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SUMMARY

This paper is concerned with the development of the finite element method in simulating scalar transport,
governed by the convection–reaction (CR) equation. A feature of the proposed finite element model is
its ability to provide nodally exact solutions in the one-dimensional case. Details of the derivation of the
upwind scheme on quadratic elements are given. Extension of the one-dimensional nodally exact scheme
to the two-dimensional model equation involves the use of a streamline upwind operator. As the modified
equations show in the four types of element, physically relevant discretization error terms are added to
the flow direction and help stabilize the discrete system. The proposed method is referred to as the
streamline upwind Petrov–Galerkin finite element model. This model has been validated against test
problems that are amenable to analytical solutions. In addition to a fundamental study of the scheme,
numerical results that demonstrate the validity of the method are presented. Copyright © 2001 John
Wiley & Sons, Ltd.

KEY WORDS: convection–reaction equation; nodally exact; Petrov–Galerkin; streamline upwind; two-
dimensional

1. INTRODUCTION

There exist many flow situations in which reaction terms are present, and modeling of them is
important. Typical examples in engineering are the Helmholtz equations for modeling sound
propagation [1], k–e equations for modeling flow turbulence [2], and constitutive equations for
modeling extra stresses in non-Newtonian flow motion [3]. In this paper, we are concerned
with equations for the viscoelastic fluid flow. The prototype equation for this class of flow is
the convection–reaction (CR) equation. Methods of solving transport equations containing
reaction terms are mostly constructed from physically more complex convection–diffusion–
reaction (CDR) equations [4–7]. Very few if any have been directly developed from the CR
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equation. At first glance it appears that one might directly apply the CDR models by setting
the diffusion coefficient to zero [5–7]. A problem that occurs in the use of CDR discrete
models is that of the zero denominator in the scheme coefficients, which make the application
of CDR models impractical. In this light, it is legitimate to deal with modeling the CR
equation directly and this motivates the present study.

A reliable simulation model requires a numerical scheme that has the ability to predict
transport phenomena accurately while being able to suppress numerical instability that arises
in the course of discretization. The problem with numerical instability is important since
advective and reactive terms can cause the solutions to diverge. It is then a question of
constructing proper upwind schemes that can stabilize the finite element equation. From the
stability viewpoint, it is computationally more difficult to solve transport equations with
vanishing fluid viscosity. Due to the absence of physical damping terms, which aid stabilization
of the discrete system, care must be taken in the approximation of direction-dependent
advection terms to avoid convective instability. This is particularly the case in multi-dimen-
sional analyses. In this paper we are also concerned with prediction accuracy, since we do not
regard a scheme as useful if it cannot provide a high level of accuracy. In addition, a lack of
alignment of co-ordinate lines with flow directions can cause the prediction accuracy to
deteriorate in the computation for two-dimensional flow problems [8]. Another aim of the
present paper is to elucidate a means of resolving this problem.

The rest of this paper is organized as follows. In Section 2 the finite element model is first
presented based on the one-dimensional case in order to provide an analytical representation
of the solution. This is followed by extending the scheme to multi-dimensional analysis, with
an emphasis on the choice of the weighting function. The streamline upwind operator is
introduced into the formulation to add a stabilizing term along the flow direction. Section 3
is devoted to explaining why the working equation is worth considering. Section 4 gives
numerical results that demonstrate the validity of this method. In Section 5 we make
concluding remarks.

2. FINITE ELEMENT ANALYSIS OF THE CONVECTION–REACTION EQUATION

Each constitutive equation governing transport of an extra-stress component f in non-
Newtonian fluid flows is as follows:

u
(f

(x
+6
(f

(y
+cf= f (1)

In the above, c is the coefficient of the reaction term and f denotes the source term. To a first
approximation, velocity components u and 6 are considered as constant values. In this paper,
we are concerned with the development of the finite element model that can provide good
stability and high accuracy for Equation (1). The underlying idea is that the scheme presented
here provides nodally exact solutions for the one-dimensional case. As the dimension increases
by one, artificial viscosity needed to stabilize the discrete system is added along the flow
direction to avoid false diffusion errors [9].
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2.1. One-dimensional con6ection–reaction finite element model

