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Lung effect on the hemodynamics in pulmonary artery
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SUMMARY

The present study investigates blood flow in a pulmonary artery. The aim is to gain a better
understanding of offset value in vascular circulation through a two-dimensional analysis of the Navier–
Stokes equations. In this study, the hemodynamics in a blood vessel with truncated outlets at which
constant pressure is specified is examined. To simplify the analysis, the vessel walls are regarded as being
rigid. In quadratic elements, the streamline upwind Petrov–Galerkin finite element model is employed to
simulate the incompressible Newtonian blood flow. The adopted finite element model introduces artificial
damping terms solely in the streamline direction. With these terms added to the formulation, the discrete
system is enhanced while solution accuracy is maintained without deterioration due to numerical
diffusion errors. Copyright © 2001 John Wiley & Sons, Ltd.
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1. INTRODUCTION

According to Kim et al. [1], 7/1000 new born babies suffer from congenital heart defects. Their
abnormal vascular systems are unable to provide adequate blood, which can result in
impairment of the lungs. The Fontan operation [2] is a surgical means of fixing this problem
by routing the blood to the lungs. Three main classes of such by-pass operations exist that are
often referred to. They are the atriopulmonary connection (APC), the cavopulmonary connec-
tion (CPC) and the bidirectional cavopulmonary anastomosis (BCPA). The post-operation
hemodynamic and energetic differences, albeit small, play a crucial role in the failure or success
of the operation for a long-term follow-up patient [3]. As a result, a detailed understanding of
the hemodynamics in vascular circulation is needed.
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In this study, we consider a clinical operation known as the total cavopulmonary connection
(TCPC). This operation is widely used for surgery on hearts that essentially have a single
ventricular chamber [4,5]. As Figure 1 shows, the TCPC operation involves disconnection of
the pulmonary artery from its ventricular origin and anastomosis of the superior vena cava
(SVC) with the right pulmonary artery. The operation reconstructs a right atrial lateral tunnel
so as to connect the inferior vena cava (IVC) to the transected end of the SVC, which is
anastomosed to the right main pulmonary artery. This TCPC operation by-passes the right
heart and creates circulation driven solely by a single ventricular pump. As the energy
generated by the left ventricular pump is mostly dissipated in the systemic circulation, the
hemodynamics in the venae cavae and the pulmonary circulation are particularly precarious.
This motivated us to learn more about the hemodynamics in the anastomotic region.

Long-term success of a surgically created circuit requires avoiding blood reversal in the
vascular circulation. This abnormality may induce low wall shear stress and oscillating shear
stress in pulsatile situations. Both of them have been found to correlate with atherosclerotic
plaque localization. Also, high shear stresses can damage the blood vessel. Another key aspect
in the cardiac surgery is that surgically created monoventricular circulation should provide
adequate pulmonary perfusion for the global circulatory system. In fluid dynamic terms,
proper pressure and blood flow rates in the pulmonary arteries are of primary importance.
Also, elevation of the post-operative central venous pressure should be avoided for an
operation to be termed successful. Achieving these goals poses a grand challenge to cardiac
surgeon doctors when they conduct TCPC surgical procedures.

Figure 1. (a) Schematic drawing of anatomy of normal vascular circulation system; (b) illustration of
anatomy after TCPC anastomosis.
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In the past two decades extensive experimental efforts have been devoted to exploring
vascular blood transport phenomena and significant contributions have been made to our
understanding of vascular disease. Experimental success in conducting blood flow visualization
has, however, been overshadowed by increasingly higher costs and time-consuming clinical
procedures. Most serious is that it is still infeasible to use working fluids with the same
characteristics as blood. In recent years, improvements in hardware and software have enabled
investigators to use computational fluid dynamics techniques to investigate complex hemody-
namics in greater detail [6]. Numerical simulation of hemodynamics by a finite element method
has received increased attention because of its prevailing advantage in handling complex
geometries. In the early days, efforts were made in two-dimensional studies [7–9]. Since the
pioneering work of Wille [10], three-dimensional hemodynamic simulations have become
increasingly feasible due to the increased computer speed by several orders of magnitude in the
last decade. This breakthrough enabled Rindt and Perktold [11,12] to extend their carotid
blood flow simulation into three dimensions. This article presents our recent research into the
modeling of blood flow in the human vascular system.

