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Bifurcations of Flow Through
Plane Symmetric Channel
Contraction
Computational investigations have been performed into the behavior of an incompre
fluid flow in the vicinity of a plane symmetric channel contraction. Our aim is to de
mine the critical Reynolds number, above which the flow becomes asymmetric with re
to the channel geometry using the bifurcation diagram. Three channels, which are
acterized by the contraction ratio, are studied and the critical Reynolds numbers
determined as 3075, 1355, and 1100 for channels with contraction ratios of 2, 4, a
respectively. The cause and mechanism explaining the transition from symmetric to
metric states in the symmetric contraction channel are also provided.
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1 Introduction
There exist many practical applications in which the flow b

havior downstream of a sudden geometric contraction is imp
tant, with the non-Newtonian flow case being of particular int
est. Several investigations have been performed in orde
understand the incompressible flow downstream of a channel
traction, which is planar and is normal to the direction of t
channel wall. These investigations have been both experime
see, for example, Durst et al.@1#, and numerical, for example, th
works of Dennis and Smith@2#, Hunt @3#, Hawken et al.@4#, and
Huang and Seymour@5#. The above cited stream function
vorticity analyses employed different ways of avoiding the infin
vorticity at the sharp corners. Investigations into this channel fl
allow better understanding of flow separation, re-attachment
recirculation, which are common features in engineering pract
As a result, we conduct a parametric study by varying the R
nolds numbers and the contraction ratios.

When conducting experiments for the flow downstream o
plane, symmetric channel expansion, Cherdron et al.@6# and
Sobey@7# observed a larger recirculation region which appea
preferentially at one wall of the channel, thus indicating the ex
tence of a critical Reynolds number, Rec , above which the flow
becomes substantially different from that observed below
value. When the flow is no longer symmetric about the center
of the channel, a process known as pitchfork bifurcation has b
found to occur. Under these circumstances, momentum tran
proceeds between the fluid shear layers. This transfer in mom
tum, in turn, causes a pressure gradient to form across the cha
Such a pressure gradient may lead to an asymmetric flow.
refer to this phenomenon as the Coanda effect@8#. Numerical
simulation of the contraction flow in geometrically symmetr
channels has been conducted mostly in a half domain@1–5#. In
this paper, we address the bifurcation flow in the full sudden c
traction channel.

The remaining sections of this paper are organized as follo
In Section 2, we present the modeling equations with which
will work. This is followed by use of the finite volume discretiza
tion method and the segregated solution algorithm. In Sectio
we describe first the computational details and then the nume
results, with emphasis on the effects of contraction ratio and
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Reynolds number on the flow asymmetry. Also, the mechan
for the transition from symmetric to asymmetric states is p
vided. Finally, in Section 5, we provide concluding remarks.

2 The Mathematical Model
In the present investigation, we simulated the flow of an inco

pressible fluid through a two-dimensional contraction chann
Referring to Fig. 1, the centerline of the channel is positioned
y50. The upstream channel height and the step height areD and
1/2(D2d), respectively. The channel height downstream of
contraction isd, leading to a contraction ratioC5D/d. The gov-
erning equations for simulating this channel flow can be expres
in vector form as:

u•¹u52¹p1
1

Re
¹2u, (1)

¹•u50. (2)

In the above equations,u andv are the components of the velocit
vectoru in the x andy directions, respectively, andp is the static
pressure. These primitive variables have been normalized by
viding u and v by the inlet mean velocity,Umean, and p by
rUmean

2 , wherer is the fluid density. The independent variabl
are non-dimensionalized by the upstream channel heightD, lead-
ing to the Reynolds number, Re5rUmeanD/m, wherem denotes
the dynamic viscosity.

Upstream of the step plane, the fluid enters the channe
x522.5, at which a fully developed velocity profile is prescribe
as u5(6(0.51y)(0.52y),0). The channel exit is considered t

n
itor:Fig. 1 The geometry and controlling lengths that can charac-
terize the flow reversal in the contraction channel
002 by ASME Transactions of the ASME



Journal of Fluids
Table 1 The computed separation and reattachment lengths for the case of CÄ2
e
,
m

q

s

t
d
b

i

e

m

on-
rrec-
oints
tion
eme
sport
pace.

hen
d a
re-
flux

be

mu-
ins
rac-

hen
id-
tan-
ion

grid
ions
be sufficiently far from the step to allow the flow to have a ze
gradient velocity profile. Given this assumption we prescribe z
gradient velocity vector atx55. The no-slip velocity condition is
as a usual, prescribed on the solid walls. In addition to accom
dating closure boundary conditions@9#, the presently employed
primitive-variable formulation can avoid dealing with the corn
singularity, which is encountered in the stream function-vortic
formulation.