As already mentioned, we consider first the finite element analysis of the following one-
dimensional model equation:

u
(f

(x
+cf= f (2)

To solve the above equation, the Petrov–Galerkin finite element model is developed in a
domain that is covered with uniform quadratic elements. As is the case when conducting
weighted residuals finite element analysis, the basis space {Ni} for the field variable f and the
test space {Wi} for Equation (2) need to be defined. Figure 1 shows two quadratic finite
elements, each of which has a grid size of 2h. For stability reasons, the discrete model must be
constructed within the Petrov–Galerkin finite element framework. As with the development of
the CR finite element model [8], it is required that ahNi% be added to Ni, thus obtaining the
weighting function

Wi=Ni+ahN %i (3)

The introduced free parameter a determines the weight placed in favor of the upwind side
node.

Figure 1. An illustration of an one-dimensional quadratic element with the uniform grid size 2h. (a)
middle node representation; (b) corner node representation.
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The derivation is followed by substituting the quadratic shape function (N1, N2, N3)=
((j−1)j/2, (1+j)(1−j), (1+j)j/2) and the weighting function given in Equation (3) into
the weighting residuals statement

%
e

&
Ve

Wi
�

u
(f

(x
+cf− f

�
dx=0 (4)

In the above, j (−15j51) denotes the co-ordinate for the master element. After some
algebra, the discrete equations similar to the finite difference equations are derived. Since the
quadratic element, shown schematically in Figure 1, is used, discrete equations are presented
at the middle and corner nodes respectively. Due to space limitations we will omit the detailed
derivation of the discrete equations but rather summarize them as below

Middle node i shown in Figure 1(a)
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Corner node i shown in Figure 1(b)
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Although the derivation of the above algebraic equations is quite involved, Equations (5) and
(6) are useful in the determination of the value of a, by means of which more accurate
solutions can be obtained using the weighted residuals method.

Having obtained the local representation of the Petrov–Galerkin finite element equation, we
need to determine the free parameter a so that the solutions obtained can be nodally exact. To
achieve this goal, the following analytical solution for Equation (2) is taken into consideration:

f=C e−cx/u+
f
c

(7)

In the above C is a constant. By making use of this analytical representation of f, one can
obtain the exact expressions for fi−2, fi−1, fi, fi+1, and fi+2. The derivation of the
analytical a is followed by substitution of these analytical values into Equations (5) and (6),
from which the analytical expressions of a at the middle and corner nodes can be derived. By
defining the dimensionless parameter b as
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b=
ch
u

(8)

the analytical a can be obtained as

amiddle node=
4b+b cosh(b)−5 sinh(b)

5(2 cosh(b)−b sinh(b)−2)
(9)

acorner node=
8b+4b cosh(b)−2b cosh(2b)−20 sinh(b)+5 sinh(2b)

5(8 cosh(b)−cosh(2b)−4b sinh(b)+b sinh(2b)−7)
(10)

As Figures 2 and 3 show, the analytical values of a given in Equations (9) and (10) approach
their asymptotic values, −0.1975 and −0.3975 respectively, as �b � continuously increases.

Figure 2. The analytical expression of a, shown in Equation (9), against b=ch/u at the middle node.

Figure 3. The analytical expression of a, shown in Equation (10), against b=ch/u at the corner node.
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2.2. Streamline upwind con6ection–reaction finite element model

Having derived the analytical one-dimensional Petrov–Galerkin finite element model for
Equation (2), we now proceed to extend the analysis scope. Within the two-dimensional
context it is desired that this scheme is computationally stable and numerically accurate. For
this reason one can employ the strategy of adding stabilizing terms mainly along the primary
flow direction. Following the idea of Hughes and Brooks [8], the weighting functions employed
in this paper for solving Equation (1) are as follows:

Wi=Ni+t
�

u
(Ni

(x
+6
(Ni

(y
�

(11)

or

Wi=Ni+ti

N jV0 k
j


u2+62

(Ni

(xk

(12)

where

ti=
%
n

i=1

d(gYi
)VYi

hYi

2
u2+62
(13)

