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Abstract. In this paper we apply the generalized Taylor–Galerkin finite element model to sim-
ulate bore wave propagation in a domain of two dimensions. For stability and accuracy reasons, we
generalize the model through the introduction of four free parameters. One set of parameters is rig-
orously determined to obtain the high-order finite element solution. The other set of free parameters
is determined from the underlying discrete maximum principle to obtain the monotonic solutions.
The resulting two models are used in combination through the flux correct transport technique of
Zalesak, thereby constructing a finite element model which has the ability to capture hydraulic dis-
continuities. In addition, this paper highlights the implementation of two Krylov subspace iterative
solvers, namely, the bi-conjugate gradient stabilized (Bi-CGSTAB) and the generalized minimum
residual (GMRES) methods. For the sake of comparison, the multifrontal direct solver is also con-
sidered. The performance characteristics of the investigated solvers are assessed using results of a
standard test widely used as a benchmark in hydraulic modeling. Based on numerical results, it is
shown that the present finite element method can render the technique suitable for solving shallow
water equations with sharply varying solution profiles. Also, the GMRES solver is shown to have
a much better convergence rate than the Bi-CGSTAB solver, thereby saving much computing time
compared to the multifrontal solver.
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1. Introduction. Many environmental problems, such as tides in oceans, break-
ing waves on shallow beaches, flood waves in rivers, mountain torrents, and estuary
flows [1] are closely related to the motion of unsteady free-surface flow. Predicting
the height and speed of the bore wave is the first step in providing useful information
for flood control and for the design of channel walls. It is the practical importance of
simulating shallow water equations that motivated the present study.

The shallow water height is analogous to gas density in gas dynamic equations.
Since gas dynamic equations admit discontinuous solutions, called shocks and contact
discontinuities, this analogy between two fields of equations implies that it is possible
to observe hydraulic jumps and bores in water and in the atmosphere. Numerically
capturing these discontinuous phenomena in hydraulics has become a major area of
theoretical and computational study. For suppressing dispersive oscillations exhib-
ited near the shock front, significant effort has been directed toward the development
of high-resolution hydraulic methods. Shock-capturing methods were first developed
by Godunov [2] and Van Leer [3]. Development of high-resolution schemes was fol-
lowed by adoption of the total variation diminishing (TVD) scheme of Harten [4], the
parabolic method (PPM) of Colella and Woodward [5], and the essentially nonoscil-
latory (ENO) schemes of Harten and Osher [6] to obtain numerically very accurate
but computationally absolute stable solutions. Most of these high-resolution schemes
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were, unfortunately, developed within the one-dimensional framework. The desire
to avoid this limitation has prompted many researchers to capture bore waves in an
open-channel flow and hydraulic jumps in a genuinely multidimensional dam-break
problem [7, 8, 9, 10, 11, 12, 13, 14, 15]. Since the flux corrected transport (FCT)
algorithm was originally developed without resorting to a single spatial dimension
[16, 17], we consider the FCT algorithm to be one of the most suitable choices for
multidimensional hydraulic calculations.

As is typical with other finite element flow simulations, we work with a large
matrix equation. Thus, we must minimize this disadvantage if we are to compete
with other structured-type discretization methods. To this end, we consider in the
present work two iterative solvers and one very effective direct solver. Both iterative
solvers, namely, the bi-conjugate gradient stabilized (Bi-CGSTAB) of Van der Vorst
[18] and the generalized minimum residual (GMRES) of Saad and Schultz [19], are the
ensemble of conjugate gradient method for solving the non-Hermitian linear system
of algebraic equations. These two Krylov subspace methods differ in the vectors used
to iterate the approximation solution. GMRES iterates the approximate solution
in terms of Arnoldi vectors while Bi-CGSTAB accomplishes the same task through
the use of unsymmetric Lanczos vectors. These vectors are chosen to overcome the
difficulty regarding the nonexistence of the orthogonal tridiagonalization of the finite
element stiffness matrix for shallow water equations. Since we wish to address the
performance of solution solvers, we also consider the direct solver for completeness.
In order to compete with the above state-of-the-art iterative solvers, we consider in
this assessment study the multifrontal direct solver of Duff and Reid [20]. This solver
is regarded as a refinement of the frontal solver of Irons [21].

The remainder of this paper is organized in six sections. Section 2 presents as-
sumptions that lead to the St. Venant shallow water equations. In section 3, we present
the Taylor–Galerkin finite element model, which can faithfully preserve the inherent
hyperbolic conservation law [22]. Specific to the present finite element model is that
four free parameters and one damping parameter are used to obtain higher prediction
accuracy in the high-order scheme while accommodating the monotonicity property
in the low-order scheme [23]. Section 3.3 explains how the high-order and low-order
Taylor–Galerkin formulations can be used in combination to obtain a nonoscillatory
solution. This is followed by presentation of two iterative solution solvers and one
direct solver that can be used to solve the nonsymmetric finite element equations.
The objective is to assess the efficiency of the solution solvers used to obtain finite
element solutions from indefinite and unsymmetric matrix equations. In section 5, we
provide analytical evidence by showing that the numerical model and solution solvers
can render techniques suitable for hydraulic problems with sharp gradients. All re-
sults of model tests are well in agreement with the analytic data. With this success
in analytical validation, we proceed to study the dam-break problem. Finally, a brief
discussion together with some conclusions is presented in section 6.

