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1 Introduction Reynolds number on the flow asymmetry. Also, the mechanism

There exist manv practical applications in which the flow b for the transition from symmetric to asymmetric states is pro-
. y P PP ) the TIow b&iged. Finally, in Section 5, we provide concluding remarks.
havior downstream of a sudden geometric contraction is impor-

tant, with the non-Ngvvt_onlan flow case being of partlc_:ular |nte2 The Mathematical Model
est. Several investigations have been performed in order To

understand the incompressible flow downstream of a channel con!n the present investigation, we simulated the flow of an incom-
traction, which is planar and is normal to the direction of th@ressible fluid through a two-dimensional contraction channel.
channel wall. These investigations have been both experimenfgferring to Fig. 1, the centerline of the channel is positioned at
see, for example, Durst et 4l], and numerical, for example, theY=0. The upstream channel height and the step heighbaaed
works of Dennis and Smitf2], Hunt[3], Hawken et al[4], and 1/2(D—d), respectively. The channel height downstream of the
Huang and Seymouf5]. The above cited stream function-contraction isd, leading to a contraction ratié=D/d. The gov-
vorticity analyses employed different ways of avoiding the infinit€Ming equations for simulating this channel flow can be expressed
vorticity at the sharp corners. Investigations into this channel floliy vector form as:

allow better understanding of flow separation, re-attachment and 1

recirculation, which are common features in engineering practice. u-Vu=-Vp+ R—Vzu, Q)
As a result, we conduct a parametric study by varying the Rey- €

nolds numbers and the contraction ratios. V.u=0. 2)

When conducting experiments for the flow downstream of a ) .
plane, symmetric channel expansion, Cherdron e{@J.and In the above equations,andv are the components of the velocity

Sobey[7] observed a larger recirculation region which appeareffctoru in thex andy directions, respectively, arulis the static
; jpressure. These primitive variables have_been normalized by di-

tence of a critical Reynolds number, Rebove which the flow V|d|2ng uandv by the inlet mean velocityl mean and p by

becomes substantially different from that observed below th/mean Wherep is the fluid density. The independent variables

value. When the flow is no longer symmetric about the centerlifé€ non-dimensionalized by the upstream channel hélglgad-

of the channel, a process known as pitchfork bifurcation has bl t© the Reynolds number, R@UpeaP/u, Where u denotes

found to occur. Under these circumstances, momentum transfa¢ dynamic viscosity. )

proceeds between the fluid shear layers. This transfer in momenUPstream of the step plane, the fluid enters the channel at

tum, in turn, causes a pressure gradient to form across the chanfigl ~ 2:>» at which a fully developed velocity profile is prescribed

Such a pressure gradient may lead to an asymmetric flow. \WeU=(6(0.5-y)(0.5-y),0). The channel exit is considered to

refer to this phenomenon as the Coanda eff@&t Numerical

simulation of the contraction flow in geometrically symmetric

channels has been conducted mostly in a half dorkib]. In / salient corner
this paper, we address the bifurcation flow in the full sudden con-  =_ _ L ]
traction channel. % Qlﬁ’ =
. . . . 0 1p corner
The remaining sections of this paper are organized as follows. S / fFoct)
In Section 2, we present the modeling equations with which we = — T
will work. This is followed by use of the finite volume discretiza- So+ & a Ls o
tion method and the segregated solution algorithm. In Section 4, » | 2 - | (floor)
we describe first the computational details and then the numerical © = downstream channel
results, with emphasis on the effects of contraction ratio and the ) X
sl B = contraction ratio C=D/d
1 upstream channel

1Author to whom all corresondence should be sent. ¢ }
e-mail: sheu@sccs.na.ntu.edu.tw. Xmin 0. Xmax
Contributed by the Fluids Engineering Division for publication in ticeJBNAL X iaxis
OF FLUIDS ENGINEERING. Manuscript received by the Fluids Engineering Division .
March 16, 1999; revised manuscript received November 7, 2001. Associate Editoig. 1 The geometry and controlling lengths that can charac-
U. Ghia. terize the flow reversal in the contraction channel