The finite element formulation is followed by substitution of weighting and shape functions
into the weighted residuals statements for Equation (1) to derive the algebraic equations. Since
bi-quadratic elements are considered, discrete equations should be obtained for the four
element types shown schematically in Figure 4. The derivation of these discrete equations is
quite a delicate task. After some algebra, the modified Equation (1) can be derived. Depending
on the element types, these modified equations are summarized in the following:

ufx+6fy+cf− f=t{ucfx+6cfy+u2fxx+62fyy+2u6fxy}+S % (14)

The error terms S % in Equation (14) are shown in Table I for the reader’s reference.
Equation (14) has novel features worth noting. Taking the second derivative of f along the

flow direction, s, into consideration, we can obtain the following identity equation in the
physical co-ordinate system (x, y):

fss=
u2

u2+62

(2f

(x2 +
2u6

u2+62

(2f

(x (y
+

62

u2+62

(2f

(y2 (15)

According to Equations (14) and (15), the leading dissipative discretization error is added
mainly along the flow direction u ( tan−1(6/u)). This derivation explains why the above
weighted residuals statement is referred to as being a streamline upwind Petrov–Galerkin
(SUPG) finite element model. Owing to the introduction of fss into the finite element

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 35: 575–591



2D STREAMLINE UPWIND SCHEME FOR THE CR EQUATION 581

Figure 4. Four types of element encountered in the bi-quadratic elements.

formulation, it clarifies the rationale of applying the weighting function given in Equation (12)
to stabilize the scheme. In summary, the leading discretization error is added along the
streamline and helps stabilize the discrete system with no cross-wind diffusion.

3. APPLICATION TO VISCOELASTIC PROBLEMS

We will next apply the developed CR finite element model together with the streamline finite
element model [10] to simulate the incompressible Navier–Stokes equations. Under the
assumption that the fluid density, r, is constant, a non-Newtonian fluid flow will be considered
in a domain of two dimensions. Neglecting the effect of gravity and taking the flow as being
steady, the flow can be described by the continuity equation and the Navier–Stokes equations
given below respectively

9 ·u6 =0 (16)

ru6 ·9u6 = −9p+9T (17)

In the above, the extra-stress tensor T (Tij) is defined as follows:
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Table I. Discretization error terms derived for four types of elements using the quadratic upwind finite
element model.

Discretization error terms S %Element type

Type 1 h2�c

5
(fxx+fyy)+

u

30
(10Txxx+6fxyy)+

6

30
(6fxxy+10fyyy)

n
+

tc

15
(−5ufxxx−56fyyy−36fxxy−3ufxyy)

h2� c

10
(2fxx−fyy)+

u

30
(10fxxx−3fxyy)+

6

30
(6fxxy−5fyyy)

n
Type 2

+
tc

30
(56fyyy−10ufxxx+3ufxyy−6ufxxy)

Type 3 h2� c

10
(−fxx+2fyy)+

u

30
(−5fxxx+6fxyy)−

6

30
(3fxxy−10fyyy)

n
+

tc

30
(5ufxxx−106fyyy+36fxxy−66fxyy)

h2� c

10
(−fxx−fyy)+

u

30
(−5fxxx−3fxyy)−

6

30
(3fxxy+5fyyy)

n
Type 4

+
tc

30
(5ufxxx+56fyyy+36fxxy+3ufxyy)

Tij=2m̄Dij (18)

where

Dij=
1
2
�(ui

(xj

+
(uj

(xi

�
denotes the rate of deformation tensor. The coefficient m̄ in Equation (18) is called the
apparent viscosity. Unlike the Newtonian fluid flow, where m̄ is a constant value, the apparent
viscosity depends on Dij to account for the elastic nature embedded in the fluid flow.

When solving Equations (16) and (17) together with appropriate boundary conditions, the
difficulty is the determination of constitutive equations for Tij. Of two major classes of
constitutive equations, the differential equation model has gained wider popularity in simu-
lation since it is easier to be solved simultaneously with the differential equations (16) and
(17). Among the constitutive equations for Tij found in the open literature, the general
Oldroyd differential model has been regarded as being general [3]. One aim of the present
paper is to apply the new finite element model just described to solve constitutive equations
for Tij. A variant of the general Oldroyd model, called Oldroyd-B constitutive equation,
will be considered in this paper as an example. The equation given below for this fluid is
adequate to describe the rheology of some polymer solutions [3]
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T+l1T
9
=2m

�
D+l2D

9�
(19)

where m is the shear viscosity. In Equation (19), l1 and l2 denote the relaxation time and the
retardation time respectively.