3 The Numerical Model
As the name of finite volume method indicates, working E

~1!–~2! are integrated in their respective finite volume, each
which are associated with a particular primitive variable and
placed on the centroid of the finite volume. A serious proble
which has been encountered when simulating incompress
Navier-Stokes equations, is checkerboard pressure oscillation
overcome this difficulty, field variables are stored at stagge
grids. Numerical simulation of incompressible Navier-Stok
equations entails another instability, which is evident from
oscillatory velocities, when dominated advective terms are
cretized using centered schemes. The loss of convective sta
is particularly pronounced in multi-dimensional flow simulation
To fix this problem, we have modified the QUICK scheme
Leonard@10# and implemented it in non-uniform grids to resolv
this instability problem and avoid the false diffusion error. D
cretization of other derivatives is performed using the center
scheme for revealing their elliptic characters. For a more deta
representation of the nonuniform flux discretization, see for
ample Chiang et al.@11#.

In solving the finite volume discretized equations for~1!–~2!,
we abandon the coupled approach due to the need for much
disk storage space compared to the space needed when so
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these equations separately by the consistent SIMPLE~or
SIMPLE-C! solution algorithm@12#. Use of this algorithm has
been found to produce accurate results with a good rate of c
vergence. The pressure field is solved using the pressure co
tion method. In the staggered meshes, there are no storage p
for the pressure at the domain boundary. As a result, specifica
of pressure boundary conditions is not needed. The sch
adopted here has been validated against analytic scalar tran
equation and Navier-Stokes equations to ensure accuracy in s
The interested reader can refer to Chiang and Sheu@13#. In all the
cases investigated, the solution was said to have converged w
the globalL2-norm of pressure and velocity residuals reache
value below 10215. Besides this stringent convergence requi
ment, it is also demanded that the relative difference of mass
between the inlet and other arbitrarily chosen cross sections
less than 10210.

4 Numerical Results
In the present investigation, a computer code was run to si

late the fluid flow through three channels, each of which conta
a plane symmetric contraction. The channel geometry is cha
terized by the dimensionless contraction ratioC52, 4, 8. Rey-
nolds numbers in the wide range of 0.1<Re<4000 for the case of
C52 and in the range of 0.1<Re<2000 for casesC54, 8 were
considered in order to allow us to study the Coanda effect. W
conducting a numerical simulation, it is important to obtain gr
independent solutions. For this purpose, we will consider rec
gular Cartesian grids, which are overlaid uniformly on the reg
of interest. For the case ofC52, grid sizes with Dx5Dy
51/20, 1/40, 1/80, 1/160, 1/320, and 1/640 were used in the
refinement study. We considered that grid-independent solut
JUNE 2002, Vol. 124 Õ 445
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had been obtained when the separation lengthL1 and reattachmen
lengthsL2 andL3 , as schematically shown in Fig. 1, all differe
by less than 5% for two successive grids. The finer of the t
grids was then chosen to produce the solution.

Table 1 tabulates the computed lengths for flow conditions c
sidered at Re51000 and 2000. For comparison purposes, ot
numerical data@2–5# are also included in the table. It can be se
that, for the channel withC52, the agreement between the data
very good. Although very accurate solutions can be obtained,
fairly expensive to conduct all calculations in the finest gr
which involves 1280 and 640 nodes along thex andy directions,
respectively. It is more appropriate to locally refine grids in t
region of the contraction and in regions near the solid wall. Use
grids tabulated in Table 2 was shown to produce no observ
difference in the velocities obtained from the finest uniform gr
Grid-A consumes only 1/60 of the grid points for the case with
uniform grid size 1/640. In our computational results, more th
100 times the CPU time was saved due to grid reduction with
sacrificing the prediction accuracy. To show clearly that the so
tion indeed remains accurate, we plot the streamwiseu-velocity
profiles at severalx locations. It can be seen from Fig. 2~a! that
the streamwise velocities computed on the finest uniform g
system for Re51000 compare very favorably with those com
puted on the much coarser nonuniform Grid-A. Good agreem
is also observed for the case with Re52000 ~Fig. 2~b!!.