2. Mathematical formulation. Shallow water equations are derived under
zero fluid viscosity and surface tension assumptions. Wind shear and Coriolis forces
are not taken into account. Working equations for incompressible free-surface fluid
flows are derived under the small bottom slope condition. Another key assumption
in the derivation is that the vertical component of the flow acceleration has negligi-
ble influence on the pressure. A hydrostatic pressure distribution is thus assumed.
Given the above assumptions, the St. Venant shallow water equations, which govern
mass and momentum conservation, are derived in terms of a solution vector U of the
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conservative type [24]

Ut + Fx +Gy = S,(2.1)

where U = (h, hu, hv)T. In the above, h is the water depth, and u and v are the
depth-averaged velocity components in the x- and y-directions, respectively. Denote
g as the gravitational acceleration; the physical fluxes are derived as F = (hu, h u2 +
1
2g h

2, h u v)T and G = (h v, h u v, h v2 + 1
2g h

2)T. Without loss of generality, both
friction losses and bed slopes are neglected to simplify the analysis.

Given initially smooth data for the present homogeneous case (S = 0), the quasi-
linear hyperbolic system of partial differential equations may admit discontinuities,
such as bore waves that are often observed in practice, owing to nonlinear advective
terms in the equations [25]. In time-accurate simulation of St. Venant equations, it
is customary to rewrite working equations in their nonconservative equivalent forms
to better show the characteristic nature of the hyperbolic system. Transformation of
the conservative form into its nonconservative counterpart involves using the gravity
wave velocity c = (g h)1/2. The resulting eigenvectors and eigenvalues are critical
in hydraulic simulation since they represent the characteristic speed and direction of
signal transmission.

3. Finite element model. Within the weighted residual context, (2.1) can be
approximated in its weak form through the use of a test function W. This leads to

nel∑
el=1

∫
Ωel

∫ tn+1

tn

W

[
∂U

∂t
+
∂F

∂x
+
∂G

∂y

]
d t dΩel = 0.(3.1)

Define δUn = Un+1−Un and I = ∂
∂x

∫ tn+1

tn
F dt+ ∂

∂y

∫ tn+1

tn
G dt; (3.1) can be expressed

as follows through time integration:

nel∑
el=1

∫
Ωel

(WδUn −WI ) dΩel = 0.(3.2)

Analysis is carried out by performing Taylor series expansion of F and G with respect
to tn. Take F as an example; we can represent this vector in terms of Taylor series
expansion terms terminated at the time increment (t− tn)3:

F = Fn +
∂F

∂t

∣∣∣∣
n

(t− tn) + 1

2

∂2F

∂t2

∣∣∣∣
n

(t− tn)2 +O(t− tn)3.(3.3)

Recall that ∂U
∂t = −Fx − Gy and ∂F

∂t = ∂F
∂U

∂U
∂t = A∂U

∂t ; we introduce two free

parameters α and β and rewrite ∂F/∂t exactly as ∂F
∂t = αA∂U

∂t + βA[−∂F
∂x − ∂G

∂y ],
provided that α and β are constrained by α+ β = 1. Moreover, we can approximate
the time derivative term ∂F/∂t to obtain

∂2F

∂t2
= −γ

(
A2 ∂

2U

∂t∂x
+AB

∂2U

∂t∂y

)∣∣∣∣
n

+ µ

[
A2

(
∂2F

∂x2
+
∂2G

∂x∂y

)
+AB

(
∂2F

∂x∂y
+
∂2G

∂y2

)]∣∣∣∣
n

.(3.4)
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As in the above, the free parameters γ and µ, which are constrained by γ + µ = 1,

are also introduced. Substitution of ∂F
∂t and ∂2F

∂t2 into (3.3) leads to

F = Fn +

[
αA

∂U

∂t
− βA

(
∂F

∂x
+
∂G

∂y

)]∣∣∣∣
n

(t− tn)

− 1

2

{
γ

(
A2 ∂

2U

∂t∂x
+AB

∂2U

∂t∂y

)
− µ

[
A2

(
∂2F

∂x2
+
∂2G

∂x∂y

)

+ AB

(
∂2F

∂x∂y
+
∂2G

∂y2

)]}∣∣∣∣
n

(t− tn)2 +O((t− tn)3).(3.5)

Similarly, we can expand G with respect to quantities evaluated at time tn:

G = Gn +

[
αB

∂U

∂t
− βB

(
∂F

∂x
+
∂G

∂y

)]∣∣∣∣
n

(t− tn)

− 1

2

{
γ

(
BA

∂2U

∂t∂x
+B2 ∂

2U

∂t∂y

)
− µ

[
BA

(
∂2F

∂x2
+
∂2G

∂x∂y

)

