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Abstract

To accurately model the inhaled particle motion, equations governing particle trajectories in carrier flow are solved

together with the Navier–Stokes equations. Under the relatively dilute particle condition in the mixture, equations for

two phases are coupled through the interface drag shown in the solid-phase momentum equations. The present study

investigates bifurcation flow in the human central airway using the finite element method. In the gas phase, we employ

the biquadratic streamline upwind Petrov–Galerkin finite element model to simulate the incompressible air flow. To

solve the equations of motion for the inhaled particles, we apply another biquadratic streamline upwind finite element

model. A feature common to two models applied to each phase of equations is that both of them provide nodally exact

solutions to the convection–diffusion and the convection–reaction equations, which are prototype equations for the gas-

phase and the solid-phase equations, respectively. In two dimensions, both models have ability to introduce physically

meaningful artificial damping terms solely in the streamline direction. With these terms added to the formulation, the

discrete system is enhanced without compromising the numerical diffusion error. Tests on inspiratory problem were

conducted, and the results are presented, with an emphasis on the discussion of particle motion. � 2002 Elsevier

Science B.V. All rights reserved.
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1. Introduction

The human lung respiratory system is a large-scale mechanical system having 23 branching airways.
These airways have different diameters, ranging from 18 mm for the trachea to 0.4 mm for other posterior
branchea [1]. Besides difficulties with geometrical complexities and equation nonlinearities in the numerical
simulation, this system is physiologically very complex. Breathed air ventilates towards the alveolar and
then diffuses into capillary blood. The resulting arterialized blood is carried by the pulmonary circulation.
A complete understanding of the above lung respiration system through numerical investigation involves
simulating air and blood flows in vessels, subject to tissue deformation. To make the analysis simple, we
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concentrate in this paper on the gas flow in the airway without considering the effect of vessel elasticity on
the flow motion. A report on our investigation of blood flow in pulmonary circulation has been published
elsewhere [2,3].

The respiratory system is characterized by a network of dichotomous bronchia. For this reason, the
study of airflow in bifurcation airways was considered to be a first step towards gaining a better under-
standing of the human inspiratory/expiratory system. Investigating inspiratory and expiratory airway flows,
without doubt, can be accomplished using scaled-up laboratory models. Such experiments are, however,
expensive and time consuming. Owing to rapid advances in computer technology and ever-improving
numerical techniques, we were motivated to exploit the computational fluid dynamics technique as a tool
for gaining a better understanding of lung respiration. An additional advantage gained is that numerical
simulation allows investigation of various modelling conditions, which may not be possible in a laboratory
setting, at reduced expenditures in time and in cost.

Study of flows in a branching airway has long been the subject of interest for many reasons. The main
reason lies in the tendency for circulation regions to form in the airway. These recirculating eddies can, in
turn, entrain inhaled particles. Therefore, developing an analysis code capable of accurately predicting flow
reversal and deposition sites of inhaled particles in the respiratory airway is important if we are to evaluate
the convective transport of particles in the human lung. Several models of deposition have been proposed in
the literature. Interested readers are referred to a recent review paper for additional details about the re-
spiratory tract deposition models [4]. Accurate prediction of particle trajectories in the model configura-
tions was another focus of the present study.

The rest of this paper is organized as follows: In Section 2, we present Navier–Stokes equations for the
airflow. These equations of motion, subject to divergence-free velocity constraint condition, are solved
together with the solid-phase equations of motion, namely, the particle trajectory equations. For the elliptic
equations to be well-posed, boundary conditions should be prescribed. Section 3 presents the weighted
residuals statement for the gas-phase equations. It is shown that the case with pressure prescribed a priori at
the vessel exit can be theoretically modelled. This is followed by an introduction to the finite elements used
and application of the upwind model to resolve pressure and velocity oscillations, respectively. In Section 4,
we describe the test problem in greater detail. The results obtained from studies of a bifurcation configu-
ration are presented in Section 5. Finally, we draw conclusions in Section 6.