444 | Vol. 124, JUNE 2002 Copyright © 2002 by ASME Transactions of the ASME



Table 1 The computed separation and reattachment lengths for the case of C=2

Length L L, Ly
Reynolds number Re 1000 2000 1000 2000 1000 2000
Dennis & Smith [2] 0.138 0.182 0.0810.093 - -—--
Hunt [3] 0.154  0.197 0.082 0.094 0.207 0.481
Hawken et al. [4) 0.143 - 0.077 --- 0.239 ---
Huang & Seymour [5] 0.138 --- 0.081 --- 0.222 ---
Present: 40*20, A=1/20 0.085 0.145 0.05¢ 0.067 none none

80*40, h=1/40 0.162 0.202 0.0810.093 0.182 0.345

160*80, h=1/80 0.152 0.198 0.084 0.094 0.254 0.639

320*160, A =1/160 0.146 0.191 0.082 0.095 0.269 0.606

640*320, h=1/320 0.142  0.186 0.083 0.094 0.235 0.568

1280%640, k= 1/640 0.140 0.183 0.08z 0.094 0.222  0.543

be sufficiently far from the step to allow the flow to have a zerthese equations separately by the consistent SIMRbE
gradient velocity profile. Given this assumption we prescribe zeRIMPLE-C) solution algorithm[12]. Use of this algorithm has
gradient velocity vector at=5. The no-slip velocity condition is, been found to produce accurate results with a good rate of con-
as a usual, prescribed on the solid walls. In addition to accommargence. The pressure field is solved using the pressure correc-
dating closure boundary conditiof8], the presently employed tion method. In the staggered meshes, there are no storage points
primitive-variable formulation can avoid dealing with the cornefor the pressure at the domain boundary. As a result, specification
singularity, which is encountered in the stream function-vorticitgf pressure boundary conditions is not needed. The scheme

formulation. adopted here has been validated against analytic scalar transport
equation and Navier-Stokes equations to ensure accuracy in space.
3 The Numerical Model The interested reader can refer to Chiang and $h8li In all the

ases investigated, the solution was said to have converged when
(1)—~(2) are integrated in their respective finite volume, each e globalL,-norm of pressure and velocity residuals reached a

15 ; ; ; ;
which are associated with a particular primitive variable and }@lué below 10°. Besides this stringent convergence require-
placed on the centroid of the finite volume. A serious problenfi€nt. it is also demanded that the relative difference of mass flux
which has been encountered when simulating incompressil!ﬂ‘%twee” the inlet and other arbitrarily chosen cross sections be

Navier-Stokes equations, is checkerboard pressure oscillations/8%s than 10%.
overcome this difficulty, field variables are stored at staggered
grids. Numerical simulation of incompressible Navier-Stoke .
equations entails another instability, which is evident from th Numerical Results
oscillatory velocities, when dominated advective terms are dis-In the present investigation, a computer code was run to simu-
cretized using centered schemes. The loss of convective stabilate the fluid flow through three channels, each of which contains
is particularly pronounced in multi-dimensional flow simulationsa plane symmetric contraction. The channel geometry is charac-
To fix this problem, we have modified the QUICK scheme oferized by the dimensionless contraction rafie-2, 4, 8. Rey-
Leonard[10] and implemented it in non-uniform grids to resolvenolds numbers in the wide range of & Re<4000 for the case of
this instability problem and avoid the false diffusion error. Dis€=2 and in the range of 0s1Re<2000 for case£ =4, 8 were
cretization of other derivatives is performed using the centeredensidered in order to allow us to study the Coanda effect. When
scheme for revealing their elliptic characters. For a more detailednducting a numerical simulation, it is important to obtain grid-
representation of the nonuniform flux discretization, see for exadependent solutions. For this purpose, we will consider rectan-
ample Chiang et al.11]. gular Cartesian grids, which are overlaid uniformly on the region
In solving the finite volume discretized equations f@j—(2), of interest. For the case o€=2, grid sizes withAx=Ay
we abandon the coupled approach due to the need for much mer#/20, 1/40, 1/80, 1/160, 1/320, and 1/640 were used in the grid
disk storage space compared to the space needed when solviafimement study. We considered that grid-independent solutions

As the name of finite volume method indicates, working Eq
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Table 2 Grid details of Grid-A (@)