+ B2

(
∂2F

∂x∂y
+
∂2G

∂y2

)]}∣∣∣∣
n

(t− tn)2 +O((t− tn)3).(3.6)

By substituting (3.5)–(3.6) into (3.2) and choosing bilinear polynomials as test
and basis functions, we can derive the finite element equation in the δ-form as follows:

Mc δU
n = R.(3.7)

In the above, Mc denotes the consistent mass matrix:

Mel
ij =

∫
Ωel

{
NiNj − 1

2
α∆t

(
∂Ni

∂x
A+

∂Ni

∂y
B

)
Nj

+
1

6
γ∆t2

[
∂Ni

∂x

(
A2 ∂Nj

∂x
+AB

∂Nj

∂y

)
+
∂Ni

∂y

(
BA

∂Nj

∂x
+B2 ∂Nj

∂y

)]}
dΩel

−
∫
Γ

{
−1
2
α∆tNi (nxA+ nyB)Nj +

1

6
γ∆t2Ni

[
nx

(
A2 ∂Nj

∂x
+AB

∂Nj

∂y

)

+ ny

(
BA

∂Nj

∂x
+B2 ∂Nj

∂y

)]}
dΓ.(3.8)

In (3.7), δUn(≡ Un+1−Un) is the vector of nodal increment and R (≡ CFn+ C̃Gn)
is the vector of element contributions added to the finite element nodes. For detailed
expressions of C and C̃, refer to [23].

3.1. High-order Taylor–Galerkin finite element model. To resolve discon-
tinuous solutions, we employ the FCT technique of Zalesak [17]. The idea behind this
algorithm is to combine an accurate high-order scheme with a monotonic low-order
scheme. To make this scheme effective, we require that the former scheme be used in
the smooth regime and the low-order scheme only in regions near discontinuities.

The key to constructing an efficient FCT finite element model is to develop a
model that can provide a high level of accuracy. To this end, we exploit the modified
equation analysis for the determination of the free parameters α, β, γ, and µ a priori
to obtain higher-order accuracy. The strategy we adopt to achieve this goal is to take
into consideration the scalar transport equation, φt + aφx + b φy = 0, in the flow
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with the constant velocity vector �u = (a, b). The modified equation analysis reveals
the rational use of (αh, βh, γh, µh) = (0, 1, 1, 0) [23]. With these parameters, the
resulting modified equation reads as

φt + a φx + b φy

= T1 φxxxx + T2 φxxxy + T3 φxxyy + T4 φxyyy + T5 φyyyy + · · · ,(3.9)

where T1 = 1
24 a∆x

3 νx (νx
2 − 1), T2 = 1

6 b∆x
3 νx

3, T3 = − 1
12 b

2 ∆x2 ∆t νx
2, T4 =

1
6 a∆y

3 νy
3, T5 = 1

24 b∆y
3 νy (νy

2 − 1). In light of the spatial third-order accuracy,
and the first-order temporal accuracy, the above Taylor–Galerkin finite element model
shows promise as a means of predicting a smoothly distributed water height in shallow
water equations.

3.2. Low-order Taylor–Galerkin finite element model. The next step in
the development of the Taylor–Galerkin FCT (TG-FCT) finite element model is to
derive the low-order model from the generalized Taylor–Galerkin finite element model.
To achieve this goal, the model is not allowed to produce any nonphysical or numerical
wiggles. This monotonicity and strictly positive field variable requirement is a key to
success in any FCT method. The better the low-order scheme, the easier the task of
limiting fluxes.

The development of a low-order finite element model proceeds as follows. We first
rewrite (3.7) as

McU
n+1 = Rn +McU

n.(3.10)

The derivation is followed by lumping the above equation to get

MlU
n+1 = Rn +McU

n.(3.11)

The above lumping-mass approximation helps to stabilize the discretized equation.
Subtracting MlU

n from both sides of (3.11), we obtain

Ml δU
n = Rn + (Mc −Ml)U

n.(3.12)

Further refinement of (3.12) can be made by multiplying cd (0 ≤ cd ≤ 1) by the
added mass diffusion term to better control the predicted solution. This helps us
avoid the introduction of unnecessarily large diffusion errors. The resulting model for
obtaining the lower-order Taylor–Galerkin finite element solution Un reads as

Ml δU
n = Rn + cd (Mc −Ml)U

n,(3.13)

where Ml = Anel

el=1(diag(
∑nmax

j=1 Mc
el
ij)). In order to satisfy the requirement placed on

the low-order scheme in any FCT method, we employ the discrete maximum theory
[26, 27, 28]. Based on this underlying theory, the matrices involved in (3.13) are of
the M-matrix type provided that the five free parameters introduced into the scalar
formulation are prescribed as (αl, βl, γl, µl, cd) = (0, 0, 0, 0, 0.425).