2. Governing equations

In the presence of inhaled particles, the biomechanical study of lung respiration, in essence, involves
investigating gas–solid two-phase equations. Like many engineering analyses, assumptions and simplifi-
cations are made in order to formulate a computationally tractable problem. In what follows, the gas–solid
mixture is assumed to have a constant solid-phase density qp. As for the inhaled air, we consider that the air
speed is not so high as to permit avoiding the need to choose an appropriate, if any, turbulence model for
the airflow. Like many previous investigations, such as some of them in [1–7], the flow is investigated in a
domain of two dimensions to facilitate the analysis. As with the conventional gas–solid two-phase flow
analyses, we assume that the gas and solid phases have complementary regions. In each region, the material
may be treated as a homogeneous continuum. The typical quantity used to describe such a mixture is
known as the porosity a, defined as the ratio of the volume occupied by the gas phase to the total volume.
For the present study, the inhaled fine particles are so diluted that their volumes are considered to be
negligibly small. As a result, it is rational to assume that a ¼ 1 in the present analysis.

Under the assumed condition for the porosity in the gas–solid mixture, we can use the Favre-averaging
(or mass-weighted averaging) approach [8], which has been successfully applied in our previous studies of
gas–solid two-phase flow in gun ballistics [9–11]. The assumption of flow incompressibility is also made
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since the Mach number in the airway is much less than 0.2. With these assumptions and approximations in
mind, the solid-phase continuity equation is automatically satisfied and is, thus, not needed. Under the
laminar and incompressible conditions, the Favre-averaging governing equations for a two-phase inspi-
ratory/respiratory flow problem are summarized separately below:

Gas-phase continuity

r � ua ¼ 0: ð1Þ
Gas-phase momentum

oua
ot

þ ua � rua ¼ � 1

qa

rp þ 1

qa

r � p þ upC; ð2Þ

where C is the interfacial mass transfer. Since chemical reaction is not invoked in between inhaled air and
particles, there exists no regression rate of the solid phase. Thus, the value of C is rationally assigned to be
zero. As for p, it represents the stress tensor in the gas phase

p ¼ 2laD: ð3Þ
In the above, D represents the deformation tensor (or rate of strain tensor). The subscripts ‘‘a’’ and ‘‘p’’ in
Eqs. (1) and (2) denote the air and particle, respectively.

Solid-phase momentum

oup
ot

þ up � rup ¼ � 1

qp

rp þ 1

qp

r � Rþ Sp
qpVp

hF!i �
upC

qp

: ð4Þ

In Eq. (4), Spð� 4pr2pÞ and Vpð� 4
3
pr3pÞ are the surface area and volume of an inhaled particle with a mean

particle radius of rp. Another important source term for determining the particle velocity up is the inter-
phase drag hF!ii. This drag, appearing only in multiple phases, is produced owing to the ineligible relative
velocity, uRð�ua � upÞ, between two phases. As a result, it is conventional to represent hF!iby

hF i ¼ qajuRjuR
6

f̂f : ð5Þ

The constitutive equation for the drag coefficient f̂f follows the one given by Wallis [12]. Another source
term R in Eq. (4) represents the granular stress tensor. This tensor is classified as a diagonal tensor, i.e.,
R ¼ RpI , where I denotes the identity tensor. Usually, the intergranular stress magnitude Rp depends on the
critical porosity [13]. Since porosity for the present mixture is by all means larger than the chosen critical
value, there is no direct contact between particles. This implies that Rp ¼ 0.

Taking all the above considerations into account, the working equation for modelling the particle tra-
jectory is as follows:

up � rup ¼ � 1

qp

rp þ Cpiðua � upÞ; ð6Þ

where Cpi has a close relevance to the Stokes number defined in [14]

Cpi ¼
3qa

8qprp
jua � upjCD: ð7Þ

The Reynolds number has a considerable effect on the drag coefficient CD, as suggested by Cliff and Gauvin
[15]. Thus, we are led to employ the following constitutive equation for CD:

CD ¼ 24

Rep
ð1þ 0:15Re0:687p Þ; ð8Þ

where the particle Reynolds number Rep is defined by
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Rep ¼
2qajua � upjrp

la

: ð9Þ

Eq. (8) is suggested for use when Rep < 103. Given the above particle Reynolds number, the source term Cpi

can be rewritten as

Cpi ¼
3laRepCD

16qpr2p
: ð10Þ

When formulating Eq. (6) for particle motion in carrier gas flow, we neglect the Saffman lift force [16] and
the Brownian force [17]. For particles that are not too small and for flows with high shear rates, the Saffman
lift force can be considered to be prevailing in carrier flow. As for the Brownian force, it is important only
for submicron particles. Gravitational force is not considered in cases of negligibly small free convection.
The so-called Stokes–Cunningham slip correction factor [14,16] is not modelled here since the molecular
mean free-path in carrier gas flow is fairly small under the investigated conditions.