0.5

Exp., Durst et al. (1987) u=3
C Xmin Xmax | N-Ax N-Ay (Axmin,Axmax) (Aymin’Aymax) 8] — Num., present ‘ —
2 | 25 450 110 130 (0.001,025)  (0.0005, 0.022) e DDD}J)
k2
4 2.5 +5.0 110 180 (0.001, 0.25) (0.0005, 0.010) 7] 2 5 8 10 15 20 30 50 80
a x location (*100)
8 | 25 +5.0]| 110 180 (0.001,0.25)  (0.0005, 0.008) 80 -50 30 -20 ~15 ~10 -8 =5 0
had been obtained when the separation lehgtand reattachment (b)

0.5

lengthsL, andLj, as schematically shown in Fig. 1, all differed

by less than 5% for two successive grids. The finer of the two

grids was then chosen to produce the solution. .
Table 1 tabulates the computed lengths for flow conditions con- % 3...\1...

sidered at Re1000 and 2000. For comparison purposes, other =

numerical datd42-5] are also included in the table. It can be seen

that, for the channel witlC = 2, the agreement between the data is

very good. Although very accurate solutions can be obtained, itis -7 -45 -2 -15-10 5 -3 -z o

fairly expensive to conduct all calculations in the finest grid,

which involves 1280 and 640 nodes along thandy directions, Fig. 3 A comparison of the computed  u-velocity profiles with

respectively. It is more appropriate to locally refine grids in thiéhe experimental data of Durst et al.  [1]. (a) C=2, Re=426; (b)

region of the contraction and in regions near the solid wall. Use 64, Re=1150.

grids tabulated in Table 2 was shown to produce no observable

difference in the velocities obtained from the finest uniform grid.

Grid-A consumes Only 1/60 of the grld pOintS for the case with tk@]cy arises from non-convergent solutions, we p|0’[ in F|g 4 con-
uniform grid size 1/640. In our computational results, more thagergence histories against iterations. Solutions were considered to
100 times the CPU time was saved due to grid reduction withogé convergent as the global pressure and velocity residuals
sacrificing the prediction accuracy. To show clearly that the solysgched a value of 1G8. Having obtained the perfect conver-
tion indeed remains accurate, we plot the streamwiselocCity gence of the solution, we may attribute the discrepancy between
profiles at severak locations. It can be seen from Figia2 that = the two-dimensional numerical solutions and three-dimensional
the streamwise velocities computed on the finest uniform grigkperimental data to the flow mdirection, which is normal to the

system for Re=1000 compare very favorably with those compjane of symmetry. It is worth reminding the reader that the ex-
puted on the much coarser nonuniform Grid-A. Good agreement

is also observed for the case with R2000 (Fig. 2(h)).
The following analysis was conducted on non-uniform Grid-A
to save disk space and CPU time. Two test conditidDs 2,Re L@ , 1 (b)

5

I}illxp” Durst e: al. (1987) u=6
o N e PR .
FRRSEREEDD

7 10 15 20 25 55 B85
x location (*100)

0.2

-0.25
|

-0.5

=426) and C=4,Re=1150), which were experimentally studied -
by Durst et al[1], will be considered. As Fig. 3 shows, there is )
good overall agreement between the computed and measurec ‘s . 's
streamwiseu-velocity profiles. A larger discrepancy is observed
immediately upstream and downstream of the contraction step, in g o g N
particular for the case witie=4. A check whether this discrep- % '= g9
S ey
------ uniform, h=1/640, 1280*640 -
(a) —— non-—uniform, Grid-A, 110*130 }LS% vel. ;el.
° T ‘ ‘ r % . : p§ : :
J | ~o 5000 10000 15000 ] 5000 10000 15000
- u ‘ iterations iterations
T 0.2 0.4 0.6 0.8 1
> x location - (C) . (d)
?-—04 -0.2 o
------ uniform, h=1/640, 1280*640 g g
(b) —— non-uniform, Grid-A, 110*130 u=3.0, E L] [ ‘g‘ g
° T T [ T
EL J// ‘ u % i %]
<
T 0.2 0.4 0.6 0.8 1
> x location tvel. vel.
" & , ‘ p L p
$ ~o 5000 10000 15000 “o 20000 40000 60000
—0.4 -0.2 0 iterations iterations
Fig. 2 A comparison of u-velocity profiles computed on uni- Fig. 4 The plot of residuals reduction, cast in L,-norm, against
form and nonuniform grids for the case with C=2. (a) Re iteration numbers for dependent variables. (a) C=2, Re=426;
=1000; (b) Re=2000. (b) C=4, Re=1150; (c) C=4, Re=2000; (d) C=8, Re=2000.
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S1o 10 10 10° 10 10*
Reynolds Number Re
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+ axis Fig. 6 A comparison of separation /reattachment lengths of
upstream salient corner eddy between the present calculation
Fig. 5 A comparison of the presently computed vorticity ¢ and other numerical Qata for C=2, 4, 8 at different Reynolds
=(dvldx—dul dy) with that using the stream function-vorticity numbers. (a) Separation length L, ; (b) reattachment length L,.