When simulating nonlinear shallow water equations, we may encounter a sonic
flow situation. In this case, entropy fix must be invoked in order to avoid nonphysical
rarefaction shocks at the sonic point. To satisfy the entropy satisfaction property when
the sonic condition is detected, we should add an entropy flux term, ∂

∂x (b(νx)
∂U
∂x ) +

∂
∂y (b(νy)

∂U
∂y ), to the region where it is needed. The damping coefficients used in the

entropy flux are as follows [29]:

b(νi) = ce
∆t

2λ2
q(νi),(3.14)
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where λ = ∆t/∆x (or ∆t/∆y), νi =
∆t
∆x (u− c) (or νi = ∆t

∆y (v − c)), and

q(νi) =

{
0, |νi| ≥ ε,
ε2 − ν2

i , |νi| < ε.
(3.15)

In what follows, we set ε = 0.2 and ce = 2.0.

3.3. FCT filtering algorithm. Having determined the values (α, β, γ, µ, cd)
needed to obtain high- and low-order finite element solutions, we can use two Taylor–
Galerkin models in combination to obtain positive and accurate results which are free
of nonphysical fluctuations. Use of the two schemes in combination was proposed by
Zalesak [17]. We follow closely the FCT scheme of Zalesak by calculating δUh from
the high-order model using either the iterative solvers or the multifrontal direct solver
[30] discussed below.

Upon obtaining the solution δUh, we can compute the antidiffusive flux array

Felh in each element:

Felh = [F elh

i ] =Ml
−1
h [Relh − (Mc

elh −Ml
elh) δUh].(3.16)

The calculation is followed by computing the antidiffusive flux array Fell from the

low-order Taylor–Galerkin solution δUl. The resulting antidiffusive flux array, Fell ,

in each element is computed according to Fell = [Ml
−1Rell ].When antidiffusive fluxes

Felh and Fell become available, we can calculate the corrected antidiffusive flux array
Felc [17]. The filtering processes finish with the calculation of Un+1 by means of
Un+1 = Ul +Anel

el=1(F
elc).

4. Solution solvers. The iterative solution solver is a strong rival to its direct
counterpart because it is less prone to fill-in problems. However, though the storage
problem can be considerably resolved, iterative methods have shortcomings of their
own. Chief among these shortcomings is the poor control of convergence behavior.
Due to space limitations, we will confine our review to iterative solvers based on the
minimization concept. The conjugate gradient method of Hestenes and Stiefel [31],
considered to be the pioneering work of this class of solvers, works effectively only for
a matrix equation having clustered eigenvalues and suffers from pivoting breakdown
when matrix symmetry is lost. Refinement of this Krylov subspace method in order
to overcome the matrix asymmetry difficulty has been the primary focus of research
during the last two decades.

In the literature, nonstationary iterative methods, which have the ability to re-
solve matrix asymmetry, are frequently referred to [32]. The Chebyshev methods are
applicable only to positive definite equations [33]. Also, use of this class of methods
requires knowledge of the eigenvalue spectrum a priori. To circumvent deficiencies in
irregular convergence behavior and the indispensable transpose operation of the coeffi-
cient matrix inherent in the bi-conjugate gradient (Bi-CG) method [34], the Arnoldi or
Lanczos algorithms were proposed. Like the Arnoldi algorithm, the GMRES method
[19] iterates the approximation solution through use of a self-orthogonal sequence.
Due to the prohibitive storage demand, the residual can be minimized optimally by
adding a restart capability. In the iteration, no more than n steps are needed for an
n by n matrix to reach convergence.

Within the Lanczos framework, product methods, such as conjugate gradient
squares (CGS) [35], quasi-minimal residual (QMR) [36], and Bi-CGSTAB [18], are
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Fig. 4.1. An illustration of the sparse matrix assembled from 2× 2 elements.

preferable for tackling equation asymmetry. The exploration of a set of dual orthogo-
nal vectors is the building block of this class of methods. The QMR method of Freund
and Nachtigal [36] was designed to avoid irregular convergence behavior. This method,
unfortunately, suffers from the need to transpose the stiffness matrix. CGS, on the
other hand, avoids the need for matrix transpose but inhibits irregular convergence
behavior because it accommodates the same contraction polynomial as does Bi-CG.
Besides the transpose-free version of QMR [37], the Bi-CGSTAB method of Van der
Vorst [18] is a rational alternative. Bi-CGSTAB iterates the approximation solution
in terms of unsymmetric Lanczos vectors, in conjunction with the local minimization
method GMRES(1). Through manipulation of equal-order contraction polynomials
of different kinds, one can dispense with transpose matrix procedures and suppress
irregular convergence behavior. Nevertheless, much work still needs to be done so
that pivoting breakdown and Lanczos breakdown can be avoided.

The choice of an appropriate solver for obtaining finite element solutions depends
on the type of matrix equations employed. Take matrix equations constructed from
2× 2 elements as an example; the sparse matrix, as shown in Figure 4.1, is found to
be unsymmetric. Further eigenvalue analysis reveals that the matrix equations are
indefinite, thus limiting application of conventional iterative solvers. In this study,
we will consider two state-of-the-art iterative solvers and attempt to make a definite
assessment of the multifrontal direct solver [30]. Two iterative solvers are the GMRES
solver of Saad and Schultz [19] and the Bi-CGSTAB iterative solver of Van der Vorst
[18]. These iterative solvers are variants of conjugate gradient methods.