The following analysis was conducted on non-uniform Grid
to save disk space and CPU time. Two test conditions (C52,Re
5426) and (C54,Re51150), which were experimentally studie
by Durst et al.@1#, will be considered. As Fig. 3 shows, there
good overall agreement between the computed and meas
streamwiseu-velocity profiles. A larger discrepancy is observe
immediately upstream and downstream of the contraction ste
particular for the case withC54. A check whether this discrep

Table 2 Grid details of Grid-A

Fig. 2 A comparison of u -velocity profiles computed on uni-
form and nonuniform grids for the case with CÄ2. „a… Re
Ä1000; „b… ReÄ2000.
446 Õ Vol. 124, JUNE 2002
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ancy arises from non-convergent solutions, we plot in Fig. 4 c
vergence histories against iterations. Solutions were considere
be convergent as the global pressure and velocity resid
reached a value of 10218. Having obtained the perfect conve
gence of the solution, we may attribute the discrepancy betw
the two-dimensional numerical solutions and three-dimensio
experimental data to the flow inz-direction, which is normal to the
plane of symmetry. It is worth reminding the reader that the

Fig. 3 A comparison of the computed u -velocity profiles with
the experimental data of Durst et al. †1‡. „a… CÄ2, ReÄ426; „b…
CÄ4, ReÄ1150.

Fig. 4 The plot of residuals reduction, cast in L 2-norm, against
iteration numbers for dependent variables. „a… CÄ2, ReÄ426;
„b… CÄ4, ReÄ1150; „c… CÄ4, ReÄ2000; „d… CÄ8, ReÄ2000.
Transactions of the ASME
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perimental data of Durst et al.@1# were obtained in a channe
which had a width of 18D. Showing this width is sufficiently deep
to allow the present comparison is beyond the scope of this st
Three-dimensional investigation of this problem is left for futu
studies.

4.1 Half-Domain Computation. Separation in a contrac
tion channel can be characterized by the recirculation eddies a
upstream salient corner and downstream tip corner. It is, th
important to select controlling parameters that could well char
terize the flow separation. We choose the separation lengthL1 and
re-attachment lengthL2 in a salient corner. While the tip corne
separation length existed, its value was too small to be conside
Therefore, only the reattachment lengthL3 is considered in the tip
corner. Investigations are done by varying the Reynolds num
and the contraction ratio. To begin with, calculations from
50.1 to Re54000 forC52 and Re52000 forC54 and 8 were
carried on the half channel by imposing the symmetric bound
condition at the centerliney50 in order to obtain symmetric so
lutions. These validated half-domain solutions, as schemati
Fig. 5, will be compared with those computed in the full chan
for clarifying the presence of bifurcation solutions.

The separation/reattachment lengthsL1 andL2 of the upstream
salient corner eddy are plotted logarithmically against the R
nolds number as shown in Fig. 6. Included in this figure are
merical solutions of Hawken et al.@4# and Dennis and Smith@2#
for casesC52 and 4. It is shown thatL1 tends to have a constan
value, which is smaller than that ofL2 as Re decreases from 100

to 1021. As Re.100, lengthsL1 and L2 are prone to decrease
with the lengthL2 being largely decreased. This implies thatL1

has a tendency to reach the value ofL2 as Re approaches to 101.
A further increase of Re causesL1 to have a value larger thanL2 .
When the Reynolds number is further increased up to 102, both
lengthsL1 andL2 increase with Re. TheL1 increases at a large
slope. When the Reynolds number becomes larger than 101, L1 is
still larger thanL2 .