Before presenting the numerical method, we summarize first the following equations which form the
basis for solving the field variables ua, up and p:

r � ua ¼ 0; ð11Þ

ua � rua ¼ � 1

qa

rp þ la

qa

r2ua; ð12Þ

up � rup ¼ � 1

qp

rp þ 3qa

8qprp
jua � upjðua � upÞCD: ð13Þ

Provided that ua is computed from the gas-phase equations, Eq. (13) is well posed. As a result, the above
formulation has a benefit in the sense that two fields of equations can be solved separately and, thus,
considerably simplifying the analysis. We can refer to Eq. (13) as the particle trajectory equation for de-
termining the deposition sites of particles inhaled in the airway. This equation needs to be accurately solved
since deposition sites have been known for years to be essential for determining the efficiency of aerosolized
medicines.

3. Finite element model for gas flow equations

For wider future application, equations for modelling airflow are made dimensionless through the user’s
chosen reference length, L, and the characteristic velocity, U. The resulting dimensionless equations are
expressed as follows:

ua � rua ¼ �rp þ 1

Re
r2ua; ð14Þ

r � ua ¼ 0: ð15Þ
The Reynolds number shown above is defined as Re ¼ UL=m, where m is the kinematic viscosity of the
airflow.

In this study, we seek to obtain the steady-state solutions of the Navier–Stokes and continuity equations
using a method suited to solving complex geometry problems. Calculations exhibiting the divergence-free
property on the velocity field are desired. For this reason, we adopt the coupled solution algorithm. In the
context of the weighted residuals method, we denote by L2ðXÞ the functional space that is square integrable
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over X. We also define its constrained space L2ðXÞð� fq 2 L2ðXÞ ¼
R

X qdX ¼ 0gÞ, which consists of square
integrable functions having zero mean over X, and the Sobolev space H 1ðXÞð� fq 2 L2ðXÞ: Dq 2 L2ðXÞgÞ.
Here, D denotes the derivative of order 1. In addition, the subspace of H 1ðXÞ, namely H 1

0 ðXÞ, is needed for
constructing a weighted residuals statement. By definition, all the elements in H 1

0 ðXÞð� fq 2 H 1ðXÞ:
q ¼ 0 on CgÞ have one square integrable derivative over X, and their values vanish on the boundary C.

Given the admissive function w 2 H 1
0 ðXÞ � H 1

0 ðXÞð� H1
0Þ and the pressure mode q 2 L2

0ðXÞð� PÞ, we can
find solutions of ðu; pÞ 2 V ð� H1

0 � PÞ using the following equations:

Z
X
ðua � rÞua � wdX þ 1

Re

Z
X
rua : rwdX �

Z
X
pr � wdX ¼

Z
C=Cn

rw � ndC þ
Z

C=Cr

s � w� ndC; ð16Þ

Z
X
ðr � uaÞqdX ¼ 0; ð17Þ

where n denotes the unit normal vector to C and

�p þ 1

Re
n � rua � n ¼ r on C=Cn; ð18Þ

1

Re
n � rua � n ¼ s on C=Cr: ð19Þ

To specify boundary conditions, we denote here two boundary segments of C as Cn and Cr. Note that
C=Ciði ¼ n; rÞ, shown in Eqs. (18) and (19), are defined as complements of Ci in C. This implies that if
/ 2 C=Ci, then / 2 C but / 62 Ci. In the above, wð2 H 1

0 ðXÞ � H 1
0 ðXÞÞ and qð2 L2

0ðXÞÞ two test functions for
the vector and scalar quantities, respectively.