formulation for the case of C=2 and Re=1000. (a) Vorticity

contours near the tip corner;  (b) vorticity distribution along the . .
downstream channel roof /floor. The downstream tip corner eddy becomes visible as the Rey-

nolds number increases up toReX. The results shown in Fig.
7 reveal that the tip corner reattachment lenigthvaries linearly
with the Reynolds number according to;=a* Re—b, where

perimental data of Durst et al1] were obtained in a channel,

which had a width of 1B. Showing this width is sufficiently deep (a)

to allow the present comparison is beyond the scope of this study.

8

L L L L L

. \
Symmetric Solution X

1

«
. . . . . . - -
Three-dimensional investigation of this problem is left for future 4 o computed data e
i ) — regression line x
studies. §ul L3=0.336(Re/1000)-0.109 - 1
4.1 Half-Domain Computation. Separation in a contrac- % | Bifurcated Sotl‘t:lti?lnt
. . . . . ] x
tion channel can be characterized by the recirculation eddies atthe g | ... spline fitting curve ek
upstream salient corner and downstream tip corner. It is, thus, § © (Re),~3080
important to select controlling parameters that could well charac- %
. . . @
terize the flow separation. We choose the separation ldngémd ~o : . . , : . ,
H H B . [ 500 1000 1500 2000 2500 3000 3500 4000
re-attachment length, in a salient corner. While the tip corner Reynolds number Re
separation length existed, its value was too small to be considered. , (b) . ‘ .
Therefore, only the reattachment lendthis considered in the tip = = [ Symmetric Solution
corner. Investigations are done by varying the Reynolds number £, ° :g;g:;;i data o
and the contraction ratio. To begin with, calculations from Re § 21 L3=0.401(Re/1000)-0.056 T -
=0.1 to Re=4000 forC=2 and Re=2000 forC=4 and 8 were < | Bifurcated Solution
carried on the half channel by imposing the symmetric boundary §  { _x computed data
L. . . ? . A spline fitting curve L
condition at the centerling=0 in order to obtain symmetric so- g s ok
lutions. These validated half-domain solutions, as schematic in (Re)~1350
Fig. 5, will be compared with those computed in the full channel £ o : ‘ .
for clarifying the presence of bifurcation solutions. o 00 1000 1500 2000
. eynolds number Re
The separation/reattachment lengthsandL, of the upstream - (0

salient corner eddy are plotted logarithmically against the Rey-
nolds number as shown in Fig. 6. Included in this figure are nu-
merical solutions of Hawken et di4] and Dennis and Smitf2]

for case<C=2 and 4. It is shown thdt; tends to have a constant
value, which is smaller than that tf, as Re decreases from®.0

to 10 1. As Re>1(P, lengthsL; andL, are prone to decrease,
with the lengthL, being largely decreased. This implies that
has a tendency to reach the valueLgfas Re approaches to“10

A further increase of Re causks to have a value larger thdry,.
When the Reynolds number is further increased up g both
lengthsL, andL, increase with Re. The, increases at a larger Fig. 7 The plot of reattachment lengths L of downstream tip

slope. When the Reynolds number becomes larger thanL44s  corner eddy against Reynolds numbers.  (a) C=2; (b) C=4; (¢)
still larger thanL,,. C=38.

Symmetric Seclution
¢ computed data
< | regression line
© L3=0.258(Re/1000)-0.032 e ®

| Bifurcated Solution
x computed data
"""""" spline fitting curve

0.2

reattachment length 1Lz
0.4

(Re),~1100

T T
500 1000 1500 2000
Reynolds number Re

0
o
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Table 3 The computed separation and reattachment lengths. (a) The computed sym-
metric solution in a half-channel.  (b) and (c) reveal bifurcated solutions, in percent-
age difference relative to (@), in the full-channel computation.

