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Abstract

In this paper, we focus on the development of a finite element model for predicting

the contaminant concentration governed by the advective–dispersive equation. In this

study, we take into account the first-order degradation of the contaminant to realis-

tically model the transport phenomenon in groundwater. To solve the resulting un-

steady advection–diffusion equation with production, a finite element model is

constructed, which employs a quadratic basis function to approximate the contami-

nant concentration. The development of a weighted residuals finite element model

involves constructing a biased test function to retain the scheme stability for wide

ranges of values of the physical coefficients. In the process of constructing the Petrov–

Galerkin finite element model for stability reasons, it is desirable to obtain an

acceptable degree of accuracy. The method used to retain stability without loss of

accuracy is to approximate the differential equation within the semi-discretization

framework. After discretizing the time derivative term using the Euler time-stepping

scheme, the resulting ordinary differential equation, which involves only the spatial

derivative terms, is solved using the nodally exact finite element model. For better

control of the user’s specified time step and mesh size, full analysis of the discretization

scheme is conducted. In this study, both modified equation analysis and Fourier

stability analysis are employed to better understand the proposed semi-discretized

Petrov–Galerkin finite element model. Validation of the newly proposed model is

accomplished through analysis of the results obtained for several test problems. Some

of them are amenable to analytic solutions. The rate of convergence of the employed

finite element model then can be obtained. � 2002 Elsevier Science Inc. All rights

reserved.
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1. Introduction

The advective–dispersive equation characterizes the transport of contami-
nants in groundwater. Under many circumstances, reaction or degradation can
play an essential role in the ensuing transport phenomena. As a result, the
advective–dispersive transport equation with reaction has been the subject of
much interest. The advent of faster computers with large core memories has
allowed hydrogeologists to contemplate time-accurate simulation of contami-
nant transport. Up until very recently, mathematical models used to simulate
contaminant transport in groundwater have proved to be useful for remedial
design, in addition to risk assessment. It is this practical importance that
motivated the present study.

Numerical investigations of the advective–dispersive equation have been
quite plentiful. Comparatively few studies have focused on a more realistic
advective–dispersive-reactive equation for modeling contaminant transport.
Of the major methods developed for solving partial differential equations, the
finite difference method seems to enjoy significant popularity, in particular in
the early years because code implementation is easy. There are quite a few
papers in the literature on this subject. A few we might mention are those
of Ataie-Ashtiani et al. [1], Noye and Tan [2] and, more recently, Hossain
[3].

The finite element method has also evolved significantly over the last few
years. The ease of implementing Neumann-type boundary conditions and its
capability of tackling complex geometries have made the finite element
method particularly suitable for numerical simulation of transport equations.
In addition, finite element method has a sound mathematical basis, which can
be used to prove convergence of numerical solutions to the exact solution
with mesh refinement. These desired features provided impetus for the
present finite element simulation of contaminant transport in groundwater.
In the literature, there exist papers dealing with the differential equation of
present interest. Interested readers can refer to the works of Harari and
Hughes [4], Hossain and Yonge [5,6], Idelsohu et al. [7], and Codina
[8]. These references are by no means exhaustive, but they illustrate the
popularity and wide use of finite element models to solve this class of
problems.

It is well accepted that advective and reactive terms are the main causes
leading to numerical instability. As a result, the utility of the finite element
model depends to a large extent on the chosen weighting function. While the
upwind finite element model is widely used in the fluid dynamic community,
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the benefit of oscillation-free results is gained at the expense of significant
numerical inaccuracy. A key goal in the present study is to obtain a more
accurate solution. A pursuit of scheme stability and prediction accuracy is what
motivated the present new development. Moreover, monotonic study of the
scheme is made to provide support to show under what conditions the solution
can retain a monotonic profile.