4.1. The GMRES iterative solver. We will consider first the GMRES method
of Saad and Schultz [19]. This nonstationary iterative solution solver is considered
to be an extension of minimal residual (MINRES) which can be used to solve un-
symmetric matrix equations. A sequence of tridiagonal matrices is used to obtain a
progressively improved distribution of the eigenvalues of the original non-Hermitian
linear stiffness matrix system. GMRES iterates the solution with the aid of Arnoldi
vectors to overcome the difficulty of the nonsymmetry of the matrix equations. The
employed Arnoldi algorithm involves partial tridiagonalization of the original matrix
equations using one set of orthogonal vectors Q to yield QTAQ = H, where H is
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the Hessenberg reduction. The column-by-column generation of Q has the property

of QT Q = I (i.e., identity matrix).
GMRES follows the modified Gram–Schmidt orthogonalization procedure. It

invokes a restart capability to control the storage requirement. In GMRES, the main
steps are as follows:

Set x0 as an initial guess
For j = 1, 2, . . .

Solve r from r = b−A x0 ←− element-by-element procedure
v1 = r/‖r‖2
s := ‖r‖2
for i = 1, 2, 3, . . . ,m

Solve w from w = A vi ←− element-by-element procedure
for k = 1, . . . , i

hk,i = (w,vk)
w = w − hk,i vk

end
hi+1,i = ‖w‖2
vi+1 = w/hi+1,i

apply J1, . . . , Ji−1 on (h1,i), . . . , h(i+ 1, i))
construct Ji, acting on the ith and (i+ 1)st components of h.,i,

such that the (i+ 1)st component of Ji h.,i is with the value of 0
s := Ji s
if s(i+ 1) is small enough, then (UPDATE (x̃, i) and quit )

end
UPDATE (x̃,m)

End
The UPDATE (x̃, i) procedure is as follows:

Compute y from H y = s,
in which the upper i× i triangular part of H has hi,j as its elements,
s is the first i components of s

x̃ = x0 + y
1
v1 + y

2
v2 + · · ·+ y

i
vi

si+1 = ‖b−A x̃‖2 ←− element-by-element procedure
if x̃ is accurate enough, then quit
else x0 = x̃.

In the above, the inner product coefficients ‖wi‖ and (wi, vk) are stored in a
Hessenberg matrix. Upon obtaining the values of yk, which are designed to minimize
the residual norm ‖b − A x(j)‖, the GMRES iterations are constructed as xj =

x0 +
∑

i=1 yiv
i. GMRES will converge in no more than n iterations when an n

by n matrix equation is solved. This is practically infeasible since the storage and
computational requirements are prohibitive if n is large. In fact, the crucial factor for
successful application of GMRES lies in the restart coded in the program. For this
reason, the restarting capability is a built-in feature that can yield the above restarted
GMRES(m), where m denotes the termination number of iteration. The choice of m,
however, has no theoretical foundation and thus is very difficult to determine. Since
there is no definitive rule for the choice of m, we determine it through numerical
experiments. After conducting extensive investigations, we consider m = 5 in all the
calculations. For additional details of GMRES(m), see Van der Vorst [18].

4.2. The Bi-CGSTAB iterative solver. The Bi-CG method of Fletcher [34]
suffers from instability problem arising from the unsymmetric Lanczos process when
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it is used to solve the non-Hermitian system of equations. As a result, considerable
effort has been directed toward developing a more stable algorithm. The CGS method
is considered as a variant of Bi-CG, known as Bi-CGSTAB. Since the Bi-CGSTAB
method is known for its smooth approach to convergence, we will consider this method
in our assessment study.

Like the Bi-CG method, Bi-CGSTAB iterates the approximate solution by means
of unsymmetric Lanczos vectors. The difficulty arises from the nonsymmetry property
of the finite element stiffness matrix A, which results in the nonexistence of the

orthogonal tridiagonalization QT AQ = T, where T is a tridiagonal matrix. As a
result, partial tridiagonalization of A is needed to implement the algorithm. The
unsymmetric Lanczos algorithm allows partial tridiagonalization of A by making use
of two sets of biorthogonal vectors. This approach involves computing columns of Q

and P, which are subject to PTQ = I, so that PTAQ = T is tridiagonal.
It has been known for quite some time that effective use of iterative methods

depends highly upon the nonzero profile of the coefficient matrix. The strategies of
ordering nodal points and allocating working variables are essential because they have
a direct effect on the matrix bandwidth and, thus, matrix sparsity. A means of storing
the matrix in the core memory is needed in the finite element analysis, where sparse
matrix equations are encountered. Like the compressed matrix used in the finite
difference setting, we can store a matrix at the element level so as to dispense with
unnecessary storage of voids. This motivates us to conduct finite element analysis on
an element-by-element basis. In this paper, we incorporate the element-by-element
capability into the Bi-CGSTAB of Van der Vorst [18]:

Compute r0 = b−A x0 for an initial guess vector x0

Choose r, such that (r, r0) �= 0
For i = 1, 2, . . .

