresses are continuous across the interface that separates the incompressible �uid �ow and
elastic medium. In other words, the elastic stress tensor, �ij(= ��ijdk;k +G(di;j +dj; i)), should
be equal to the �ow stress tensor, governed by Stokes constitutive relation, �ij=−p�ijdk;k +
�(ui; j + uj; i), in a Newtonian �uid. Continuity of stresses between a �uid and an elastic
material demands that
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By de�nition, the normal stresses (�xx; �yy) and shear stress (�xy) are as follows:
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On the boundary separating the ambient and the elastic material, we assume that p=0 and
�xx= �yy= �xy=0.
The Navier–Stokes equations, subject to the continuity equation, are solved iteratively with

the Navier equations for the elastic material. In a speci�ed domain, the �ow equations are
solved, followed by integrating the pressure and the stresses along the vessel wall. Upon
obtaining the �uid forces F1 and F2, the displacement can then be obtained by solving the
Navier equations in biquadratic elements using the Galerkin �nite-element model. The updated
vessel con�guration enables us to solve the �ow equations. The above procedures are repeated
over each time increment until the vessel shows a negligible change in its con�guration.

3. FINITE-ELEMENT MODELS

The �nite-element method has been well accepted to be e�ective to tackle problems with
complex geometries and equations with Neumann-type boundary conditions. These attributes
motivated us to use it to simulate the �ow in a compliant vessel. In the present mixed
�nite-element context, we introduce the Sobolev space H1

0 (	) for the velocity vector and
the constrained space L2

0 (	) for the pressure. Solutions are then sought for u∈H1
0 (	) and

p∈L2
0 (	) from the weak statement for the Navier–Stokes equations in moving co-ordinates.

The test functions w∈H1
0 (	)×H1

0 (	) and q∈L2
0 (	) are used for equations governing the

vector and scalar �elds, respectively. To eliminate the troublesome pressure mode, we employ
here the biquadratic polynomial, Ni, to approximate u and the bilinear polynomial, Mi, to
approximate p since this variable setting accommodates the inf–sup (or div–stability) condition
[29–31].
The time derivative term is, as before, approximated using the following second-order time-

stepping scheme:
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The simulated Galerkin solutions are formally second-order accurate in time and space for
cases carried out in uniform grids.
Numerical prediction of physical conservation laws on moving meshes requires calculating

ug and vg shown in Equations (9)–(10). Both the surface conservation law (SCL), which
requires that each cell should be closed by its surfaces, and the volume conservation law
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(VCL), which states that the volumetric increment of a moving cell must be equal to the
summation of the volumetric increases along its surfaces that enclose the volume, must be
taken into account in this regard. According to the terminology of Thomas and Lombard [22],
we call the combination of SCL and VCL the GCL. In mathematical terms, SCL and VCL
are expressed, respectively, below [32]: ∮

B
a ds=0 (24)

@V
@t
=
∮
B
�wds=0 (25)

In the above, s represents the area in the outward normal direction of the boundary surface B
that encloses the time-varying material volume V . As for vectors a and �w, they represent the
direction of a uniform �ow in a non-moving mesh and a speci�ed boundary velocity vector
for B.
While two laws given in (24) and (25) are easily derived in the continuous sense, their

discrete counterparts may not always be trivially satis�ed. In discrete sense, any violation of
GCL will produce errors in the �ow �eld. Error of this type will cause the solution accuracy to
deteriorate in two ways. An erroneous of discrete SCL will miscreant the convection velocity,
while the non-satisfaction of discrete VCL will cause mass to accumulate or diminish from
the numerically produced sources and sinks, respectively. While errors of these kinds have
been reported, they are not addressed in many previous calculations. Instead, erroneous �ow
predictions owing to non–satisfaction of the discrete GCL were attributed to other sources.
To close the Galerkin �nite-element analysis in moving meshes, we have to provide values
of grid velocities shown in (9)–(10). By integrating the GCL condition in its di�erential
description and employing the divergence theorem, we are led to obtain the GCL condition in
its integral description, namely, Equation (25). In other words, gird velocities are calculated
under the following GCL constraint condition

1√
g
@
√
g

@t
=∇ug (26)

where
√
g represents the determinant of the Jacobian matrix between �xed and moving co-

ordinates.
There are several ways of moving nodes from their previous locations to the updated ones

over each time step. In this study, we assume that (ug; vg) remains unchanged in magnitude
as well as in direction from the previous location at (xold ; yold) to the updated location at
(xnew; ynew). To ensure that the geometric quantities satisfy the VCL and SCL and, thus, the
GCL, we calculate ug and vg simply by

ug =
xnew − xold


t
(27a)

vg =
ynew − yold


t
(27b)
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Figure 1. Schematic of the movement of a representative mesh.
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Figure 2. Schematic of the notations given in Equation (28).