The rest of this paper is organized as follows. In Section 2 we present Navier–Stokes
equations that are written in terms of primitive variables. Equations of motion are solved
subject to the constraint condition to ensure mass conservation. For the elliptic equations to
be well-posed, boundary conditions are prescribed. Section 3 presents the weighted residuals
statement for governing equations that are subject solely to the Dirichlet-type boundary
conditions for both velocity and pressure. It is shown that the case with pressure prescribed a
priori at the vessel exit can be theoretically modeled. This is followed by the introduction of the
finite element used and application of the upwind model to resolve pressure and velocity
oscillations respectively. In Section 4 we describe the test problem in greater detail. The results
obtained from this hemodynamic study on blood flow in a TCPC vessel are presented in
Section 5. Finally, we draw conclusions in Section 6.

2. MATHEMATICAL MODEL

Numerical modeling of blood flow requires solving three-dimensional flow equations in a
distensible vessel. To facilitate vascular flow analysis in a deformable blood vessel, a much
more sophisticated numerical model, such as the arbitrary Lagrangian–Eulerian (ALE) model
[13,14], is needed. As a first approximation, the vessel wall is assumed to be rigid. The vessel
diameter change per cardiac cycle is, usually, around 5–10 per cent in most of the major
arteries. We consider this assumption rational since the global flow structure and the stress
pattern remain unchanged [15]. To further simplify the analysis, two-dimensional working
equations are considered.

In this study the vessel is considered to be symmetric about the midplane (x–y plane) and
this plane is taken as the solution domain, shown schematically in Figure 2. According to
surgical reports, it is legitimate to assume that the flow is laminar [16]. Another assumption we
make is that the blood under investigation is a Newtonian fluid since in the major arteries the
shear strain rate of the blood flow typically can be regarded as a constant value [17]. In
addition, blood is a suspension of red blood cells, white blood cells, platelets and proteins,
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Figure 2. Schematic of the TCPC model and the definition of the offset value.

whose sizes are much smaller than the characteristic length of the artery. Therefore, blood can
be treated as being homogeneous and incompressible. Under these circumstances, working
equations adequate for a steady blood flow simulation in the vascular system, �, are made
dimensionless as follows:

u ·�u= −�p+
1

Re
�2u (1)

� ·u=0 (2)

Based on the chosen reference length, L, and the characteristic velocity, U, the Reynolds
number is expressed as Re=Re=UL/�, where � is the kinematic viscosity of the blood flow.
The reason for advocating the primitive variable formulation is the accommodated closure
boundary condition [18]. Since the differential system is classified as being elliptic, specification
of boundary conditions along the entire boundary of the domain is required to close the
differential system. In this paper, we will address how the pressure boundary condition can be
applied at the truncated vessel exit.

3. NUMERICAL MODEL

In this study, we seek the steady state solutions of the Navier–Stokes and continuity equations
using a method suited to solving complex geometry problems. To ensure that the velocity
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vector accommodates the divergence-free property, we adopt the mixed formulation (see, e.g.,
Reference [19]). In the context of the weighted residuals finite element method, we denote by
L2(�) the space of functions that are square integrable over �. We also define its constrained
space L0

2(�) (�{q�L2(�)=�� q d�=0}), which consists of square integrable functions
having zero mean over �. In the mixed finite element analysis of Navier–Stokes equations, we
need to define the Sobolev space H1(�)={q�L2(�): Dq�L2(�)}. Here, D denotes the
derivative of order 1. In addition, the subspace of H1(�), namely H0

1(�), is introduced to close
the weighted residuals statement. By definition, all the elements in H0

1(�) have one square
integrable derivative over � and vanish on the boundary �: H0

1(�)={q�H1(�): q=0 on �}.
Having defined the above functional spaces, we can present the weighted residuals statement

as follows: given an admissive function w�H0
1(�)×H0

1(�)�H0
1 and a pressure mode

q�L0
2(�)=P, find solutions of (u, p)�V�H0

1×P from the following equations:

�
�

(u� ·�)u� ·w� d�+
1

Re
�

�
�u� : �w� d�−

�
�

p� ·w� d�=
�

�/�n

rw� ·n� d�+
�

�/�r

s� ·w� ×n� d�

(3)

�
�

(� ·u)q d�=0 (4)

where

−p+
1

Re
n ·�u ·n=r on �/�n (5)

1
Re

n ·�u×n=s on �/�r (6)

To specify a boundary condition on �, we denote two boundary segments as �n and �r. Note
that �/�i (i=n, r) shown in Equations (5) and (6) are defined as the complement of �i in �
in the sense that if a vector �� belongs to �/�i, then �� �� but �� ��i. In the above,
w� �H0

1(�)×H0
1(�) and q�L0

2(�) are the test functions for the vector and scalar quantities
respectively. In Equation (6), vector s� denotes the unit tangent to �.

In the finite element analysis of Equations (3)– (6), we can approximate u� by means of
u� h=� ui

hNi
h and ph=� pi

hMi
h, where {Ni

h} and {Mi
h} are the basis functions for the vector u�

and the scalar p respectively. These basis functions are chosen to be able to satisfy the inf–sup
condition and thus avoid node-to-node pressure oscillations [20,21]. To this end, we employ
biquadratic polynomials, Ni (i=1�9), to approximate u� and use bilinear polynomials,
Mi (i=1�4), to approximate p. This variable setting resembles the staggered meshes used in
the finite volume methods to store the pressure and velocity unknowns.

The assembled matrix equations for a problem having ne elements take the form A�� q� =b� for
the solution vector q� = (uj, �j, pj)T. The matrix A�� is derived as
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aij=�
ne

1

�
�h

�
�
�
�
�
�
�
�
�

Cij 0 −M j �Ni

�x1

+Bi �Mi

�x1

0 Cij −M j �Ni

�x2

+Bi �Mi

�x2

Mi �N j

�x1

Mi �N j

�x2

0

�
�
�
�
�
�
�
�
�

d�h

+
�

�h

�
�
�
�
�
�
�

−
1

Re
Ni �N j

�xk

·nk 0 0

0 −
1

Re
Ni �N j

�xk

·nk 0

0 0 0

�
�
�
�
�
�
�

d�h (7)

In Equation (7), Cij accounts for equation non-linearity and is expressed as

Cij= (Ni+Bi)N jV� k
j �N j

�xk

+
1

Re
�Ni

�xk

�N j

�xk

−
1

Re
Bi �2N j

�xk �xk

(8)

In finite element analysis of Navier–Stokes equations, U� and V� are assumed to be constant
when evaluating the matrices. The line integral shown in Equation (7) represents the contribu-
tion of the essential-type boundary conditions. At boundaries where natural boundary
conditions are imposed, the vector b� is given by

b� =�
�h

�
�
�
�
�

−Nipin1

−Nipin2

0

�
�
�
�
�

d�h (9)

Here (n1, n2) denotes the outward vector normal to the boundary, at which pressure values are
imposed. It is the above equation that clearly explains why pressure values are admitted to be
specified at the boundary.

In numerical simulation of blood flows, proper selection of the test space w� is vital to
suppressing velocity oscillations. To enhance the convective stability, we consider the Petrov–
Galerkin finite element model. This model is regarded as a modification of the Galerkin
method in the sense that the biased polynomial

Bi=�N jV� k
j �Ni

�xk

(10)

is added to the basis function N j. As a result of adding Bi to Equation (8), field variables on
the upwind side are favorably considered. The free parameter � shown in Equation (10)
determines the upwinding needed to suppress oscillatory velocities. In the above equation, V�
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stands for velocities that are evaluated at element centroids. In our Petrov–Galerkin model, we
consider � (��(�)/2�u �2) as a function of the Peclet number, �= �u� �h/2�. Specific to our finite
element analysis is that � has been analytically derived from the one-dimensional convection–
diffusion scalar transport equation in quadratic elements. Depending on the nodal classifica-
tion, the following expressions of � have been analytically obtained and computationally
validated in quadratic elements [22]