ρi−1 = (r, ri−1)
if ρi−1 < ε1 [near break down]
if i = 1
p
i
= ri−1

else
βi−1 = (ρi−1/ρi−2)(αi−1/ωi−1)
p
i
= ri−1 + βi−1 (pi−1

− ωi−1 vi−1)

endif
vi =

∑
elem(Aelem

pi) ←− element-by-element procedure

αi = ρi−1/(r, vi)
if (r, vi) < ε2 [near break down]
s = ri−1 − αi vi

t =
∑

elem(Aelem
s) ←− element-by-element procedure

if ‖s‖2 < ε
ωi = 0

else
ωi = (t, s)/(t, t)

endif
xi = xi−1 + αi pi

+ ωi s

ri = b−A xi

check convergence; continue if necessary (ωi �= 0)
End

For the two iterative methods considered here, the calculation is terminated when the
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residual-norm criterion ‖r‖2 < 10−10 is satisfied.

4.3. Multifrontal direct solver. One of the significant advances in finite ele-
ment computations was the frontal direct solver developed in 1970 [21]. The frontal
solver begins by assembling the matrix for each element. This is followed by incor-
porating element matrices into the global system of matrices. The elimination of
equations is allowed whenever possible, rather than assembling the whole system of
elementary finite element matrices. Instead, we examine whether there exists any
row which corresponds to the fully contributed nodes; if there is, we store the row,
the variables associated with it, and the right-hand side, and then eliminate this row.
This process continues until all the elements have been assembled and the elimina-
tion procedure is completed. The calculation of solutions is followed by performing
backward-substitution.

The multifrontal direct solver can be refined in different ways. The most impor-
tant solver of this kind is the one developed in 1983 [20]. As the name indicates, many
frontal matrices are involved in the course of applying multifrontal solver. The matrix
is divided into several balanced substructures. A tree structure is needed to define the
order of assembly of element matrices. After the finite element mesh is partitioned, a
frontal method is applied to each user’s defined substructure to eliminate the interior
nodes. A set of substructure matrices is thus generated to complete the elimination
process. This is followed by backward-substitution to obtain finite element solutions.

5. Numerical results. We will first consider test problems which are amenable
to analytical solutions in order to demonstrate the validity and usefulness of the TG-
FCT finite element model. The first problem is shown schematically in Figure 5.1. In
the square of unit length, a sharp scalar profile was set as the initial condition. The
centroid of the square profile was located at (0.25, 0.25). This initially discontinuous
scalar profile was transported in the flow specified by u =

√
2/2, v =

√
2/2. Rec-

tangular Cartesian grids were uniformly overlaid on the region of interest. The grid
spacings were set as ∆x = ∆y = 0.01, and the time increment for this study was
chosen to be ∆t = 0.001. The calculation for this study was terminated at t = 0.5.
The numerical models were run using iterative and direct solvers with a tolerance
equal to 10−10. The result shown in Figure 5.2 clearly indicates that the passive
scalar was well predicted without observable oscillations. This validation test shows
that the scheme adopted here has the ability to resolve discontinuities.

We now turn to making a comparison of the employed frontal, GMRES(5), and
Bi-CGSTAB solution solvers. The user, system, and CPU times shown in Table 5.1
are obtained for the codes run on an Intel Celeron/466 MHz processor. As this table
shows, GMRES(5) consumes only 1/9 CPU time as that computed by the frontal
solver. As for the Bi-CGSTAB solver, it is slower than the GMRES(5) by a factor
of 7/9. One plausible reason for explaining the savings in CPU time of the GMRES
solver is due to its relatively regular convergence. Taking t = ∆t as an example, the
convergent histories, shown in Figure 5.3, clearly show that the specified tolerance is
reached much more quickly when GMRES is employed. As for the CPU time spent
in this arbitrarily chosen time step, the ratio of CPU|GMRES(5) / CPU|Bi-CGSTAB

is equal to 4/5.

The next problem was intended to test the ability of the scheme to resolve dis-
continuous field variables in shallow water equations. In this validation, we solve
for a one-dimensional dam-break problem using the proposed two-dimensional finite
element code. The problem, shown in Figure 5.4, involved a dam 100 m in length.
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Fig. 5.1. The schematic illustration of the scalar transport problem.
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Fig. 5.2. (a) The contours of the computed solution at t = 0.5; (b) the three-dimensional view
of the solution at t = 0.5. The grid size used for this study is ∆x = ∆y = 10−2.

Table 5.1
The comparison of CPU times (in seconds) for solving the problem, schematically shown in

Figure 5.1, using the frontal, GMRES, and Bi-CGSTAB solvers.