The proof will be given below. Referring to Figure 1, which illustrates the movement of an
old cell to its updated con�guration. Denote Ae, Aw, As and An as the areas at the east, west,
south and north sides of the old cell. Take Ae as an example; its area can be calculated from

Ae = 1
4 (S1 + S2)× (Snew + Sold) (28)

where S1, S2, Snew and Snew are schematic in Figure 2. Substitution of grid co-ordinates into
(28) leads to

Ae = 1
4 ((�xne + �xse)(�y

new
e + �yolde )− (�yne + �yse)(�xnewe + �xolde )) (29)

where �xi= xnewi − xoldi (i=ne; se; e) and �yi=ynewi − yoldi (i=ne; se; e). Similarly, one can
have As, Aw and An and, thus, can calculate the left-hand side of (25) from 1=
t (V new −
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Table I. The computed L2-error norms for displacements governed by
elastic equations (15)–16).

Time d1 L2-error norm d2 L2-error norm

0.5 0:7693× 10−8 0:1298× 10−7
1.0 0:1113× 10−7 0:6656× 10−8
1.5 0:1335× 10−7 0:2987× 10−8
2.0 0:1129× 10−7 0:9524× 10−8

V old)(≡ 1=
t(Ae+As+Aw+An)). We then proceed to calculate the right-hand side of Equation
(25). Take the east side as an example; we have∫

e
ug ds=

∫
e
ug dsy −

∫
e
vg dsx=( �ug)e( �sy)e − ( �vg)e( �sx)e (30)

In the above, the superscript ‘−’ denotes the average operator. It is found that Equations
(29)=
t and (30) are identical provided that

( �ug)e =
1

2 
t
(�xne + �xse) (31a)

( �vg)e =
1

2 
t
(�yne + �yse) (31b)

This means that GCL is satis�ed if the grid velocities are computed according to (27) and
(28).
To verify that the present �nite-element model is applicable to simulate the �uid �ow on

moving grids, we have solved the variable transport equation and Navier–Stokes equations,
which are all amenable to analytical solution, with success [33]. In the following, we will
justify the �nite-element model developed to solve the elastic equations for the time-varying
displacement vector. Given F =e−t((x2y2 − 6y2 − 8xy − 2x2), (x2y2 − 6x2 − 8xy − 2y2)),
Equations (15)–(16) were solved subject to the boundary conditions. At t=0, we uniformly
discretized the domain in 06x; y61:0, resulting in a mesh with a resolution of 11× 11.
Calculation terminated at t=2 with a time increment set at 
t=10−3. At �w=G= �=1,
the exact displacement vector is easily shown to be identical to the speci�ed velocity vector
u=e−tx2y2 (−1;−1). The prediction errors are cast in their L2-norm for d1 and d2. As Table I
shows, the present �nite-element code can be applied with con�dence to analyse the linearly
elastic equation.
We also validated the �nite-element code developed to simulate the elastic equation in

cylindrical co-ordinates. The material properties remained the same as those considered in the
previous case. Subject to the boundary conditions, the exact displacements were derived as
d1 =d2 = e−tx2y2 provided that F1 = e−t(x2y2 − 6y2 − 12xy− 4x2) and F2 = e−t(x2y2 − 9x2 −
8xy − 2y2). The unit square domain 06r; x61 was uniformly discretized to have 11× 11
mesh points. The computed L2-error norms, tabulated in Table II, con�rmed that the present
�nite-element formulation for solving the elastic equations is second-order accurate in space.

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 42:131–146



140 H. Y. H. CHEN AND T. W. H. SHEU

Table II. The computed L2-error norms for displacements governed by elastic
equations cast in cylindrical co-ordinates.