�(�)=

�
�
�
�
�

1
2

coth
��

2
�

−
1
�

; center node

� sinh � cosh �−sinh2 �−4 cosh �−2� sinh �−4
6 sinh � cosh �+� sinh2 �−6 sinh �−4� cosh �+4�

; corner nodes
(11)

Before entering into a discussion of the results, it is important to adopt the present
fully-weighted upwind model. While the algebraical manipulation on diffusive terms is
considerable, the fully-weighted model can enhance the discrete system, in particular in cases
when the grid size has a marked change. Readers are referred to Reference [22] for additional
details. Another noteworthy feature is that use of the streamline operator given in Equation
(10) makes it possible to add the artificial viscosity �u� 2���ss to the primary flow direction. This
artificial damping term is considered useful not only for stabilizing the system, but also for
decreasing the numerical diffusion errors in the multi-dimensional flow analysis [22].

4. PROBLEM DESCRIPTION

As the anatomy shown in Figure 2 reveals, blood from the the SVC and IVC are confluent,
followed by a downstream flow into the left pulmonary artery (LPA) and right pulmonary
artery (RPA). Further downstream, the main pulmonary artery bifurcates into four branches:
the left upper pulmonary artery (LUPA), left lower pulmonary artery (LLPA), right upper
pulmonary artery (RUPA) and right lower pulmonary artery (RLPA). These branch flows
proceed further downstream to the left and right lungs. According to angiocardiograms, the
vessel diameters investigated were 16 mm for the SVC and the IVC, 7 mm for the LUPA and
RUPA and 6.7 mm for the RLPA and LLPA respectively. The diameter of both the RPA and
LPA was 15 mm. To obtain a better flow distribution and energy dissipation, it is useful to
enlarge the IVC and SVC anastomoses. Therefore, the diameters of the SVC and IVC
increased gradually to 130 per cent diameter enlargement at the IVC and SVC anastomoses
near the main pulmonary.

As clinical reports indicate, the blood in the SVC carries approximately one-third of the
systemic venous return and goes preferentially to the larger right lung. As for the blood in the
IVC, it carries the rest of the systemic venous return and goes to the smaller left lung. To
simplify the analysis, the velocity boundary condition specified at the inlets of the SVC and
IVC had a non-pulsatile steady parabolic profile. The flow rates were kept constant: QIVC=
2.4 l min−1 and QSVC=1.2 l min−1. Therefore, the maximum inlet velocities of the IVC and
SVC were obtained as 0.3 and 0.15 m s−1 respectively. According to the density, �=1060
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kg m−3, and the Newtonian blood viscosity, �=3×10−3 Pa s, the Reynolds number under
investigation was 565. This value was obtained by choosing D=0.016 m as the reference
length and ū=0.1 m s−1 as the characteristic velocity.

To close the investigated elliptic-type differential system, there remains the specification of
outlet boundary conditions. Since lungs tend to impose a resistance force on the blood flow in
the LUPA, LLPA, RUPA and RLPA, it is important to take into account the effect of the
lung on the hemodynamic simulation. To this end, we adopt the lumped-parameter pulmonary
circulation model [23] to close the Navier–Stokes flow simulation. Provided that the pul-
monary resistance, Rlung, and left atrium pressure, pLA, are available in the cardiac catheteriza-
tion report, the pressure prescribed at the truncated vessel outlet can be determined using the
underlying lumped-parameter model

pi=pLA+RlungQi (i=LUPA, RUPA, RLPA, LLPA) (12)

In this study pLA was chosen to be 400 Pa and Rlung as 25.9 Pa cm−3 s.

5. RESULTS AND DISCUSSION

The physical domain under investigation is schematically shown in Figure 2. Five offset values,
OFS=7, 5, 0, −4 and −6 mm, are considered. These offset values have been investigated in
our previous study [24]. To resolve the flow detail, grids were clustered near the vessel wall and
in regions where the vessel configuration underwent a marked change (Figure 3). As the
geometrical complexity makes scheme-convergence difficult, it is important to assure that the
computed finite element results are indeed the convergent solutions. For this purpose, we

Figure 3. Finite element mesh points for the hemodynamic analysis in the TCPC model.
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plotted the convergence histories for all the primitive variables against iteration numbers. For
this study �u� �k+1− �u� �k and pk+1−pk were cast in their L2-norm forms, where the superscripts
k and k+1 are two consecutive iteration numbers. Take the case with the offset value of 7 mm
as an example, the fast convergence shown in Figure 4 reveals the applicability of the
biquadratic finite element code to modeling blood flow in vascular circulation.