In this analysis, T is decomposed into two parts, namely T1 and T2. With T=T1+T2,
Equation (19) can be easily shown to be identical to the following two equations:

T1+l1T1
9

=2m1D (20)

T2=2m2D (21)

In the above, T
9

represents the upper-convective of T

T
9
=

DT
Dt

− (9u6 )T ·T−T ·9u6 (22)

Equations (20)–(22) are derived under the conditions that m=m1+m2 and l2/l1=m2/m1.
Examining of T2 from Equation (17) we obtain the following working equations, which can be
used together with the continuity equation (16), for the Oldroyd-B non-Newtonian fluid flow
simulation [4]:

T1+l1T1
9

=2m1D (23)

r(u6 ·9)u6 = −9p+2m29 ·D+9 ·T1 (24)

A comparison of the working equations for the Newtonian fluid and its non-Newtonian
counterpart reveals the necessity of developing an accurate finite element model for analyzing
Equation (23). This opens up a way to extend the flow models into many different areas.

The equation employed in the simulation is the dimensionless form of Equation (23). The
resulting dimensionless equation has the same form as Equation (23) except for the introduc-
tion of the Weissenberg number, We, into the formulation

T*+WeT*1
9

=2D* (25)

In the above, the Weissenberg number obtained in the normalization procedure is

We=
l1uref

lref

(26)

where uref and lref denote the reference velocity and length respectively. In what follows, the
superscript * is omitted for simplicity. Substituting Equation (22) for T1

9
, Equation (25) can be

expressed explicitly as follows:
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Table II. Expressions of cf and Sf, shown in Equation (27), for different stress
components.

cf Sff

T11 2
(u

(x
+We

�(u
(y

T12+
(u

(y
T21

n
1−2We

(u

(x

T12 1−2We
�(u
(x

+
(6

(y
� (u

(y
+
(6

(x
+We

�(u
(y

T22+
(6

(x
T11

n
T22 2

(6

(y
+We

�(6
(x

T12+
(6

(x
T21

n
1−2We

(6

(y

ū
(f

(x
+ 6̄
(f

(y
+cff=Sf (27)

where ū=uWe, 6̄=6We, and Sf are tabulated in Table II.

4. NUMERICAL RESULTS

4.1. Benchmark tests

As is the case whenever a new scheme for solving a different equation is presented, the finite
element model presented in Section 2 needs to be validated. For this reason, we resort to test
problems that are amenable to analytical solutions. For a first approximation, coefficients u
and c in Equation (2) are assumed to be constant values: u=1 and c=100. Under the
assumption that f=1, the analytical solution for the model equation is derived as

f=
1

100
+e−100x (28)

In this calculation, uniform mesh points are overlaid in the physical domain 05x51. The
computed result, shown in Figure 5, is seen to reproduce the analytical solution to the test
equation. This test proves that the proposed finite element model can provide a nodally exact
solution for the CR model equation.

Having validated the code through the one-dimensional test problem, we will now examine
the degree of deterioration of the predication accuracy when two-dimensional problems are
considered. To assess the accuracy and allow comparison with analytical solutions, the test
problem chosen in this paper involves constant values of u, 6, and c in the domain 05x, y51

1


2

�(f
(x

+
(f

(y
�

+f=1 (29)
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Figure 5. A comparison of the computed and exact solutions shown in Equation (28).

The above equation, subject to boundary conditions schematically shown in Figure 6, is
amenable to the following exact solution:

f=1+e− (x+y)/
2 (30)

The region of interest was overlaid with uniform girds. The computed results indicate that
good agreement has been obtained with exact solutions, thus demonstrating the integrity of the
method. To further obtain the rate of convergence that this scheme can provide, computations

Figure 6. An illustration of the boundary conditions for the test problem.
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were performed on increasingly refined uniform grids. Results thus obtained were cast in their
L2-error norms and plotted against grid-size ratios. As Figure 7 shows, the rate of convergence
of the proposed SUPG CR finite element model is 1.42.