The remainder of this paper is organized as follows. In Section 2, we present
the time-dependent differential equation, subject to initial and boundary con-
ditions, for the contaminant transport. We then present the finite element
model, which constitutes the main theme of the present study. The funda-
mentals of the newly proposed Petrov–Galerkin model will be also detailed.
Both modified equation analysis and Fourier stability analysis are conducted
to show in-depth the scheme’s features. Section 5 is devoted to a monotonic
study of the proposed scheme. The underlying theory is that of the M-matrix
theory. As is usual, we provide evidence to show the applicability of the model
to simulating the advective–dispersive-reactive model equation. In Section 7,
we provide concluding remarks.

2. Working equation

Transport of contaminants in groundwater is primarily governed by ad-
vection and dispersion. In addition, reaction or degradation has an impact on
the evolving transport of contaminants. In this light, we consider the following
advective–dispersive equation with a first-order reaction or degradation. To
simplify the description of the newly developed finite element model, we con-
sider the following one-dimensional advection–diffusion–reaction (ADR)
transport equation for the contaminant concentration C

oC
ot

þ u
oC
ox

¼ D
o2C
ox2

� kC: ð1Þ

In the above, u is the velocity, t the time, x the spatial coordinate, D the dis-
persion coefficient, and k the decay constant. In order to make the above
equation well posed, it is assumed that initial as well as boundary conditions
are properly given a priori.

3. Finite element model

In this study, we seek solutions to Eq. (1) by applying the semi-discretization
method. By doing so, time and spatial derivatives are approximated separately.
Within the semi-discretization framework, the discretization of Eq. (1) begins
with approximation of oC=ot by means of
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oC
ot

¼ Cnþ1 � Cn

Dt
: ð2Þ

The superscripts n and nþ 1 represent two consecutive times tn and tnþ1, with a
time increment Dt ð� tnþ1 � tnÞ. Substitution of Eq. (2) into (1) yields

u
oC
ox

¼ D
o2C
ox2

� kC þ f ; ð3Þ

where

u ¼ uDt; ð4aÞ
D ¼ DDt; ð4bÞ
k ¼ 1þ kDt; ð4cÞ
f ¼ CnðxÞ: ð4dÞ

The problem of finding C from the unsteady Eq. (1) is now transformed into
that of finding the solution from the inhomogeneous steady-state Eq. (3)
through the above semi-discretization approach.

It is then a question of constructing an appropriate spatial discretization of
Eq. (3), which is akin to the following prototype equation for a passive scalar /:

u
o/
ox

� k
o2/
ox2

þ k/ ¼ f ; ð5Þ

where f is allowed to vary with x. Spatial discretization of Eq. (5) is performed
via the weighted residuals method, which is carried out on quadratic elements.
The Petrov–Galerkin finite element, which is regarded as a refinement of its
Galerkin counterparts, is chosen to obtain enhanced stability. In this paper, we
take weighting functions ewiwi as the sum of shape function wi and biased func-
tion Piewiwi ¼ wi þ Pi: ð6Þ

The Petrov–Galerkin models appropriate for solving Eq. (5) differ from each
other in the choice of Pi. In this paper, Pi is chosen as

Pi ¼ a
h
2
w0

i þ cQ; ð7Þ

where the free parameters a and c account for the advective and reactive
contributions, respectively. In fact, the determination of a and c is the core of
the present study. In (7), h denotes the mesh size, and the superscript ‘‘0’’
represents the derivative notation. The two terms on the right-hand side of (7)
are used for different purposes. The inclusion of first term originates from the
idea of Hughes and Brooks [9]. The introduction of w0

i is known to be able to
suppress oscillations in the analysis of convection–diffusion equation in
cases where convection prevails. The purpose of adding the second term on the
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right-hand side of Eq. (7) is to enhance stability when the reaction term
dominates over other two effects [7].