L L, L,
C Re
(a) (b) (©) (a) (b) © (a) ® (©)
1000 0.140 0.0%  +0.1% | 0.078 0.0%  +0.1% | 0.228 0.0% +0.7%
2000 0.181 0.0%  +0.1% | 0.089 0.0%  +0.1% | 0.562 0.0%  +0.6%
2800 0.204 0.0%  +0.1% | 0.096 0.0% +0.1% | 0.834 -0.6% +1.1%
2
3200 0212 -05% +0.6% | 0.098 -02% +0.3% | 0.969 -22.2% +21.9%
3600 0219  -1.1% +1.2% | 0.099 -0.5% +0.5% | 1.103  -38.7% +36.6%
4000 0227  -13% +1.4% | 0.100 -0.6% +0.6% | 1.237 -46.2% +40.4%
500 0.157 0.0% 0.0% | 0.097 0.0% 0.0% | 0.146 0.0% +0.7%
1000 0.202 0.0% 0.0% 0.112 0.0% 0.0% | 0.343 -0.1% +0.8%
1200 0214  0.0% 0.0% 0.116 0.0% 0.0% | 0423 -0.6% +1.2%
4
1400 0.225 -03% +0.3% { 0.119 -02% +0.3% | 0.504 -20.5% +19.5%
1700 0.239  -06% +0.6% | 0.123  -0.4% +0.4% | 0.626 -45.6% +37.6%
2000 0250 -0.6% +0.7% | 0.126  -0.4% +0.5% | 0.749 -53.9% +37.4%
400 0.156 0.0% 0.0% | 0.100 0.0% 0.0% 0.073 0.0% +1.0%
700 0.194 0.0% 0.0% 0.112 0.0% 0.0% | 0.148 -0.1% +0.8%
1000 0.217 0.0% 0.0% | 0.120 0.0% 0.0% | 0224 -08% +1.2%
8
1200 0231  -03% +03% | 0.124  -02% +0.2% | 0275 -33.0% +29.5%
1500 0.246 -03% +03% | 0.130 -0.2% +0.2% | 0.354 -51.2% +36.9%
2000 0.267 -0.4% +0.4% | 0.135 -03% +0.3% | 0.485 -62.6% +28.4%

(a, b)=(0.336x107%,0.109), (0.40% 10 3,0.056) and (0.258 domain calculations can be as high as 1%lfprandL, and over
%102 0.032) forC=2, 4 and 8, respectively. Note thag|c_, 20% forL s as the value of Re is larger than 3200, 1400, and 1200

for C=2, 4, and 8, respectively.
(?ol;n3Lc's:?a>rgL<:r|C’[;;r\1N T(E)r(])o?itog%ngsi;hreesezggg;guI::g r8t.)e ~Note that the critical Reynolds numbers for pitchfork bifurca-
Under these circumstances;|c_,>Lalc—»>Ls|c_s. tion fall into the ranges of 2860Re<3200, 12_0@:Re<1400,
and 1008<Re<1200 forC=2, 4, and 8, respectively. The larger

4.2 Full-Domain Computation. For clarifying the presence the contraction ratio, the easier the bifurcation sets in. In this
of the well-known pitchfork bifurcation in contraction channelstudy, we plot the value oE; on the channel roof/floor from
we conducted analysis on the entire channel. To provide a mealutions computed in the full channel to determine critical Rey-
sure of flow asymmetry, we subtract the half-domain solution®lds numbers. We then determine the intersection point of the
from the full-domain solutions for the lengths,, L,, andL;. resulting parabola, as shown in Fig. 7, with the line computed
The resulting lengthsAL,, AL,, and AL; are normalized by under the half-domain calculations. The critical Reynolds num-
those obtained on the basis of half-domain analysis. We tabuléiers are obtained as 3080, 1350, and 1100 for channelsQvith
L; andAL;/L; (i=1,2,3) by varying the Reynolds number and=2, 4, and 8, respectively. To confirm the bifurcated solutions are
the contraction ratio in Table 3. The results reveal that when tiedeed the convergent solutions, we plot in Figk) and(4d) the
value of Re is lower than 2800, 1200, and 1000@ct 2, 4, and residuals against iterations for flows with R2000 in channels
8, respectively, there exists a stable flow in which the recirculativgth C=4 and 8, respectively.
eddies have the same size on the roof/floor of the channel. UndeWhen the Reynolds number is larger than its critical value, it is
the circumstances, solutions compare favorably with half-domaseen from Fig. 8 that the streamwigevelocity profiles become
solutions in the sense that the difference between two sets of dasgmmetric with respect to the centerline, with the detached flow
is less than 0.1% for lengths; andL, and 1% for lengthL;. being directed toward either one of the channel wall. The stream-
This is not the case as Re continuously increases, in particular fioe plots show that one recirculation region immediately down-
the reattachment length;. The difference between half- and full- stream of the tip vortex becomes larger at the expense of the other.
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Fig. 8 The plot of streamlines and  u-velocity profiles to reveal
the presence of Coanda effect. (a) C=2, Re=4000; (b) C=4,
Re=2000; (c) C=8, Re=2000.