The check of the integrity of the finite element model was followed by considering a more
stringent problem. In a square domain of unit length, the constant flow had a magnitude of
1 and an angle of u= tan−1(6/u)=45°. This problem was considered in order to assess
whether the proposed finite element model could capture sharp changes in field variables in the
flow interior. Considered the model problem given by

1


2

�(f
(x

+
(f

(y
�

+f=0 (31a)

f(x=0, y)=1+e− (x+y)/
2 (31b)

f(x=1, y)=1 (31c)

f(x, y=0)=1 (31d)

f(x, y=1)=1+e− (x+y)/
2 (31e)

The solutions were computed in the domain covered with uniform grids with Dx=Dy=
0.025. The computed contours of f are shown in Figure 8. For the sake of clarity, the sectional
profiles of the computed f are also plotted. Revealed by Figure 9 is a drastic change of f

across the line x−y=0. This demonstrates the utility of the CR scheme in capturing
high-gradient solutions. For comparison purposes, we also plot Galerkin solutions in Figure 9
to show that oscillations have been well suppressed by the proposed streamline upwind model.

Figure 7. The plot of L2-error norms against the grid spacings for showing the rate of convergence.
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Figure 8. The computed contour values of f. (a) Three-dimensional plot of f ; (b) contour plots of f.
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4.2. Plane Poiseuille non-Newtonian flow problem

As a validation study, we consider a simple problem that has an analytical solution. The
most-simple case of a non-Newtonian test problem is the plane Poiseuille problem. Given a
fully developed velocity profile (u, 6)= (y−y2, 0), the equations governing the non-Newtonian

Figure 9. Distributions of f at (a) x=0.25; (b) x=0.5; (c) x=0.75 for the present and Galerkin
solutions.
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flow motion in the domain shown in Figure 10 are as follows:

−
(p
(x

+
1

Re1

(2u
(y2+

1
Re2

(T12

(y
=0 (32)

−
(p
(y

+
1

Re2

(T22

(y
=0 (33)

T11−2We
(u
(y

T12=0 (34)

T12−We
(u
(y

T22=
(u
(y

(35)

T22=0 (36)

The extra-stress components can be exactly obtained as follows provided that the boundary
conditions are prescribed as those shown in Figure 11:

T11=2We(1−2y)2 (37)

T12= (1−2y) (38)

T22=0 (39)

The calculation was done for the case of Re=0.1 in the uniform mesh overlaid in 05x,
y51. Three Weissenberg numbers, We=1, 10, and 100, were investigated. The results shown
in Figure 11 reveal exact agreement with analytical solutions. Also revealed in these figures is
that both velocity u and pressure p are invariant with We. This study has demonstrated the

Figure 10. A schematic of the plane Poiseuille test problem and the associated boundary conditions.
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Figure 11. The computed u (x=0.5, y) and p (x, y=0.5) for the plane Poiseuille flow calculated at
Re=0.1. (a) We=1.0; (b) We=10; (c) We=100.

applicability of the CR scheme, when used together with the Navier–Stokes flow calculation,
to simulate non-Newtonian fluid flow.

5. CONCLUDING REMARKS

In this paper, a finite element model for solving the CR transport equation in quadratic
elements is presented. For the sake of accuracy, we have made use of the analytical solution
in the course of finite element formulation. Depending on the nodal classification, optimal
amounts of upwinding derived in this paper yield a nodally exact one-dimensional upwind
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finite element model. To avoid deterioration of the solution due to false diffusion errors in
two-dimensional analysis, the streamline upwind operator is developed and is used together
with the analytical upwinding coefficients, developed on a one-dimensional basis. This helps
add an artificial damping term along the flow direction. Good agreement has been obtained
with exact solutions, thus demonstrating the accuracy of the method. In addition, a fundamen-
tal study of the method has also been conducted to shed further light on the nature of the
scheme has also been applied to simulate the transport equation for extra stresses involved in
the equations of motion for viscoelastic flow problems. The results obtained are in perfect
agreement with the exact solutions, demonstrating the integrity of the proposed method.
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