Referring to Fig. 1, which shows quadratic elements, a linear polynomial Q
is chosen because the polynomial degree for k/ is only one order less than that
of the diffusive term �kðo2/=ox2Þ after the integration by parts is conducted on
this term in the present weak formulation. For this reason, Q at the two end (or
corner) nodes 1 and 3 are chosen as

Q1 ¼ � 1

2
ðn � 1Þ; ð8aÞ

Q3 ¼
1

2
ð1þ nÞ: ð8bÞ

With the definitions of Q1 and Q3, Q2 at the center node can be chosen as the
average of two corner values Q1 and Q3. The reason is that the distance be-
tween nodes 1 and 2 is the same as that between nodes 2 and 3. For the above
reason, Q2 is chosen as

Q2 ¼ 1: ð9Þ

Having determined two finite element spaces, we can obtain the stiffness matrix
equation and the source vector as in the conventional finite element method.
On theoretical grounds, we must derive the corresponding algebraic equations,
akin to those in the finite-difference equations, at corner and end nodes in
quadratic elements. After some algebra, the discrete representations of the
model Eq. (5) can be expressed. Due to a lack of space, we omit the detailed
derivation but simply summarize the results as follows:

Corner node i in Fig. 1(a):�
� 8

3
� 4Pe

3
þ Rr
15

� 8Pea
3

þ Rra
3

� 2Pec þ Rr c
6

�
/i�1

þ 16

3

�
þ 8Rr

15
þ 16Pea

3
þ 2Rr c

3

�
/i

þ
�
� 8

3
þ 4Pe

3
þ Rr
15

� 8Pea
3

� Rra
3

þ 2Pec þ Rr c
6

�
/iþ1 ¼ f : ð10Þ

Fig. 1. The illustration of center and end nodes: (a) center node i; (b) i� 1.
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End nodes i�1 in Fig. 1(b):

1

3

�
þ Pe

3
� Rr
30

� 2a þ Pea
3

� Rra
12

� c � Pec
3

�
/i�2

þ
�
� 8

3
� 4Pe

3
þ Rr
15

þ 4a � 8Pea
3

þ Rra
3

� 4Rec
3

þ Pr c
3

�
/i�1

þ 14

3

�
þ 4Rr

15
þ 14Pea

3
þ 2c þ Rr c

3

�
/i

þ
�
� 8

3
þ 4Pe

3
þ Rr
15

� 4a � 8Pea
3

� Rra
3

þ 4Rec
3

þ Pr c
3

�
/iþ1

þ 1

3

�
� Pe

3
� Rr
30

þ 2a þ Pea
3

þ Rra
12

� c þ Pec
3

�
/iþ2 ¼ f : ð11Þ

where

Pe ¼ uh
2k

; ð12Þ

Rr ¼ kh2

k
: ð13Þ

At this point, the solutions are amenable to algebraic calculations provided
that a and c are given. This is the main theme of the present study since they
alone determine the solution quality. We obtain a higher level of prediction
accuracy by taking the following general solution of Eq. (5) into account

/exact ¼ aem1x þ bem2x: ð14Þ

In the above, a and b are two constants. As for m1 and m2, they are derived as
follows by substituting (14) into Eq. (5)

m1 ¼
u
2k

þ u
2k

� �2�
þ k

k

�1=2
; ð15Þ

m2 ¼
u
2k

� u
2k

� �2�
þ k

k

�1=2
: ð16Þ

Substitution of the analytic values of /i, /i�1, and /i�2 into the algebraic Eqs.
(10) and (11) enables us to determine the nodally exact expressions of a and c,
which are detailed in Appendix A. The representations of a and c are mathe-
matically very complex in form. Therefore, it is instructive to plot them
graphically. Figs. 2 and 3 plot a and c against the dimensionless variables Pe
and Rr, as defined in Eqs. (12) and (13). Upon obtaining the analytic expres-
sions of a and c, the formulation of the finite element model is completed.
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4. Fundamental study of the model equation

In order to shed light on the nature of the proposed ADR scheme, we will
conduct modified equation analysis [10]. Substituting Taylor-series expansions
into Eqs. (10) and (11) for /nþ1

iþ1 , /nþ1
i�1 and /n

i , we can obtain the modified
equation of the first kind. At corner and end nodes, these modified equations
are derived, respectively, as