Fig. 5 A comparison of the presently computed vorticity z
Ä„v ÕxÀu Õy … with that using the stream function-vorticity
formulation for the case of CÄ2 and ReÄ1000. „a… Vorticity
contours near the tip corner; „b… vorticity distribution along the
downstream channel roof Õfloor.
Journal of Fluids Engineering
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The downstream tip corner eddy becomes visible as the R
nolds number increases up to Re;102. The results shown in Fig
7 reveal that the tip corner reattachment lengthL3 varies linearly
with the Reynolds number according toL35a* Re2b, where

Fig. 6 A comparison of separation Õreattachment lengths of
upstream salient corner eddy between the present calculation
and other numerical data for CÄ2, 4, 8 at different Reynolds
numbers. „a… Separation length L 1 ; „b… reattachment length L 2 .

Fig. 7 The plot of reattachment lengths L 3 of downstream tip
corner eddy against Reynolds numbers. „a… CÄ2; „b… CÄ4; „c…
CÄ8.
JUNE 2002, Vol. 124 Õ 447
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Table 3 The computed separation and reattachment lengths. „a… The computed sym-
metric solution in a half-channel. „b… and „c… reveal bifurcated solutions, in percent-
age difference relative to „a…, in the full-channel computation.
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(a, b)5(0.33631023,0.109), (0.40131023,0.056) and (0.258
31023,0.032) forC52, 4 and 8, respectively. Note thatL3uC54
.L3uC58.L3uC52 when Re,1000. As the Reynolds number be
comes larger than 1000, the trend is reversed forC52 and 8.
Under these circumstances,L3uC54.L3uC52.L3uC58 .

4.2 Full-Domain Computation. For clarifying the presence
of the well-known pitchfork bifurcation in contraction channe
we conducted analysis on the entire channel. To provide a m
sure of flow asymmetry, we subtract the half-domain solutio
from the full-domain solutions for the lengthsL1 , L2 , and L3 .
The resulting lengthsDL1 , DL2 , and DL3 are normalized by
those obtained on the basis of half-domain analysis. We tabu
Li and DLi /Li ( i 51,2,3) by varying the Reynolds number an
the contraction ratio in Table 3. The results reveal that when
value of Re is lower than 2800, 1200, and 1000 forC52, 4, and
8, respectively, there exists a stable flow in which the recircula
eddies have the same size on the roof/floor of the channel. U
the circumstances, solutions compare favorably with half-dom
solutions in the sense that the difference between two sets of
is less than 0.1% for lengthsL1 and L2 and 1% for lengthL3 .
This is not the case as Re continuously increases, in particula
the reattachment lengthL3 . The difference between half- and ful
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domain calculations can be as high as 1% forL1 andL2 and over
20% forL3 as the value of Re is larger than 3200, 1400, and 12
for C52, 4, and 8, respectively.

Note that the critical Reynolds numbers for pitchfork bifurc
tion fall into the ranges of 2800,Re,3200, 1200,Re,1400,
and 1000,Re,1200 forC52, 4, and 8, respectively. The large
the contraction ratio, the easier the bifurcation sets in. In t
study, we plot the value ofL3 on the channel roof/floor from
solutions computed in the full channel to determine critical Re
nolds numbers. We then determine the intersection point of
resulting parabola, as shown in Fig. 7, with the line compu
under the half-domain calculations. The critical Reynolds nu
bers are obtained as 3080, 1350, and 1100 for channels witC
52, 4, and 8, respectively. To confirm the bifurcated solutions
indeed the convergent solutions, we plot in Figs.~4c! and~4d! the
residuals against iterations for flows with Re52000 in channels
with C54 and 8, respectively.

When the Reynolds number is larger than its critical value, i
seen from Fig. 8 that the streamwiseu-velocity profiles become
asymmetric with respect to the centerline, with the detached fl
being directed toward either one of the channel wall. The stre
line plots show that one recirculation region immediately dow
stream of the tip vortex becomes larger at the expense of the o
Transactions of the ASME
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Since the flow pattern is asymmetric with respect to the chan
centerline, a process known as bifurcation occurs. Under this
cumstance, momentum transfer between the fluid shear layers
in. The momentum exchange in the direction from the larger e
to the smaller eddy leads to a shear layer at one boundary o
channel. The roof~smaller! eddy acquires momentum at the e
pense of the other floor boundary layer. As a result, a pres
gradient is formed across the channel. As Fig. 9 shows, the p
sure distribution can cause the asymmetric flow to occur. W
the Coanda effect occurs, the shear layer with the greater mom
tum attaches to the channel wall more rapidly than does the l
with less momentum. We can say in mathematical terms tha
furcation occurs and multiple stable solutions to the Navier-Sto
equations may coexist@14#. Here, we provide readers a clear pi
ture of asymmetric solutions for the primary velocity compone
u, pressurep and their derivatives with respect tox andy. Figure
10 plots solutions at the streamwise locationx50.1 for the flow
with Re52000 in a suddenly contracted channel withC54.
Clearly seen from this figure is that the computed converg
solution does show flow asymmetry. An increased velocity is
company with a decreased pressure.