y axis
0

Since the flow pattern is asymmetric with respect to the chanr
centerline, a process known as bifurcation occurs. Under this ¢
cumstance, momentum transfer between the fluid shear layers :

in. The momentum exchange in the direction from the larger edc,
to the smaller eddy leads to a shear layer at one boundary of }:rllge 9 The plot of pressure contours to reveal the pressure
channel. The roofsmalle) eddy acquires momentum at the ex- ¥ : . - . _
pense of the other floor boundary layer. As a result, a press%r i'ggéos_‘e?;;’ cm=tg?eRZT;g§(lj (8 C=2, Re=4000; (b) C=4,
gradient is formed across the channel. As Fig. 9 shows, the pres- ' ' '
sure distribution can cause the asymmetric flow to occur. When
the Coanda effect occurs, the shear layer with the greater momen-

tum attaches to the channel wall more rapidly than does the 'a¥ﬁfs way are 3070, 1360, and 1100 for channels \@ith2, 4, and

with '?SS momentum. We_ can say in mqthematlcal terms that %"respectively. A comparison of Figs. 7 and 11 reveals that critical
furcation occurs and multiple stable solutions to the Nawer-Stokge%yno'ds numbers determined by the above two means are, in
equations may coexilL4]. Here, we provide readers a clear pic ssence, identical. It can be concluded that=B@75, 1355 and ’
ture of asymmetric solutions for the primary velocity componerﬁloo (obtained from the mean value of two criterire the criti-

u, pressurg and their derivatives with respect xoandy. Figure cal Reynolds numbers for channels with=2, 4 and 8, respec-

10 plots solutions at the streamwise location0.1 for the flow tively. For further confirming of the validity of these critical Rey-

-0.0625

X axis

-, inlet velocity profile. Based on the critical Reynolds numbers,
Other measures of the flow asymmetry and the critical Re}ﬁhmely 1355 1100. for channels with=4 and 8. we have con-
nolds number can be obtained by computing the asymmet ' . ' :

. i 'Ydered Re=1300 and 1050 to check the influence of asymmetric
energy,| = [ "7|,_odx along the centerline of the channel. Itinlet flow on the flow asymmetry. Given 1% inlet asymmetry in
can be seen from Fig. 11 the bifurcation diagram, obtained on thelocity profile, the downstream asymmetrylig is about 1% for
basis of the asymmetry-energy, that the valud @ a nominal the case of Re1050 andC=8. For the case of Re1300 and
zero below the critical Reynolds number. Above the critical Re\c=4, 1% asymmetry in inlet velocity causes only 0.5% differ-
nolds number, at which the so-called pitchfork bifurcation apence in the downstream length;. This indirectly justifies the
pears, the flow apparently becomes asymmetric in the sensk thabtained critical Reynolds numbers.

increases by a factor of 16 10° times of that below the critical ~ As pointed out in the work of Darbandi and Schneifls], the
value. At the critical points seen in Fig. 1dll/d Re takes the peak value of the downstream streamwiseelocity profile does
maximum value. This implies that ahead of the critical pointot occur at the centerline of the channel. Take the cas€ of
d(dl/dRe)dRe<0 while behind the critical point =8 as an example; overshoots in the velocity profile can be ob-
d(dl/d Re)d Re>0. The critical Reynolds numbers determined irserved for Re=500 and 1000, as seen in Fig. 12, owing to the flow
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Fig. 10 An illustration of asymmetric solution profiles com- Fig. 11 The plot of asymmetry-energy values against Rey-
puted at x=0.1 for the case with Re =2000 and C=4. (&) u; (b) nolds numbers in channels of different contraction ratios. (a)
auldy; (c) duldx; (d) p; (e) —adpldy; (f) —adpldx. C=2; (b) C=4; (c) C=8.