Center node:

/t þ u/x � k/xx þ k/ � f ¼ Dtk2

2

�
� Dt2k3

3
þ Dt3k4

6

�
/

þ uDtk

 
� uDt2k2 þ 2uDt3k3

3
�

haDtk2 3� 2Dtk þ Dt2k2
	 

6 2þ 3cð Þ

!
/x

þ �3kc
2þ 3c

�
þ u2Dt

2
� 2kDtk
2þ 3c

� huaDtk
2þ 3c

� u2Dt2k þ h2Dtk2

20 2þ 3cð Þ
h2cDtk2

8 2þ 3cð Þ

-8

-6

-4

-2

0

α

0

100

200

300

400

500

Pe

0

100

200

300

400

500

Rr

X Y

Z

Fig. 2. The plot of a against Pe and Rr.
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þ kDt2k2

2þ 3c
þ huaDt2k2

2 2þ 3cð Þ þ
3kcDt2k2

2 2þ 3cð Þ þ
2u2Dt3k2

2þ 3c
þ 3u2cDt3k2

2þ 3c
� kDt3k3

2þ 3c

� huaDt3k3

2 2þ 3cð Þ �
3kcDt3k3

2 2þ 3cð Þ

�
/xx þ

�h2u
30 2þ 3cð Þ

�
þ hka
2þ 3c

� 2kuDt
2þ 3c

� hu2aDt
2 2þ 3cð Þ �

u3Dt2

3
þ 2h2uDtk
15 2þ 3cð Þ þ

h2ucDtk
4 2þ 3cð Þ þ

2kuDt2k
2þ 3c

þ 3kucDt2k
2þ 3c

þ 4u3Dt3k
3 2þ 3cð Þ þ

2u3cDt3k
2þ 3c

� h3aDtk2

24 2þ 3cð Þ �
hkaDt2k2

2 2þ 3cð Þ �
3kuDt3k2

2þ 3c

� hu2aDt3k2

2 2þ 3cð Þ �
9kucDt3k2

2 2þ 3cð Þ þ
hkaDt3k3

2 2þ 3cð Þ

�
/xxx þH:O:T: ð17Þ

End node:

/t þ u/x � k/xx þ k/ � f ¼ Dtk2

2

�
� Dt2k3

3
þ Dt3k4

6

�
/

þ uDtk
�

� haDtk2

4 1þ 3cð Þ � uDt2k2 þ haDt2k3

6 1þ 3cð Þ þ
2uDt3k3

3
� haDt3k4

12 1þ 3cð Þ

�
/x

þ u2Dt
2

�
� kDtk � huaDtk

2 1þ 3cð Þ � u2Dt2k � h2Dtk2

40 1þ 3cð Þ þ
h2cDtk2

8 1þ 3cð Þ

þ kDt2k2 þ huaDt2k2

2 1þ 3cð Þ þ u2Dt3k2 þ h2Dt2k3

40 1þ 3cð Þ �
h2cDt2k3

8 1þ 3cð Þ �
kDt3k3

2

� huaDt3k3

4 1þ 3cð Þ

�
/xx þ

h2u
30 1þ 3cð Þ

�
� hka
1þ 3c

� kuDt � hu2aDt
4 1þ 3cð Þ �

u3Dt2

3

� h2uDtk
12 1þ 3cð Þ þ

3hkaDtk
2 1þ 3cð Þ þ

h2ucDtk
4 1þ 3cð Þ þ 2kuDt2k þ hu2aDt2k

2 1þ 3cð Þ þ
2u3Dt3k
3 1þ 3cð Þ

þ 2u3cDt3k
1þ 3c

þ h3aDtk2

24 1þ 3cð Þ þ
h2uDt2k2

20 1þ 3cð Þ �
hkaDt2k2

4 1þ 3cð Þ �
h2ucDt2k2

4 1þ 3cð Þ

� 3kuDt3k2

2 1þ 3cð Þ �
hu2aDt3k2

4 1þ 3cð Þ �
9kucDt3k2

2 1þ 3cð Þ þ
hkaDt3k3

4 1þ 3cð Þ

�
/xxx þH:O:T: ð18Þ

Note that the left-hand side Eqs. (17) and (18) correspond to the investigated
model equation. As for the terms on the right-hand side of these equations,
they represent the discretization errors. Having derived Eqs. (17) and (18), it is
clear that the consistency property that is necessary to obtain a convergent
solution is achieved as Dt and h approach zero.