Other measures of the flow asymmetry and the critical R
nolds number can be obtained by computing the asymme
energy, I 5*0

xmaxn2uy50dx, along the centerline of the channel.
can be seen from Fig. 11 the bifurcation diagram, obtained on
basis of the asymmetry-energy, that the value ofI is a nominal
zero below the critical Reynolds number. Above the critical Re
nolds number, at which the so-called pitchfork bifurcation a
pears, the flow apparently becomes asymmetric in the senseI
increases by a factor of 102;103 times of that below the critica
value. At the critical points seen in Fig. 11,dI/d Re takes the
maximum value. This implies that ahead of the critical po
d(dI/d Re)/d Re,0 while behind the critical point
d(dI/d Re)/d Re.0. The critical Reynolds numbers determined

Fig. 8 The plot of streamlines and u -velocity profiles to reveal
the presence of Coanda effect. „a… CÄ2, ReÄ4000; „b… CÄ4,
ReÄ2000; „c… CÄ8, ReÄ2000.
Journal of Fluids Engineering
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this way are 3070, 1360, and 1100 for channels withC52, 4, and
8, respectively. A comparison of Figs. 7 and 11 reveals that criti
Reynolds numbers determined by the above two means are
essence, identical. It can be concluded that Re53075, 1355 and
1100~obtained from the mean value of two criteria! are the criti-
cal Reynolds numbers for channels withC52, 4 and 8, respec-
tively. For further confirming of the validity of these critical Rey
nolds numbers, we have specified a slightly asymmetrical ini
velocity at the channel inlet by increasing and decreasing
streamwise velocity by 1% at the upper and lower parts of
inlet velocity profile. Based on the critical Reynolds numbe
namely, 1355, 1100, for channels withC54 and 8, we have con-
sidered Re51300 and 1050 to check the influence of asymmet
inlet flow on the flow asymmetry. Given 1% inlet asymmetry
velocity profile, the downstream asymmetry inL3 is about 1% for
the case of Re51050 andC58. For the case of Re51300 and
C54, 1% asymmetry in inlet velocity causes only 0.5% diffe
ence in the downstream lengthL3 . This indirectly justifies the
obtained critical Reynolds numbers.

As pointed out in the work of Darbandi and Schneider@15#, the
peak value of the downstream streamwiseu-velocity profile does
not occur at the centerline of the channel. Take the case oC
58 as an example; overshoots in the velocity profile can be
served for Re5500 and 1000, as seen in Fig. 12, owing to the flo

Fig. 9 The plot of pressure contours to reveal the pressure
gradient setup in the channel. „a… CÄ2, ReÄ4000; „b… CÄ4,
ReÄ2000; „c… CÄ8, ReÄ2000.
JUNE 2002, Vol. 124 Õ 449
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separation from the channel roof and floor. In the light of cons
vation principle, the flow velocity must be increased in regio
adjacent to flow separation to conserve the mass. This oversh
ing velocity diminishes as the flow gradually develops into t
fully developed profile.

4.3 Mechanism Leading to Transition From Symmetric to
Asymmetric States. How a flow evolves from symmetric to
asymmetric states in a symmetric channel has been a subje
academic importance for many years. Recently, Hawa and R
@16# provided a physical mechanism to explain the transition
laminar flows from symmetric to asymmetric equilibrium states
a symmetrically expanding channel. They pointed out that
stability mechanism is a result of the interaction between the
stabilizing upstream convection effects by the asymmetric per
bation and the combined stabilizing effects of the viscous diss
tion and the downstream convection of perturbations by the b
symmetric flow. We believe, however, that the observed asymm
ric disturbance originates from imperfections, such as any so
asymmetries in the channel geometry and the incoming flow c
ditions in the experiment.