Method User time System time CPU time
frontal [21] 20842 1187 22029

GMRES(5) [19] 1898 664 2562
Bi-CGSTAB [18] 2409 664 3073
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Fig. 5.3. The convergent histories of the GMRES(5) and Bi-CGSTAB methods within a time
step 0 ≤ t ≤ ∆t for the transport problem given in Figure 5.1.

x

y

0 100 200
0

50

100

150

200

250

The location
where dam locates

line of
symmetry

Lef
t p

ar
t

Right p
ar

t

plane where the
periodic boundary
condition applies

inlet plane

exit plane

r plane where the
periodic boundary
condition applies
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For the present study, a channel 300 m long and 100 m wide was used and was dis-
cretized into 301×7 grids for numerical calculation. The case under investigation was
a subcritical flow with a water-height ratio of 2. Both the upstream and downstream
boundary conditions remained unchanged during the calculation. For this purpose,
the test was run at t = 10 s.

Figure 5.5 shows the water height, which compares very favorably with the fol-
lowing analytic data of Stoker [38]:

h(x̃, t) =




h1 if x̃
t ≤ −

√
gh1,

( 1
9g )

[
2
√
gh1 − x̃

t

]2
if −√gh1 ≤ x̃

t ≤
[
um −

√
ghm

]
,

hm if
[
um −

√
ghm

] ≤ x̃
t ≤ s,

h2 if s ≤ x̃
t ≤ ∞.

(5.1)
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Fig. 5.5. The comparison of the solution of the one-dimensional dam-break problem with the
Stoker’s analytic solution. The grid size for this problem is ∆r = 1.

We denote here x̃ = x−x0, where x0 is the location of the discontinuity. In the above,
hm and um are the water height and velocity in the middle of this channel, and their
values are related to the shock propagation speed s:

hm =
1

2

[√
1 +

8s2

gh2
− 1

]
h2,(5.2)

um = s− gh2

4s

[
1 +

√
1 +

8s2

gh2

]
.(5.3)

The shock speed s is the positive real root of the following equation:

um + 2
√
ghm − 2

√
gh1 = 0.(5.4)

It is seen from the computed solutions that the shock wave can be resolved within
4 mesh points. No postshock oscillations are observed in the solution. Also, the
improved accuracy is attributable to the high-order Taylor–Galerkin scheme, which
is applied in regions away from the discontinuity.

We will now consider wave propagation in a basin of simple geometry. Figure 5.6
shows a typical configuration extensively used to study shallow water where bore
waves may develop. At the midpoint of the square basin, a dam with a width of
10 m equally divides the water into two parts. On both sides of this idealized dam,
the water elevations have a height ratio other than 1. At time t = 0+, the dam is
partially broken, leading to a breach with a width of 75 m. The resulting flow pattern
in this partially breached dam depends on whether it is classified as being subcritical
or supercritical. The case examined here is a subcritical flow with hL/hR = 2, where
hL (≡ 10 m) denotes the initial water elevation on the left side of the basin while
hR (≡ 5 m) represents the water height on the right side. Given that the ratio hL/hR
has a value other than 1, water proceeds toward the downstream side through the
breach, which is located in the region y = 95 m to y = 170 m. When the dam breaks,
a bore wave starts to propagate forward and spread laterally. At the same time, a
negative depression wave spreads upstream. In addition, a standing wave will appear



2088 C. C. FANG AND TONY W. H. SHEU

x

y

0 50 100 150 200
0

25

50

75

100

125

150

175

200

initial
water height

hL

initial
water height

hR

solid walldam
breaks at

t=0+

Fig. 5.6. The configuration of the two-dimensional dam-break problem.

2
2

2

2

2

2

2
2

2
2

2
2

3
3 33

3

3

3

3

3

3
3

3
3

4 4

4

4
4

4

4
4

4
4

4
4

5

5

5

5
5

5
5

6

66

66

6

6

6

6
6

6

6
6

7

7

7

7

7

7
7

7
7

7

7

7

7

7

7
7

8

8
8

8

8

8

8

8
8

9

9 9 9

9

9

10
10

10

10

11
11

11
11

11

11
12

12

12
13

13
13

13

14

14

14

14
14

14
15

15
15

15

15

1616

16
16

1616

16
16

16
16

17
17

17

17

17

17

17

17
1717

18
18

18

18

18

18

18

1818
18 18

19

19

19

19
19

19

19
19

19

19
20

20
20

20
20

20

20
20

x

y

0 50 100 150 200
0

25

50

75

100

125

150

175

200

20 9.75
19 9.5
18 9.25
17 9
16 8.75
15 8.5
14 8.25
13 8
12 7.75
11 7.5
10 7.25
9 7
8 6.75
7 6.5
6 6.25
5 6
4 5.75
3 5.5
2 5.25
1 5

Water
Height

Fig. 5.7. The contours of water height of the two-dimensional dam-break problem.

due to the reduction of velocity at the two side walls. Our goal is to numerically
predict the time-evolving propagation and spreading of the wave into the reservoir.