As a fundamental study of the proposed scheme, we will also consider
Fourier (or von Neumann) stability analysis for Eqs. (10) and (11). First, we
can derive the amplification factor for this scheme by conducting standard
stability analysis. Let b ¼ ð2pm=2LÞhðm ¼ 0; 1; 2; 3; . . . ;MÞ, let h be the mesh
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size, and let 2L be the period of the fundamental frequency ðm ¼ 1Þ; the am-
plification factor

j G j
 

�
/nþ1

j

/n
j

�����
�����
!

is derived as

G ¼ A
B
; ð19Þ

jGj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ImðGÞ2 þReðGÞ2

q
; ð20Þ

where A and B at the center and end nodes are expressed, respectively, as
follows:

Center node:

A ¼ TH ð2
�

þ 5cÞ cos hkx
2

� �
þ 2 4

�
þ 5c � 5ia sin

hkx
2

� ���
; ð21Þ

-8

-6

-4

-2

0

β

0

100

200

300

400

500

Pe

0

100

200

300

400

500

Rr

X Y

Z

Fig. 3. The plot of c against Pe and Rr.
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B ¼ ð � 80þ 2TH � 40CXb þ 5THc þ RX 2ð þ 5cÞÞ cos hkx
2

� �
þ 2 40

�
þ 4RX þ 4TH þ 20CXb þ 5RX c þ 5THc

þ 5i 2CXð � RXb � THb þ 3CX cÞ sin hkx
2

� ��
: ð22Þ

End node:

A ¼ TH 8

�
þ 10c þ 4 1ð þ 5cÞ cos hkx

2

� �
� 2 cosðhkxÞ

� 20ib sin
hkx
2

� �
þ 5ib sinðhkxÞ

�
; ð23Þ

B ¼ 140þ 8RX þ 8TH þ 70CXb þ 60c þ 10RX c þ 10THc

þ 4ð � 40þ RX þ TH � 20CXb þ 5RX c þ 5THcÞ cos hkx
2

� �
� 2ð � 10þ RX þ TH � 5CXb þ 30cÞ cosðhkxÞ

þ 20i ðð � 12� RX � THÞb þ 2CX 1ð þ cÞÞ sin hkx
2

� �
þ 5i 24ðð þ RX þ THÞb þ 2CX ð � 1þ cÞÞ sinðhkxÞ: ð24Þ

In the above,

CX ¼ uh
k
;RX ¼ kh2

k
; and TH ¼ h2

Dtk
:

From Eq. (20), it is clear that the finite element model proposed here is un-
conditionally stable. By the Lax equivalent theorem [11], the solutions obtained
from Eqs. (10) and (11) are indeed convergent.

The amplification factor shown in (19) can be rewritten in its exponential
form as G ¼ jGj eih, where h denotes the phase angle

h ¼ tan�1 ImðGÞ
ReðGÞ

���� ����: ð25Þ

To study how the phase angle h varies with Pe, Rr and the other important
dimensionless number,

m ¼ uDt
h

; ð26Þ

we must derive the exact phase angle he.
With the derived exact phase angle he ¼ �mb, we can obtain the following

relative phase shift error over an arbitrary time increment
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h
he

¼ tan�1 ImðGÞ=ReðGÞj j
�mb

: ð27Þ

We plot h=he against Pe, Rr and b in Figs. 4 and 5. When the relative phase
error exceeds a value of 1 for the specified values of Pe, Rr and b, the numerical
solution has a wave speed greater than the exact wave speed, and this is called a
phase-leading error. Otherwise the error is called a lagging phase error.