Due to space limitation, we plot results mainly for the case of OFS=7 mm. Figure 5 plots
the streamline contours, where a topological saddle point is seen in the junction region. Blood
in the SVC flows mostly to the LPA, which results in the left SVC vessel being the pressure
side and the inner wall the suction side (Figure 6). On the other hand, the pressure side of the
IVC vessel is on the reader’s left-hand side while the suction side of the IVC vessel is regarded
as being the suction side. To provide readers insight into the flow development in the
pulmonary artery, we plotted velocity profiles at some selected sections. Figure 7 provides
another picture of the blood division in the juncture region.

As the left and right lungs are different in size, the distribution of blood volume is a crucial
factor in TCPC operations. Therefore, we had to know how blood flows from SVC and IVC
distributed to the RPA and UPA. To this end, we plot dividing lines for five investigated offset
values in Figure 8. We proceeded to integrate the computed velocities on four outlet planes.
The resulting blood volumes are plotted in Figure 9 against the offset values. This plot helps
obtain the volumetric flow ratio QR [� (QLUPA+QLLPA)/(QRUPA+QRLPA)] and we plot them
in Figure 10.

Figure 4. Histories of convergence for �u� � and p.

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 36: 249–263



S. F. TSAI, T. W. H. SHEU AND T. M. CHANG258

Figure 5. Predicted streamline contours for the case with the offset value of 7 mm.

Figure 6. Pressure contours and pressure distributions along the vessel wall.

It has been known for quite some time that a marked change in configuration inevitably
results in an energy loss. As a result, a better design for connections in TCPC surgical
operations involves measuring some energetic indices. Two important parameters are often
referred to. The first one is the total energy loss coefficient Ce, defined as follows:
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Figure 7. Velocity vector plots for the case with offset value 7 mm.

Ce=
(1
2�V IVC

2 +PIVC)QIVC+ (1
2�VSVC

2 +PSVC)QSVC−�
i

(1
2�Vi

2+Pi)Qi

1
2�(V IVC

2 QIVC+VSVC
2 QSVC)

,

i=LUPA, LLPA, RUPA, RLPA (13)

The other indicator of primary importance is the hydraulic power given below

W� d=
�1

2
�V IVC

2 +PIVC
�

QIVC+
�1

2
�VSVC

2 +PSVC
�

QSVC−�
i

�1
2

Vi
2+Pi

�
Qi,

i=LUPA, LLPA, RUPA, RLPA (14)

The computed values of Ce and W� d for five investigated offset values are shown graphically.
As Figure 11 illustrates, the best offset value is chosen to be 7 mm of the five investigated
cases.

6. CONCLUSIONS

This paper has described a numerical simulation of blood flow to the lungs after a Fontan
surgical procedure was conducted. The emphasis of this study is to take the lung resistance
into consideration in the present hemodynamic analysis. Depending on the blood volume, the
pressure prescribed at the four exits of the pulmonary arteries are implemented in the mixed
finite element code with a sound theoretical foundation. Through this TCPC hemodynamic
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Figure 8. Blood dividing lines from IVC and SVC to the LPA and RPA for five investigated offset
values: (a) 7 mm; (b) 5 mm; (c) 0 mm; (d) −4 mm; (e) −6 mm. ‘�’ denotes the topological saddle point.

The shaded area is the blood from IVC.
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Figure 9. Computed blood volumes at four exit planes against offset values.

Figure 10. Computed LPA and RPA blood volume ratios against offset values.
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Figure 11. Computed Ce and Wd for five investigated offset values.

study, a clear flow structure has been revealed and helps us to determine the appropriate offset
value for the blood distribution in the left and right pulmonary arteries.
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