separation from the channel roof and floor. In the light of conser- ) )
vation principle, the flow velocity must be increased in regionde smaller the spacing between two consecutive nunidsfis
adjacent to flow separation to conserve the mass. This overshodiis implies that the results ¢0.2-0.1 and(1.2-1.] are different

ing velocity diminishes as the flow gradually develops into thi# computer arithmetic even though these quantities are algebra-
fully developed profile. ically equal. While the machine round-off errors and/or the spac-

ing between two consecutive numbers, an analogy to the experi-

4.3 Mechanism Leading to Transition From Symmetric to mental surface roughness, are static in nature, they are
Asymmetric States. How a flow evolves from symmetric to asymmetrically distributed.
asymmetric states in a symmetric channel has been a subject dbue to the inevitable cancellation errgre. the error in adding
academic importance for many years. Recently, Hawa and Rusakeries of numbers with terms in decreasing grded subtrac-
[16] provided a physical mechanism to explain the transition adfve cancellation errofi.e., the error in subtracting two nearly
laminar flows from symmetric to asymmetric equilibrium states irqual numbers with the same sjgthe associative and distribu-
a symmetrically expanding channel. They pointed out that thize laws are no longer valid in floating-point arithmefit8],
stability mechanism is a result of the interaction between the deaplying that arithmetic in computer is direction-biased. It is,
stabilizing upstream convection effects by the asymmetric pertihus, impossible to retain the computational symmetry. The solu-
bation and the combined stabilizing effects of the viscous dissipéens computed from the channel roof/floor to the symmetry-plane
tion and the downstream convection of perturbations by the basay not be equal to those computed from the symmetry-plane to
symmetric flow. We believe, however, that the observed asymméte channel floor/roofeven though they are algebraically equal
ric disturbance originates from imperfections, such as any sort lof addition, the employed alternating direction impligiDI) so-
asymmetries in the channel geometry and the incoming flow cdmtion algorithm is asymmetric in the implementation. When the
ditions in the experiment. Reynolds number is fairly low, any asymmetric disturbance may

In this paper, we provided a numerical mechanism to explabe decayed by viscous dissipation and the flow symmetry can be
the transition from symmetric to asymmetric states in a symmetstably maintained. As the Reynolds number is increased, the sym-
contraction channel. The errors intrinsic to the nature of the comnetric flow is less stable and the resulting discrete system may
puter itself happen because any computer has a finite precisibecome ill conditioned. Such a system is very sensitive to small
Many floating-point numbers cannot be represented exactly whemanges in input and produces large changes in the output, owing
the representation uses a number base 2 on digital computersi@the propagation of small errors into increasingly larger ones. At
a result, these values must be approximated by one of the neahégh Reynolds numbers, the resulting asymmetries, while fairly
representable values; the difference is known as the machsmall, will propagate and grow and, finally, cause the asymmetric
round-off error. Unlike the real system in algebra, which is corsolutions to occur. According to the works of Hawa and Rusak
tinuous, a floating-point system in computer has g@gpacing [16], as the asymmetric disturbances grow in time for the Rey-
between each number. Because the same number of bits is useablds number beyond its critical value, the combined convection
represent all normalized numbetbe fractional pat the smaller effect of the vorticity perturbation by the axial velocity perturba-
the exponent the greater the density of representable numbers #owl creates a stabilizing influence that stops the growth of the
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; nolds numbers clearly confirm that the pitchfork bifurcation can
(@) w@:rshootmg7 be present. Our finding is that asymmetric solutions, manifested

by unequal tip corner reattachment lengths at the channel floor/
roof, can be stably maintained in cases when the Reynolds num-
ber exceeds its critical Reynolds number. Another way to deter-
mine the critical Reynolds number is to plot the asymmetry-
energy along the centerline of the channel for each investigated
Reynolds number. Mechanism leading to bifurcated solutions is
also provided.
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