5. Monotonicity for the finite element equations

Besides consistency and stability properties that are two important ingre-
dients for obtaining convergent solutions, the solution monotonicity property
is also important for the development of an effective finite element model.
Therefore, another key task in the current study is to determine the ranges of
grid sizes h and time steps Dt that allow us to compute monotonic solutions

Fig. 4. The plot of h=he against Rr for two sets of values m and Pe: (a) Pe ¼ 0:25; m ¼ 1:0;

(b) Pe ¼ 0:25; m ¼ 0:1.

Fig. 5. The plot of h=he against Pe and m for a fixed value of Rr: (a) Rr ¼ 0:5; (b) Rr ¼ 0:5.
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under the given values of u, k and k. The key here to guaranteeing that
monotonic solutions will be obtained is the use of the theory of the M-matrix
[12–14]. According to [13], an implicit scheme given by Eqs. (10) and (11), or
more compactly by Gð/nÞ ¼ /n�1, is said to be monotonic with time is that
/ � /
 P 0 if Gð/Þ � Gð/
ÞP 0. Assume that we intend to advance the solu-
tion from tn�1 to tn under the condition that /n�1 � /n�2 P 0; by definition, we
have /n�1 � /n�2 ¼ Gð/nÞ � Gð/n�1Þ. The above condition for monotonicity in
time can be analyzed by the concept of monotonic matrices and M-matrices.
The reader is referred to [12,14] for additional details of the theory.

To clarify the underlying idea, let us define some useful definitions. The first
definition concerns the M-matrix. A matrix is an M-matrix if and only if M is
classified as an L-matrix. In addition, it is required that there exist a diagonal
matrix D ¼ diagðdiÞP 0 such that D M is columnwise strictly diagonally
dominant (i.e.,

P
i aijdi > 0) or that M D is rowwise strictly diagonally domi-

nant (i.e.,
P

j aijdi > 0) [13]. In the above, the matrix N is an L-matrix if the
splitting N ¼ N1 � N2, where N1 ¼ diagðbiÞ is the diagonal matrix bi ¼ nii and

has the property N1 P 0 and N2 P 0. According to [13], the present implicit
scheme is monotonic if the Jacobian oG=o/ is an M-matrix and, hence, the
resulting matrix is monotonic. The implication is that if A / P 0, where the
matrix A contains components given in Eqs. (10) and (11), then / P 0 holds.

Given the above definitions and theorem, the key to obtaining a monotonic
solution /, computed from Eqs. (10) and (11), is that aij 6 0 for i ¼ j, and that
jaiijP

P
jaijj for ði 6¼ jÞ. If this is the case, the matrix equation is, by definition,

irreducible diagonally dominant. A matrix of this type is called an M-matrix,
and A�1 > 0 holds. Under this condition, the solutions computed from the
M-matrix equation are monotonically distributed in the flow. Based on the
M-matrix theory [12], there is a potential advantage in using the proposed
scheme to resolve any possible sharp gradient in the flow. To show this, we can

Fig. 6. An illustration of the monotonic region in the ðRr � PeÞ plot, where Pe ¼ uh=2k and

Rr ¼ kh2=k.
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determine the monotonic region by varying the values of Pe and Rr defined in
Eqs. (12) and (13). As Fig. 6 shows, which plots the monotonic region against
Rr and Pe, the solutions are unconditionally monotonic as long as the Peclet
number defined in Eq. (12) falls below 0.5.