Time d1 L2-error norm d2 L2-error norm

0.5 0:7693× 10−8 0:1298× 10−7
1.0 0:1113× 10−7 0:6628× 10−8
1.5 0:1335× 10−7 0:2987× 10−8
2.0 0:1129× 10−7 0:9524× 10−8

Table III. A comparison of computed and exact solutions at six chosen radial locations.

r Position (mm) Exact Numerical

5 0.0001610259 0.0001610257
5.2 0.0001572590 0.0001572588
5.4 0.0001538628 0.0001538626
5.6 0.0001507974 0.0001507973
5.8 0.0001480288 0.0001480287
5.6 0.0001455273 0.0001455271

We then validated the elastic �nite-element code, developed in cylindrical co-ordinates, by
virtue of the problem studied previously by Xu and Collins [28]. The tube under investigation
has a thickness of 1 mm, an inner radius ri = 5 mm and an outer radius ro = 6 mm. To make
the elastic equations amenable to exact solutions, we assumed that the tube length is long
enough so that we can specify zero gradient boundary condition in the axial direction. Under
these circumstances, the thick-walled tube displacement could be analytically derived in the
radial direction as follows [34]:

dr =
ri �p

r(r2o − r2i )E
[(1 + �	)r2o + (1− �	)r2] (32)

In the above, �p=2688 Pa. This calculation was carried out at a Young’s modulus of 5× 105 Pa,
a density of 103 kg=m3, and a Poisson ratio of 0.49. We performed �nite-element calculations
in a domain having 11× 201 mesh points. It is seen from Table III that the simulated
solutions agree perfectly with the exact solution given in (32).

4. COMPUTED RESULTS

With the above excellent agreement between the simulated and analytic solutions, we will now
consider channel �ow subject to a moving indentation. This problem, schematically shown
in Figure 3, has been experimentally calibrated [35] and numerically simulated [36–38]. The
channel wall is rigid everywhere except at the indentation, which is placed downstream of the
channel inlet. The indentation, made of a thick and sti� rubber membrane, changes its shape
with the upward-and-downward moving piston. The maximum movement of the indented wall
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Figure 3. Schematic of the indented wall.

is �=0:38 and is schematic in Figure 3. The con�guration of the indented wall is algebraically
represented by

y(x)=



0:19h

(
1− cos ( 2
tT )) ; 06x6x1

0:085h
(
1− cos ( 2
tT )) (1− tanh(a(x − x2))); x1¡x6x3

0; x¿x3

(33)

In the above, h(=1) and T (=1) denote the channel height and the oscillation period. Other
parameters intended for representing the time-varying indented wall are chosen as a=4:14,
x1 = 4h, x2 = 5:25h and x3 = 6:5h.
A fully developed velocity is speci�ed at the inlet. The truncated outlet is far downstream

of the indentation with a length of 40 so that the exit �ow becomes fully developed again
with vanishing values of v and @u=@x. At t=0, the fully developed �ow is solved with
no indentation movement. The Reynolds number considered in this case is 100, which is
obtained by choosing the channel height H as the reference length and the average entrance
velocity �U as the characteristic velocity. The case under investigation has a Strouhal number
St=Hf= �U =0:03, where f denotes the oscillating frequency of the moving piston. The time
step chosen in this study is 
t=0:01 and the mesh used for the present analysis has 21× 551
points, which are non-uniformly distributed in the channel. To resolve the �ow details, grids
are clustered near the channel wall and in regions downstream of the indentation. At each
time, the boundary grids are prescribed according to the moving indentation while the interior
grids are re-distributed according to the grid velocities.
To give a global picture of the �ow development in this partly indented channel, we plot

�rst the instantaneous streamlines at ten chosen dimensionless times, starting from t=0:2 and
terminating at t=1:1 with an increment of 
t=0:1. As Figure 4 shows, the �ow immediately
downstream of the indentation is con�gured with a single eddy structure in the early stage
of �ow development. As time goes by, a second separated eddy forms on the opposite side
of the channel wall. Later on, another smaller and weaker eddy forms on the channel �oor.
Such a vortex-shedding-like �ow is reproduced as that observed experimentally by Pedley and
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Figure 4. The computed time-varying streamlines.

Stephano� [35], and numerically by Ralph and Pedley [36] and Rosen�eld et al. [38]. The
time-evolving vortex shedding phenomenon can be seen also in the pressure contours shown
in Figure 5.
In order to demonstrate the applicability of the present �ow=structure �nite-element code,

we have performed �ow simulation in a �nite-length elastic tube [28]. The tube with a length
of 5 cm and a thickness of 1 mm has inner and outer diameters with the values of 10 and
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Figure 5. The computed time-varying pressure contours.

12 mm, respectively. In this study, both ends of the tube were assumed to be �xed. In the
radial direction we divided the linearly elastic tube into seven �uid elements and two solid
elements. In the axial direction there are 20 elements. At the vessel inlet, the pressure varied
harmonically according to @p=@x=−A exp(int), where the amplitude A and the frequency
chosen in this study are 200 and 2
, respectively.
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Figure 6. Analytical and predicted axial velocity pro�les for transient �ow in a compliant tube.