In the finite element computation of incompressible flows there exist two sources of potential numerical
instabilities. One is due to an inappropriate combination of interpolation functions used for the velocity
and pressure: uh ¼

P
uh
i N

h
i and ph ¼

P
ph
i M

h
i , where fNh

i g and fMh
i g are the basis functions for the vector

quantity ua and the scalar p, respectively. A compatible pair of interpolations for primitive variables must
be chosen to avoid instabilities usually appearing as oscillations primarily in the pressure field, as dictated
by the Ladyzhenskaya–Babu�sska–Brezzi (LBB) ‘inf–sup’ stability condition [18,19]. To this end, we employ
biquadratic basis functions, Ni (i ¼ 1–9), to approximate ua and bilinear basis functions, Mi ði ¼ 1–4Þ, to
approximate p. Since unequal interpolation (or mixed interpolation) is used, we call the present analysis
mixed finite element formulation. Despite the success of avoiding pressure oscillations, this compatibility
condition precludes the use of equal-order interpolation for all field variables and, thus, complicates the
programming and data handling. As the consideration of mixed approximation method engenders im-
plementation difficulty, Hughes et al. circumvented the need to satisfy the LBB condition by perturbing the
pressure test function with a gradient term [20]. This method was later generalized by Hughes and Franca
[21] and was proven to have ability to enhance stability of the finite element equation without upsetting
consistency. Different variants of equal-order finite element formulations have been reported to circumvent
the LBB condition by adding least-square-like terms to the weighted Galerkin method [22–25]. Even
the equal-order finite element method has been well-accepted and enjoyed great success in areas of
fluid dynamics and heat transfer, we still stick to the mixed finite element formulation mainly because we
had no knowledge of circumventing this difficulty in the development of our model starting in the early of
1987.

By adopting standard finite element approach, the assembled matrix equations for a problem having ne

elements are derived as A�qq ¼ b for the solution vector �qq ¼ ðuj; vj; pjÞT. The components of the matrix A are
as follows:
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aij ¼
Xne
1

Z
Xh

Cij 0 �Mj oN
i

ox1
þ Bi oM

i

ox1

0 Cij �Mj oN
i

ox2
þ Bi oM

i

ox2

Mi oN
j

ox1
Mi oN

j

ox2
0

2
66666664

3
77777775
dXh

þ
Z

Ch

� 1

Re
Ni oN

j

oxk
� nk 0 0

0 � 1

Re
Ni oN

j

oxk
� nk 0

0 0 0

2
666664

3
777775
dCh: ð20Þ

In Eq. (20), Cij is expressed as

Cij ¼ ðNi þ BiÞNj ~VV j
k

oNj

oxk
þ 1

Re
oNi

oxk

oNj

oxk
� 1

Re
Bi o2Nj

oxkoxk
: ð21Þ

In the above equation, ~UU and ~VV are evaluated at element centroids. The line integral in (20) involves
prescribing essential boundary conditions. Along a boundary where the natural boundary condition is
imposed, the vector b is given by

b ¼
Z

Ch

�Nipin1
�Nipin2

0

2
64

3
75dCh: ð22Þ

Here, (n1; n2) denotes the outward unit vector normal to the boundary, at which pressure values are im-
posed.

In finite element computation of incompressible fluid flows, proper selection of the test space w is vital to
suppressing node-to-node oscillations primarily in the velocity field. Such oscillations become increasingly
significant for high Reynolds number flows and flows with sharp layers in the solution. For this reason, we
adopt the Petrov–Galerkin finite element model to enhance the convective stability. This model is regarded
as a modification of the Galerkin method in the sense that

Bi ¼ sNj ~VV j
k oN

i=oxk ð23Þ

is added to the basis function Nj. This engenders favorable consideration of field variables at the upwind
side. The parameter s shown in Eq. (23) is critical to suppressing oscillatory velocities. In our Petrov–
Galerkin model, we consider s ð� dc=2juj2Þ as a function of the Peclet number c ð� jujh=2lÞ. Our finite
element analysis employs d, which is analytically derived from the one-dimensional convection–diffusion
scalar transport equation in quadratic elements. Depending on the nodal classification, analytical expres-
sions of d derived in quadratic elements are as follows [26]:

dðcÞ ¼
1
2
cothðc=2� 1=cÞ; center nodes;

c sinh c cosh c � sinh2 c � 4 cosh c � 2c sinh c � 4

6 sinh c cosh c þ c sinh2 c � 6 sinh c � 4c cosh c þ 4c
; corner nodes:

8<
: ð24Þ

In Eq. (23), we adopt the streamline operator, which was proposed by Brooks and Hughes [27]. This
implicitly added artificial damping term in the direction of flow is considered useful not only to stabilize the
discrete system, but also to decrease the numerical diffusion error in the multi-dimensional flow analysis. It
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is worth noting that use of this operator has been justified by Johnson and N€aavert [28,29] in their con-
vergence analysis of the method. Methods of this class are referred by Johnson and N€aavert [28] as
streamline diffusion methods and currently by Hughes et al. [30] as Galerkin-least-squares methods.