6. Numerical results

6.1. Validation study

As is always the case when a new scheme for solving the differential equation
is presented, we need to validate our proposed scheme. For this purpose, we
employed test problems which were amenable to analytic solutions. For
Eq. (5), we considered first the homogeneous case where f ¼ 0. To a first
approximation, the coefficients u, k and c in this steady convection–diffusion–
reaction equation, defined in the region 06 x6 1, were all assumed to be
constant. Under these assumptions, the exact solution for (5) has the following
form

/exact ¼
g0 exp ux

2k

	 

sin

ffiffiffiffiffiffiffiffiffiffiffiffi
k
k þ u2

4k2

q
ð1� xÞ

� �
þ g1 exp

uðx�1Þ
2k

� �
sin

ffiffiffiffiffiffiffiffiffiffiffiffi
k
k þ u2

4k2

q
x

� �
sin

ffiffiffiffiffiffiffiffiffiffiffiffi
k
k þ u2

4k2

q� � :

ð28Þ

The solution was obtained under boundary conditions specified as
/ð0Þ ¼ g0 ¼ 10 and /ð1Þ ¼ g1 ¼ �1. We considered the uniform grid case with
h ¼ 1=20 and plot the computed result, for the case with k ¼ 4, u ¼ 4 and
k ¼ 100, in Fig. 7. It is found to reproduce the analytic solution of the test
equation. This test verifies that the proposed finite-element model can provide
a nodally exact steady-state solution.

Having validated the code against the above one-dimensional homogeneous
test problem, our attention is now drawn to the inhomogeneous case where
f ¼ x2ð4x� 1Þ. To verify the level of accuracy and allow comparison with the
analytic solution, we considered a second test problem which involved variable
coefficients k ¼ x2, u ¼ x and c ¼ 1. Subject to the Dirichlet-type boundary
condition, the exact solution to the inhomogeneous variable convection–dif-
fusion–reaction equation was derived as

/exact ¼ ð1� xÞx2: ð29Þ

Uniform grids were overlaid on the region 0:26 x6 2:0. The results were
computed under h ¼ 0:09 and are plotted in Fig. 8. Comparison shows good
agreement with the exact solutions given in (31), thus demonstrating the
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applicability of the proposed model to solving the inhomogeneous ADR
equation.

Having verified the applicability of the proposed scheme to steady-state
analyses, we now turn our attention to the transient convection–diffusion–re-
action equation in a unit domain of 06 x6 1

/t þ u/x � k/xx þ k/ ¼ f ; ð30Þ

where f ¼ 2ðx� 1Þe�t. We started the calculation at t ¼ 0 with the initial data
/ðx; t ¼ 0Þ ¼ x2. The exact solution for the case with u ¼ 1, k ¼ 1 and k ¼ 1
takes the following form

Fig. 7. A comparison of the finite element solution and the analytic solution, given in Eq. (28), for

the homogeneous model equation.

Fig. 8. A comparison of the finite element solution and the analytic solution, given in Eq. (29), for

the inhomogeneous model equation.
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/exactðx; tÞ ¼ x2e�t: ð31Þ

Under the conditions Dt ¼ 5� 10�2 and h ¼ 0:05, the computed solution at
t ¼ 1 agrees well with the exact solution plotted in Fig. 9, with the L2-error
norm computed as 0:115808� 10�4. We also carried out computations on
continuously refined grids with h ¼ 1

2
; 1
4
; 1
8
; 1
16
; 1
32
and computed prediction errors

in their L2-norms. This was followed by plotting logðerr1=err2Þ against
logðh1=h2Þ for the errors err1 and err2 computed at two continuously refined
grids h1 and h2. As Fig. 10 shows, the rate of convergence obtained is 1.827703
using the proposed scheme.

6.2. Contaminant transport in groundwater

With reasonable confidence of investigating three tests which were amenable
to exact solutions, we next tested a more stringent problem. A schematic of the
test problem is shown in Fig. 11, which shows a sharp change in slope of the
initial concentration Cðx; t ¼ 0Þ. As a test problem designed to demonstrate
the ability of the code to capture sharply varying evolution of the contaminant
concentrations, we considered a flow velocity of 2 m day�1 in a domain of 100
m. The mesh size is chosen to be h ¼ 1 m. Based on a timestep of 5� 10�2 day,
the resulting Courant number obtained was 10�3. As for the dispersion coef-
ficient D, it was chosen as 0:1 m2 day�1. The calculation was performed at the
decay constant is 5� 10�2 day�1. Under these conditions, the solutions were
computed based on the dimensionless parameters Pe ¼ 5, Rr ¼ 0:00625 and
m ¼ 0:25. In this case, Pe and Rr are both within the monotonic region shown in
Fig. 6. A schematic of the concentration profile and its subsequent evolution