Given the initial condition, we had iteratively analysed this problem since the wall position
at the updated time was unknown. Within each time step 
t=0:01, we estimated the vessel
position based on the currently available grid velocities. This is followed by carrying out the
Navier–Stokes calculations to obtain the pressure that will be applied at the mostly updated
domain boundary. We then solved for the elastic equations to update the vessel con�guration.
In the new physical domain, we proceeded to solve the �ow equations. The above iterative
procedures were repeated until the speci�ed tolerances on the vessel displacement were ob-
tained. Within each time step, less than eight iterations are needed to reach convergence in the
�uid–wall iterative process. Following the above coupled �uid=solid solution procedures, we
could obtain the axial velocity. The simulated axial velocities at four arbitrarily chosen times
show a good agreement between the prediction and the analytical data given in Reference
[39] as well as in Figure 6.

5. CONCLUDING REMARKS

In this paper, a GCL-satisfying �nite-element model has been presented in moving meshes for
the prediction of �ow in a domain bounded partly by an elastic boundary. Working equations
are cast in ALE description, which involves a grid velocity vector, so as to adapt to the �ow
in time-varying physical domain. We applied the Galerkin �nite-element method to obtain a
second-order spatially accurate solution and the second-order accurate time-stepping method
for the time derivative terms. The proposed model for solving the �ow equations in moving
grids has been theoretically veri�ed. In addition, the �nite-element model developed to solve
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the Navier equations for elastic media has been theoretically veri�ed. Results have also been
presented for the �ow in a vessel, where part of its rigid=elastic surface bounding the physical
�ow region is allowed to move.

ACKNOWLEDGEMENTS

The author would like to acknowledge the �nancial support from National Science Council under NSC
88–2611–E–002–025.

REFERENCES

1. Taylor CA, Hughes TJR, Zarins CK. Computational investigations in vascular disease. Computers in Physics
1996; 10(3):224–232.

2. de Hart J, Cacciola G, Schreurs PJG, Peters GWM. A three-dimensional analysis of a �bre-reinforced aortic
valve prosthesis. Journal of Biomechanics 1998; 31:629–638.

3. Quarteroni A, Tuveri M, Veneziani A. Computational vascular �uid dynamics: problems, models and methods.
Computing and Visualization in Science 2000; 2:163–197.

4. Peskin C, McQueen D. A three-dimensional computational method for blood �ow in the heart—1 immersed
elastic �bers in a viscous incompressible �uid. Journal of Computational Physics 1989; 81(2):372–405.

5. Kim J, Kim D, Choi H. An immersed-boundary �nite-volume method for simulations of �ow in complex
geometries. Journal of Computational Physics 2001; 171:132–150.

6. Glowinski R, Pan TW, Periaux J. A �ctitious domain method for Dirichlet problem and applications. Computer
Methods in Applied Mechanics and Engineering 1994; 111:283–303.

7. Leveque RJ, Li Z. The immersed interface method for elliptic equations with discontinuous coe�cients and
singular sources. SIAM Journal of Numerical Analysis 1994: 31:1019–1044.

8. Donea J. An arbitrary Lagrangian–Eulerian �nite element method for transient �uid–structure interactions.
Computer Methods in Applied Mechanics and Engineering 1982; 33:689–723.

9. Hughes TJR, Hulbert GJ. Space–time �nite element methods for elasto-dynamics: formulations and error
estimates. Computer Methods in Applied Mechanics and Engineering 1988; 66:339–363.

10. Hughes TJR, Liu WK, Zimmerman TK. Lagrangian–Eulerian �nite element formulation for incompressible
viscous �ow. Computer Methods in Applied Mechanics and Engineering 1981; 29:329–349.

11. Bernardi C, Maday Y, Patera AT. Domain decomposition by the mortar element method. In Asymptotic and
Numerical Methods for PDEs with Critical Parameters, vol. 384. Kaper HG, Garbey M. (eds), NATO ASI
Series C: Mathematical and Physical Sciences. Kluwer: Dordrecht, 1993, pp. 169–186.

12. Ben Belgacem F, Maday Y. The mortar �inite element method for the three dimensional �nite elements. RAIRO
Analyse Numerique 1997; 31:289–302.

13. Hansbo P. The characteristic streamline di�usion method for the time-dependent incompressible Navier–Stokes
equations. Computer Methods in Applied Mechanics and Engineering 1992; 99:171–186.

14. Behr M, Tezduyar TE. Finite element solution strategies for large-scale �ow simulations. Computer Methods
in Applied Mechanics and Engineering 1994; 112:3–24.