With the Courant number set as 0.1, the numerical code was run on a domain
of uniform spacing, ∆x = ∆y = 5. Figure 5.7 plots the contour values of the water
elevation obtained using the proposed TG-FCT method at t = 7.2 s. These values
show that the right traveling bore wave and left traveling depression wave have both
been predicted. The results also reveal the ability of the FCT scheme to capture
sharp solutions, as seen from the abrupt depression of the water surface elevation
in the vicinity of the breach edge. The appearance of this sharp depression wave
is theoretically justified since strong rarefactions are established in the inviscid flow
regime where large velocity gradients appear. In light of this fact, we plot in Figure 5.8
the velocity vector to show the sharp depression in the water surface elevation around
the breach edge. From this velocity vector plot, we are led to conclude that the
regions with large velocity gradients observed near the edge of the breach appear to
be those which are most subject to abrupt depression in the water surface elevation.
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To present the solution clearly, we plot in Figure 5.9 a three-dimensional water surface
at t = 7.2 s after the dam breaks.

Having demonstrated the advantage of using the GMRES(5) solver over the Bi-
CGSTAB solver, we simply consider the GMRES solver in the shallow water calcu-
lation and make a computational assessment with the two employed direct solvers.
Table 5.2 shows that GMRES(5) is ten times faster than the frontal solver. As for
the multifrontal direct solver, it takes only 1/3 of the CPU time needed for the direct
solver. Note that the times summarized in Table 5.2 are obtained on an SGI Origin
2000 computer. This performance test demonstrates the effective utility of the multi-
frontal solver and, more importantly, ensures the advantage of applying the GMRES
iterative solver to shallow water analyses.

To show that this method is applicable to predicting a more severely changing
solution profile, we considered a supercritical flow. The initial water height ratio was
prescribed as hR/hL = 0.05. As Figure 5.10 shows, water heights were captured in a
sharp and nonoscillatory way. This test also sheds light on the effectiveness of adding
entropy flux to the region where needed (near the sonic point) since no expansion
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Table 5.2
The comparison of CPU times (in seconds) for solving the dam-break problem using the frontal,

multifrontal, and GMRES solvers.

Method User time System time CPU time
frontal [21] 28961 199 29160

multifrontal [20] 9657 142 9799
GMRES(5) [19] 2816 143 2959

2
2

2

2

2

2

2

2
2

2
2

3 3

3

3
3 3

3
3

3

3

3

3

3
3

3
3

3

3

4

4 4

4 4

4 4

4
4

4

4
4

5

5

5

5 5

5 5 5

5

5

5
5

6 66

6 6

6

6 6

6

7
7

7

7

7 7

8

8

8

8
8

9

9

9

9

10

10

10

11
11

11

11

11

11

12

12

12

12

13
13

13
13

13

13

14
14

14
14

15

15

15

15
15

15

15

16
16

16

16

16

17
17

17

17
17

17

17

18

18

1818

18

18

18

18

19
19

19
19

19 19 19

20
20

20

20
20

20

20

20

20

x

y

0 50 100 150 200
0

25

50

75

100

125

150

175

200

20 9.525
19 9.05
18 8.575
17 8.1
16 7.625
15 7.15
14 6.675
13 6.2
12 5.725
11 5.25
10 4.775
9 4.3
8 3.825
7 3.35
6 2.875
5 2.4
4 1.925
3 1.45
2 0.975
1 0.5

Water
Height

Fig. 5.10. The contours of water height of the two-dimensional dam-break problem with
hR/hL = 0.05.

shock is observed. It is thus concluded that the FCT technique incorporated into
the Taylor–Galerkin formulation has the ability to suppress dispersive errors near a
discontinuity without adding dissipation error which could deteriorate the solution.

6. Concluding remarks. We have applied in this paper a generalized Taylor–
Galerkin finite element model to simulate shallow water equations in two dimensions.
By prescribing different sets of free parameters a priori, we can render the technique
suitable for hydraulic problems having sharply or smoothly varying solution profiles.
We have applied the FCT filtering scheme to obtain high-resolution solutions. The
main idea of developing the high-order TG-FEM model is the adoption of modified
equation analysis. As for the free parameters used in the low-order Taylor–Galerkin
model, we employ the discrete maximum principle to construct a stiffness matrix of
the M-matrix type. The avoidance of numerical oscillations near the discontinuity
and the higher level of prediction accuracy in the smooth region make this scheme
a robust tool for solving differential equations governing shallow water height. The
code was run on several test problems to study the method’s performance and the
solver’s efficiency, with particular attention paid to the shock-capturing ability and
the computational advantage. For the purpose of validation, we have chosen ones
for which exact solutions are available. These include the scalar equation and the
shallow water equations. Numerical results show that field variables were captured
in a sharp and nonoscillatory way in both subcritical and supercritical situations.
Through computational exercises, we advocate the use of iterative solution solvers.
Of two investigated iterative solvers, the GMRES outperforms the Bi-CGSTAB solver.
The present study also shows the advantage of applying the multifrontal direct solver
over the frontal direct solver as far as the present shallow water analysis is considered.
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