4. Finite element calculation of particle trajectory equations

As in normalization of the flow equations, we can also scale the solid-phase momentum equations.
Defining the density ratio

g ¼ qa

qp

; ð25Þ

the dimensionless particle trajectory equation is derived as

up � rup ¼ �grp þ 3g
8rp

jua � upjðua � upÞCD: ð26Þ

This equation can be further rewritten as the convection–reaction equation:

up � rup þ Kup ¼ F ; ð27Þ
where

K ¼ 3gCD

8rp
jua � upj; ð28Þ

F ¼ �grp þ uaK: ð29Þ
The analogy between the above particle trajectory equation and the following transport equation prompts
us to develop a convection–reaction finite element model:

a
o/
ox

þ b
o/
oy

þ c/ ¼ f : ð30Þ

To a first approximation, we consider that a and b are two constant values.
In this paper, we are concerned with obtaining good stability and high accuracy for Eq. (30). The goal is

that the model presented here provides nodally exact solutions in the one-dimensional case. To this end, we
consider first the one-dimensional model equation as follows:

u
o/
ox

þ c/ ¼ f : ð31Þ

We employ in this paper the Petrov–Galerkin finite element model in a domain which is covered with
uniform quadratic elements. As is the case when conducting weighted residuals finite element analysis, we
should define the basis space fNig for the field variable / and the test space fWig for Eq. (31). Fig. 1 shows
two quadratic elements, each of which has a grid size of h. Within the Petrov–Galerkin finite element
framework, we add 1

2
ahN 0

i to Ni to obtain the weighting function

Wi ¼ Ni þ 1
2
ahN 0

i : ð32Þ

The free parameter a determines the weight placed in favor of the upwind side node. Substituting the
quadratic shape functions ðN1;N2;N3Þ ¼ ððn � 1Þn=2; ð1þ nÞð1� nÞ; ð1þ nÞn=2Þ and the weighting function
given in (32) into the weighted residuals statement, we obtain

X
e

Z
Xe

Wi u
o/
ox

�
þ c/ � f

�
dx ¼ 0: ð33Þ

In the above, n, defined as �16 n6 1, denotes the coordinate for the master element.
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After some algebra, we can obtain discrete equations which are similar to the finite difference equations.
Due to space limitations, we will only summarize the results since the derivation is too lengthy to give here.
In a quadratic element, we can express the discrete equations at the middle and corner nodes, respectively.
The equation for the middle node i shown in Fig. 1(a) is

1

5

�
þ a � 1

b
ð1þ 2aÞ

�
/i�1 þ 4

2

5

�
þ a

b

�
/i þ

1

5

�
� a þ 1

b
ð1� 2aÞ

�
/iþ1 ¼ 2

f
c
; ð34Þ

and that for the corner node i shown in Fig. 1(b) is

1

2b
ða

�
þ 1Þ � 1

5
� a
2

�
/i�2 þ 2

�
� 1

b
ð1þ 2aÞ þ 1

5
þ a

�
/i�1 þ

7a
b

�
þ 8

5

�
/i

þ 2
1

b
ð1

�
� 2aÞ þ 1

5
� a

�
/iþ1 þ

1

2b
ð

�
� 1þ aÞ � 1

5
þ a
2

�
/iþ2 ¼ 2

f
c
: ð35Þ

In the above, the dimensionless parameter b is defined as

b ¼ ch
2u

: ð36Þ

Our strategy to determine a is to provide a nodally exact solution / in quadratic elements. To achieve
this goal, we exploit the following analytic solution for (31) in the derivation:

/ ¼ C1e
�cx=u þ f =c: ð37Þ

In the above, C1 is a constant. By making use of the above analytic /, we can obtain the exact expressions
for /i�2, /i�1, /i, /iþ1 and /iþ2. We then proceed to substitute them into Eqs. (34) and (35) to obtain the
analytic a at the middle and corner nodes. After some algebra, the analytic values of a are derived as

amiddle nodes ¼
4b þ b coshðbÞ � 5 sinhðbÞ
5ð2 coshðbÞ � b sinhðbÞ � 2Þ ; ð38Þ

Fig. 1. An illustration of quadratic elements with the uniform grid size h. (a) middle node ‘‘M’’ representation; (b) corner node ‘‘�’’

representation.
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acorner nodes ¼
8b þ 4b coshðbÞ � 2b coshð2bÞ � 20 sinhðbÞ þ 5 sinhð2bÞ
5ð8 coshðbÞ � coshð2bÞ � 4b sinhðbÞ þ b sinhð2bÞ � 7Þ : ð39Þ

We can now extend the analytic one-dimensional analysis to construct a computationally stable and
numerically accurate Petrov–Galerkin finite element model for the two-dimensional prototype equation. In
this study, we resort to the idea of Brooks and Hughes [27] by adding stabilizing terms along the primary
flow direction. The following weighting functions for solving Eq. (30) is, thus, expressed as

Wi ¼ Ni þ s a
oNi

ox

�
þ b

oNi

oy

�
ð40Þ

or

Wi ¼ Ni þ si
N j ~VV j

kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p oNi

oxk
; ð41Þ

where

si ¼
Pn

i¼1 dðcYiÞVYihYi

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p : ð42Þ

By substituting weighting and shape functions into the weighted residuals statement for Eq. (30), we can
derive the algebraic equations on biquadratic elements, shown schematically in Fig. 2. This is followed by
deriving the corresponding modified equations at four types of elements. These modified equations are
derived and can be expressed in the following general form:

a
o/
ox

þ b
o/
oy

þ c/ � f ¼ s ac
o/
ox

�
þ bc

o/
oy

þ a2
o2/
ox2

þ b2
o2/
oy2

þ 2ab
o2/
oxoy

�
þ S0: ð43Þ

Fig. 2. Four types of element encountered in the biquadratic elements.
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The novelty of the above equation is that the leading dissipative discretization error is added mainly to the
flow direction hð� tan�1 ðb=aÞÞ. Therefore, the proposed convection–reaction scheme is named as a
streamline upwind model owing to the following identity equation:

o2/
os2

¼ a2

a2 þ b2
o2/
ox2

þ 2ab
a2 þ b2

o2/
oxoy

þ b2

a2 þ b2
o2/
oy2

; ð44Þ

where s is the flow direction.

5. Computed results

As is typical with other numerical simulations, validation of the two proposed models is the first step
towards simulating computationally more difficult problems. The validation of the convection–diffusion
equation for the airflow and convection–reaction equation for particle trajectories is accomplished by
analyzing the results obtained for the case with analytic data. For more rigorous validation details, refer
to [31] for the Navier–Stokes equations. The test on the finite element model developed for convection–
reaction equation is given below, followed by considering the clinical problem.

5.1. Validation tests

For purposes of validation, we consider first an analytic one-dimensional equation given below:

o/
ox

þ / ¼ 1: ð45Þ

This equation, subject to the analytic boundary conditions, is amenable to the following exact solution:

/ ¼ 1þ 3e�x: ð46Þ
This problem, defined in 06 x6 1, is specifically designed to justify the proposed nodally exact convection–
reaction finite element model. Solutions are sought in a domain covered with uniform grids. The computed
results schematic in Fig. 3 reveal that analytic solutions are reproduced.

Fig. 3. A comparison of the computed and exact solutions shown in Eq. (46).
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With a view to examining the validity of the streamline upwinding operator used in multi-dimensional
analyses, we have undertaken a numerical analysis of the following scalar convection–reaction equation in
a domain of 06 x, y6 1:

u
o/
ox

þ v
o/
oy

þ c/ ¼ f : ð47Þ

The coefficients u, v and c are chosen u ¼ 2xþ y þ 1, v ¼ xþ 2y þ 1 and c ¼ xþ y þ 1. Here, the source
term f is chosen as f ¼ x3 þ 2x2y þ 2xy2 þ y3 þ 6x2 þ 9xy þ 6y2 þ 4xþ 4y þ 1 to make the test problem (47)
amenable to the exact solution given below:

/ ¼ x2 þ xy þ y2 þ 1: ð48Þ
Finite element solutions are sought in a square covered with uniform grids. We start from a very coarse
grid, say 5� 5, and proceed to continuously refined grids 10� 10, 20� 20 and 40� 40. For this study,
numerical errors are computed and cast in their L2 norms. As Table 1 reveals, the computed errors are
continuously reduced with an increase of the grid number. It is thus instructive to plot c ¼ logðerr1=
err2Þ= logðM2=M1Þ, from which it is known that the rate of convergence for the proposed scheme is 3.9
(Fig. 4). Here, erri ði ¼ 1; 2Þ denotes L2-error norms computed at two continuously refined grids, ðM1 þ 1Þ2
and ðM2 þ 1Þ2. Through above two analytic tests, we have confidence to simulate the solid-phase equation.

Table 1

The computed L2, error norms and the rates of convergence

No. of elements L2 norm Convergent rate

5� 5 6:119� 10�6 3.87

10� 10 4:196� 10�7 3.93

20� 20 2:748� 10�8 3.97

40� 40 1:758� 10�9

Fig. 4. The plot of L2 norms against the grid spacings for showing the rate of convergence.
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5.2. Weibel model of the human central airway

The problem, known as the Weibel model of the human central airway, has been considered by Wilquem
and Degrez [1]. The domain, schematically shown in Fig. 5, involves a mother branch and a set of sym-
metrically configured lateral and medial branches. Downstream of the mother branch, there exist two
bifurcation points which are symmetric to the mother branch centerline. The principal dimensions and the
turning angles for this test model are also shown in the schematic diagram. In this study, the full domain
was computed in order to avoid the Coanda effect present even in a symmetric configuration.

Computations for this problem were carried out for air with a kinematic viscosity of m ð� 1:505�
10�5 m2/sÞ. The diameter of the mother branch L ð� 3:5� 10�3 mÞ was chosen as the characteristic length.
In this investigation, the characteristic velocity U ð� 0:86 m/sÞ was chosen as the mean inlet velocity, which
is parabolic in form. The resulting Reynolds number Re ð� UL=mÞ was 200. The dimension investigated in
this model corresponds to those encountered in the fifth to seventh generations of the human central
airways. The pressure values at the exit plane of the medial and lateral branches were all set to be one.

In the finite element method, we are permitted to construct grids on a block-by-block basis. We divide
the whole domain into 14 blocks, as shown in Fig. 6(a). This facilitates grid generation in each block, thus
helping to retain grid smoothness. Grids are also clustered near the no-slip wall as well as in the vicinity of
bifurcation. The resulting grid topology is shown in Fig. 6(b), which involves using 11 991 nodal points and
2900 biquadratic elements. Finite element analysis of flow in the Weibel model starts with simulating
Navier–Stokes equations subject to the boundary conditions described above. The computed flowfield,
characterized by ðua; vaÞ and p, is considered as the source term for solving the particle velocity governed by
Eq. (6). Since they are influential factors in determining particle trajectories, we plot streamlines and
pressure contours in Figs. 7 and 8, respectively, for the airflow. The characteristic features of the branching
flow, such as curved streamlines, stagnation points and flow reversal, are clearly seen in Fig. 7.

Upon obtaining the values of ua and p for the airflow, we can solve for up and vp using Eq. (6) and the
proposed streamline upwind convection–reaction finite element model. The resulting motions for particles
with radii of rp ¼ 2:5� 10�3 L and 2:5� 10�4 L are best depicted by their particle tracers schematically
shown in Fig. 9. Discussion of inhaled particle motions must consider the interphase drag Cpiðua � upÞ and

Fig. 5. The outline of the airways under the present investigation.
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the pressure gradient �ð1=qpÞrp shown on the left-hand side of Eq. (6). A check of the magnitudes of these
driving forces reveals that the interface drag considerably dominates the pressure gradient established in the
airflow. This implies that the interface drag between the particle and gas phases plays the dominant role in
the equations of motion for the inhaled particles. To better understand the particle motion, we need to
focus our attention on the computed values of Cpiðua � upÞ and Cpiðva � vpÞ. According to Eq. (10) for Cpi,
Eq. (8) for CD, and Eq. (9) for Rep, Cpi can be expressed as Cpi ¼ C1r�2

p þ C2r0:313p , where C1 ¼ 9
2
ðg=ReÞ and

C2 ¼ 0:15C1ð2Rejua � upj
0:687Þ. Since g and Re are both positive values, Cpi > 0 throughout the flow.