15. Chen S, Doolen GD. Lattice Boltzmann method for �uid �ows. Annual Review of Fluid Mechanics 1998;
30:329–361.

16. Esmaeeli A, Tryggvason F. Direct numerical simulation of bubbly �ow, Part 2, moderate Reynolds number
arrays. Journal of Fluid Mechanics 1999; 385:325–358.

17. Hu HH, Patankar NA, Zhu MY. Direct numerical simulation of �uid-solid systems using the arbitrary
Lagrangian–Eulerian technique. Journal of Computational Physics 2001; 169:427–462.

18. Formaggia L, Nobile F. A stability analysis for the arbitrary Lagrangian Eulerian formulation with �nite elements.
East–West Journal of Numerical Mathematics 1999; 7:105–132.

19. Satoru O, Tomiko I. A method for computing �ow �elds around moving bodies. Journal of Computational
Physics 1987; 69:49–68.

20. Schouten JA. An Introduction to Tensor Analysis and its Geometrical Applications. Ricci–Calculus. Springer:
Berlin, 1954.

21. Trulio JG, Trigger KR. Numerical solution of the one-dimensional hydrodynamic equations in an arbitrary
time-dependent coordinate system. University of California Lawrence Radiation Laboratory Report UCLR–6522,
1961.

22. Thomas PD, Lombard CK. Geometric conservation law and its application to �ow computations on moving
grids. AIAA Journal 1979; 17(10):1030–1037.

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 42:131–146



146 H. Y. H. CHEN AND T. W. H. SHEU

23. Demirdizic I, Peric M. Space conservation law in �nite volume calculation of �uid �ow. International Journal
for Numerical Methods in Fluids 1983; 8:1037–1050.

24. Koobus B, Farhat C. Second-order implicit schemes that satisfy the GCL for �ow computations on dynamic
girds. AIAA–paper, 1997; 1–14.

25. Lesoinne M, Farhat C. Geometric conservation laws for aeroelastic computations using unstructured dynamic
meshes. AIAA Paper 95-1709, 12th AIAA CFD Conference, San Diego, CA, June 19–22. American Institute
of Aeronautics and Astronautics: New York, 1995.

26. Zhang H, Reggio M, Tr�epanier Y, Camarero R. Geometric form of the GCL for moving meshes and its
implementation in CFD schemes. Computers and Fluids 1993; 22(1):9–23.

27. Ladyzhenskaya O. The Mathematical Theory of Viscous Incompressible Flow. Gordon and Breach: New York,
1969.

28. Xu YY, Collins MW. Numerical modelling of blood �ow in compliant arteries and arterial bifurcations. In
Bio-�uid Mechanics. Power H (ed.). Computational Mechanics Publications: Souampton, 1995; 55–94.

29. Brezzi F, Douglas J. Stabilized mixed methods for the Stokes problem. Numerische Mathematik 1988; 53:225–
235.

30. Babuska I. The �nite element method with Lagrangian multipliers. Numerische Mathematik 1973; 20:179–192.
31. Brezzi F. On the existence, uniqueness and approximation of saddle point problem analysis from Lagrangian

multipliers, RAIRO. Analytical Numerics 1974; 8(R2):129–151.
32. Zhang H, Reggio M, Tr�epanier JY, Camarero R. Discrete form of the GCL for moving meshes and its

implementation in CFD schemes. Computers and Fluids 1993; 22(1):9–23.
33. Sheu TWH, Chen HYH. A transient analysis of incompressible �uid �ow in vessels with moving boundaries.

International Journal for Numerical Methods in Heat and Fluid Flow 1999; 9(8):833–846.
34. Love AEH. A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press: Cambridge,

MA, 1952.
35. Pedley TJ, Stephano� KD. Flow along a channel with a time-dependent indentation in one wall: the generation

of vorticity waves. Journal of Fluid Mechanics 1985; 160:337–367.
36. Ralph ME, Pedley TJ. Flow in a channel with a moving indentation. Journal of Fluid Mechanics 1988; 190:87–

112.
37. Demirdizic I, Peric M. Finite volume method for prediction of �uid �ow in arbitrarily shaped domains with

moving boundaries. International Journal for Numerical Methods in Fluids 1990; 10:771–790.
38. Rosen�eld M, Kwak D, Vinokur M. A fractional step solution method for the unsteady incompressible Navier–

Stokes equations in generalized coordinate systems. Journal of Computational Physics 1991; 94(1):102–137.
39. Womersley JR. The mathematical analysis of the arterial circulation in a state of oscillatory motion. WADC–TR,

56–614, Wright Air Developmant Center, 1957.

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 42:131–146