In this paper, we provided a numerical mechanism to exp
the transition from symmetric to asymmetric states in a symme
contraction channel. The errors intrinsic to the nature of the co
puter itself happen because any computer has a finite preci
Many floating-point numbers cannot be represented exactly w
the representation uses a number base 2 on digital computer
a result, these values must be approximated by one of the ne
representable values; the difference is known as the mac
round-off error. Unlike the real system in algebra, which is co
tinuous, a floating-point system in computer has gaps~spacing!
between each number. Because the same number of bits is us
represent all normalized numbers~the fractional part!, the smaller
the exponent the greater the density of representable number

Fig. 10 An illustration of asymmetric solution profiles com-
puted at xÄ0.1 for the case with Re Ä2000 and CÄ4. „a… u ; „b…
u Õy ; „c… u Õx ; „d… p ; „e… Àp Õy ; „f… Àp Õx .
450 Õ Vol. 124, JUNE 2002
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the smaller the spacing between two consecutive numbers@17#.
This implies that the results of~0.2-0.1! and~1.2-1.1! are different
in computer arithmetic even though these quantities are alge
ically equal. While the machine round-off errors and/or the sp
ing between two consecutive numbers, an analogy to the exp
mental surface roughness, are static in nature, they
asymmetrically distributed.

Due to the inevitable cancellation error~i.e. the error in adding
a series of numbers with terms in decreasing order! and subtrac-
tive cancellation error~i.e., the error in subtracting two nearl
equal numbers with the same sign!, the associative and distribu
tive laws are no longer valid in floating-point arithmetic@18#,
implying that arithmetic in computer is direction-biased. It
thus, impossible to retain the computational symmetry. The s
tions computed from the channel roof/floor to the symmetry-pla
may not be equal to those computed from the symmetry-plan
the channel floor/roof~even though they are algebraically equa!.
In addition, the employed alternating direction implicit~ADI ! so-
lution algorithm is asymmetric in the implementation. When t
Reynolds number is fairly low, any asymmetric disturbance m
be decayed by viscous dissipation and the flow symmetry can
stably maintained. As the Reynolds number is increased, the s
metric flow is less stable and the resulting discrete system m
become ill conditioned. Such a system is very sensitive to sm
changes in input and produces large changes in the output, o
to the propagation of small errors into increasingly larger ones
high Reynolds numbers, the resulting asymmetries, while fa
small, will propagate and grow and, finally, cause the asymme
solutions to occur. According to the works of Hawa and Rus
@16#, as the asymmetric disturbances grow in time for the R
nolds number beyond its critical value, the combined convect
effect of the vorticity perturbation by the axial velocity perturb
tion creates a stabilizing influence that stops the growth of

Fig. 11 The plot of asymmetry-energy values against Rey-
nolds numbers in channels of different contraction ratios. „a…
CÄ2; „b… CÄ4; „c… CÄ8.
Transactions of the ASME
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perturbation and establishes the asymmetric steady state. In
clusion, we believe that the asymmetric error, originated fr
uneven REAL-representation in computer and from the use of
direction-biased computation, causes the transition from symm
ric to asymmetric states to occur in the presently investiga
contraction channel.

5 Concluding Remarks
Computational investigations have been performed to st

flow bifurcation in the symmetric planar contraction channel. T
results obtained at different channel contraction ratios and R

Fig. 12 The streamlines and u -velocity profiles for the channel
with the contraction ratio of 8. „a… ReÄ500; „b… ReÄ1000.
Journal of Fluids Engineering
con-
m
the
et-

ted

dy
he
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nolds numbers clearly confirm that the pitchfork bifurcation c
be present. Our finding is that asymmetric solutions, manifes
by unequal tip corner reattachment lengths at the channel fl
roof, can be stably maintained in cases when the Reynolds n
ber exceeds its critical Reynolds number. Another way to de
mine the critical Reynolds number is to plot the asymmet
energy along the centerline of the channel for each investiga
Reynolds number. Mechanism leading to bifurcated solution
also provided.
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