Whether the inhaled particle is subjected to an accelerating or decelerating force depends, therefore, on the
sign of ua � up. This motivates us to plot in Fig. 10 contour values of ua � up and va � vp. For particles
entering the trachea vessel, they are carried by airflow, with a negligibly small velocity difference. Down-
stream of the mother branch, the airflow is decreased by the established large adverse pressure gradient, as
seen in Fig. 8, at the first bifurcation point. As Fig. 10(a) shows, ua < up in the vicinity of the stagnation
point; thus, a negative x-component interface drag is applied to approaching solid particles. It is also found
that va > vp on the upper branch, and that va < vp on the lower branch. This indicates that a positive

Fig. 7. Streamline plots for the airflow.

Fig. 6. Blocks and grid distribution.

T.W.H. Sheu et al. / Comput. Methods Appl. Mech. Engrg. 191 (2002) 2681–2698 2693



Fig. 9. Particle tracer plots for the inspiratory particles (a) rp ¼ 2:5� 10�3L; (b) rp ¼ 2:5� 10�4L.

Fig. 8. Pressure contour plots for the airflow.
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y-component interface drag is applied to the y-momentum equation for particles turning towards the upper
branch of the vessel. On the other hand, a negative y-component interface drag is applied to particles
turning towards the lower branch of the vessel. This explains why inhaled particles bend in the way shown
in Fig. 9. Particles proceeding further downstream change direction due to the interface drag which arises
due to the difference between ua � up and va � vp. As a means of determining the particle motion, we plot
contour values of Cpiðua � upÞ and Cpiðva � vpÞ in Fig. 11. A large change in interface drag is seen near the
bifurcation points.

For particles of different radii rp in the same flow field, it is found that the smaller rp is, the larger is Cpi.
This indicates that the interface drag has a prevailing influence on the particle motion. Under these cir-
cumstances, particles have a tendency to change their trajectories to adapt to the airflow. To confirm this,
we plot in Fig. 12 velocity profiles at four selected sections for particles with rp ¼ 2:5� 10�3 L and

Fig. 11. The contour plot of Cpiðua � upÞ for the case of rp ¼ 2:5� 10�3L. (a) Cpiðua � upÞ; (b) Cpiðva � vpÞ.

Fig. 10. The contour plot of the velocity difference between air and particles, for the case of rp ¼ 2:5� 10�3L (a) in the x-direction

(ua � up); (b) in the y-direction (va � vp).
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Fig. 12. The normal velocity profiles plotted at several cross sections AA0 � DD0 for the case of rp ¼ 2:5� 10�3L.
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2:5� 10�4 L. It is seen that the particle velocity profile approaches that of the airflow for the case with a
smaller particle radius.

6. Concluding remarks

We have presented in this paper a two-phase flow model for predicting inhaled particles in the human
airway. Under the rational assumption that the porosity of the solid phase is negligibly small when com-
pared with its gas-phase counterpart, the equations governing the two-phase flow are coupled through gas-
phase interface drag, which, as usual, is associated with the relative velocity of the two phases. The test
problem of clinical relevance involved geometric bifurcation points in the air vessel. The feature worthy of
note is that the upwinding added to improve stability is determined exactly on the nodal basis in both one-
dimensional prototype equations for the gas and solid phases. The representative equation for the gas phase
is the convection–diffusion equation. As for the solid phase, the model equation for the transport of inhaled
particles is the convection–reaction equation. A guideline for extending one-dimensional nodally exact
finite element models for solid and gas phases is to use a streamline operator in the multi-dimensional
analysis of two-phase equations. The implicitly added stabilizing term enhances the finite element equations
while the prediction accuracy is retained without deterioration due to numerical crosswind diffusion errors.
Having developed the streamline upwind finite element models for solving the coupled system of continuity-
momentum equations for the gaseous equations and the equations of motion for the solid phase, we applied
them iteratively to solve for two-phase equations through the solid–gas interface drag. As is usual, this
interface drag is a function of the relative velocity. The resulting two-phase finite element models were
applied in combination to obtain the solution for the human central airway, with an aim at revealing the
particle trajectory and the deposition sites of inhaled particles.
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