Fig. 9. A comparison of the finite element solution and the analytic solution, given in Eq. (31), for

the transient problem.
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are shown in Fig. 12. Evidence that the scheme has the ability to provide a
monotonic solution can be seen since no oscillatory solutions of C are shed
downstream of the incoming flow. This striking observation is true over the
entire range of the monotonic region shown schematically in Fig. 6.

To further support the above numerical observations, we offer another
means, namely, total variation (TV) analysis of the computed data. This
analysis demands that the TV of a physically possible solution of C does not
increase in time. By definition, the TV of the discrete system is

Fig. 10. The rate of convergence of this finite element scheme. log(L2 – error norms) is plotted

against log(Dx).

Fig. 11. The schematic of the initial profile.
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TVðCÞ ¼
X

j

jCjþ1 � Cjj: ð32Þ

Following the work of Harten [15], we consider the numerical model to be TV
diminishing (TVD) if

TVðCnþ1Þ6TVðCnÞ: ð33Þ

Given the above TVD condition, the computed solution indeed satisfies Eq.
(33). Thus, the present computed solutions show no tendency to be oscillatory
provided that the flow velocity, fluid viscosity, mesh size, and timestep, alto-
gether, fall within the monotonic region.

7. Concluding remarks

In this work, we have proposed and analyzed a finite element method for
solving the problem of contaminant concentration governed by the unsteady
advection–dispersion equation with linear degradation in one dimension. To
design a finite element model that solves the advective–dispersive-reactive
transport equation for a passive scalar, we have formulated the problem
within the semi-discretization context. Employing quadratic shape functions,
we find that the Petrov–Galerkin finite element model for approximating
spatial derivatives provides a nodally exact solution for the resulting ordinary
differential equation. Our goals of pursuing good stability and high level
of accuracy have, thus, been achieved. The analysis of this model has been
placed on a rigorous analytic foundation. To obtain an in-depth under-
standing of the model presented here, we have conducted modified equa-
tion analysis and Fourier stability analysis. Based on the Lax equivalent
theorem, the convergence of the solution to an exact one is, thus, expected

Fig. 12. The change of concentration C with time.
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when meshes are continuously refined. The results obtained have a much
greater range of validity in the sense that no oscillations are observed in
circumstances in which advection becomes dominant over other competing
terms.
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Appendix A

The expressions of a and c shown in Eq. (7) are, respectively, as follows:
Center node:

a ¼ AA
CC

; ðA:1Þ

c ¼ BB
CC

; ðA:2Þ

where

AA ¼ �2ð � 60þ RrÞð � 4Pe coshðaÞ þ 4Pe coshðbÞ þ Rr sinhðaÞÞ; ðA:3Þ

BB ¼ � 8 40Pe2
	

þ ð � 10þ RrÞRr


coshðaÞ

� 2
	
� 160Pe2 þ 40Rr þ Rr2



coshðbÞ þ 80PeRr sinhðaÞ; ðA:4Þ

CC ¼ 5 2 48Pe2
		

þ Rr2


coshðaÞ þ

	
� 96Pe2 þ Rr2



coshðbÞ

� 24PeRr sinhðaÞ


: ðA:5Þ

End node:

a ¼ BE � AF
DE þ CF

; ðA:6Þ

c ¼ � BC � AD
DE þ CF

; ðA:7Þ

where
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; ðA:8Þ
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; ðA:9Þ
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ðA:10Þ
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; ðA:12Þ
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In the above,

a ¼ u
k
; ðA:14Þ

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 � 4kk2

p
2k

: ðA:15Þ
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