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Abstract

This paper presents a numerical method for solving the steady-state Navier±Stokes equations for incompressible ¯uid ¯ows using

velocities and vorticity as working variables. The method involves solving a second-order di�erential equation for the velocity and a

convection±di�usion equation for the vorticity in Cartesian grids. The key to the success of the numerical simulation of this class of

¯ow equations depends largely on proper simulation of vorticity transport equation subject to proper boundary vorticity. In this paper,

we present a monotonic advection±di�usion multi-dimensional scheme and a theoretically rigorous implementation of vorticity

boundary conditions. While the derivation of the proposed integral vorticity boundary condition is more elaborate and is more di�cult

to solve than conventional local approaches, the present approach o�ers signi®cant advantages. In this study, both lid-driven and

backward-facing step problems have been selected for comparison and validation purposes. Ó 2000 Elsevier Science S.A. All rights

reserved.
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1. Introduction

There have been many studies of practically important incompressible Navier±Stokes equations in the
last three decades. The traditional approach to the numerical solution of this class of ¯ows has been to solve
working equations in velocity±pressure variables. A serious problem which was encountered while per-
forming the primitive variable formulation is owing to the absence of pressure in the continuity equation.
This destabilizes the di�erential system and poses computational di�culties in the mixed formulation. In
addition, discretization of pressure gradients in the incompressible equations on curvilinear grids presents
considerable di�culties owing to the fact that the approximation of pressure gradient operator should be
irrotational [1]. While this di�culty can be e�ectively resolved on staggered grids [2], special care is needed
when grids are non-uniformly and non-orthogonally laid on the ¯ow [1]. It is the added grid complexity
that complicates further the incompressible ¯ow analysis.

Another popular approach to numerical solution of the Navier±Stokes equations is the velocity±vorticity
approach. This formulation is the most appropriate choice for solving the vortex dominated ¯ow. The
reason lies in the fact that the advection of vorticity is the most important process determining the ¯ow
dynamics. Additionally, it appears that studying incompressible Navier±Stokes equations in terms of
vorticity and velocity is closer to physical reality [3]. For further details concerning the main features of this
formulation, the reader is referred to the book by Quartapelle [4] and the review paper by Gatski [5]. The
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advantages of adopting the velocity±vorticity formulation were also given by Speziale [6]. Since the pio-
neering work of Fasel [7], several integral [8] and di�erential [9±21] approaches have been devised. In the
context of the di�erential approach, the velocity±vorticity formulation can be divided into two subgroups.
The ®rst group of approaches corresponds to solving the Cauchy±Riemann problem [11±14]. This problem
consists of ®nding a divergence-free velocity vector u whose curl is known as the vorticity. When we treat
the Cauchy±Riemann equations directly as a system of ®rst-order partial di�erential equations, there is
often a question as to whether there exists any constraint of grids to enable r � u � 0 and r� u � x to be
discretely satis®ed. According to Huang and Li [22], it is very di�cult, if not impossible, to obtain the
discrete satisfaction of the divergence±curl (DC) relation on a fully non-staggered grid.

For the present spatial discretization on collocated grids, we abandon the DC problem and con®ne
ourselves to the second-order Poisson equations to solve for vorticity components. Another second-order
di�erential equation for the velocity scalar must be solved subject to proper boundary conditions, which are
the subject of the present study. An accurate prediction of the transport of vorticity is another consider-
ation. We will address this issue in the use of an exponential compact scheme for the ¯ux discretization.

This paper is organized as follows. Section 2 presents the di�erential formulation of the problem. The
di�erential system involves solving two Poisson equations for the velocity components and the advection±
di�usion scalar transport equation for the vorticity. In Section 3, we employ a monotonicity-preserving
compact ®nite-di�erence scheme to discretize the convection±di�usion transport equation in two-dimen-
sions. In Section 4, we derive a theoretically rigorous vorticity boundary condition. We justify the use of
this vorticity boundary condition in Section 5 through benchmark problems known as the lid-driven cavity
and the backward-facing step problems. Finally, in Section 6, we summarize our main conclusions.

2. Mathematical formulation

The traditional approach to the numerical solution of incompressible Navier±Stokes equations has been
the primitive-variable formulation. This involves solving the following momentum equations, subject to
appropriate boundary conditions, and the divergence-free continuity equation:

u � ru � ÿrp � 1

Re
r2u; �1�

r � u � 0: �2�
In the above equation, u is the velocity vector, p is the pressure. The de®nition of the Reynolds number Re
involves the density q and the kinematic viscosity m.

In the discretization of the pressure gradient term in Eq. (1), grid non-uniformity and non-orthogonality
warrant speci®c consideration when conducting analyses on curvilinear staggered grids. The guideline for
the discretization of the gradient operator for pressure should be irrotational and should add no vorticity to
the ¯ow [1]. To avoid this di�culty, one can directly eliminate the pressure gradient terms from the above
equations by taking the curl of (1) and using the kinematic de®nition of the vorticity x � r� u. The re-
sulting transport equation is derived as

u � rxÿ x � ru � 1

Re
r2x: �3�

The vorticity stretching term, x � ru, represents the generation or destruction of vorticity due to the
stretching or compression of the vortex line. As the space dimension decreases by one, the vortex stretching
term vanishes in two-dimensional cases, and the resulting vorticity transport equation is reduced to a scalar
equation for the vorticity component which is normal to the planar motion of the ¯ow:

u � rx � 1

Re
r2x: �4�

Since the above equation is considered as one of the working equations, the application scope is limited to
two-dimensional problems.
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Successful simulation of the above convection±di�usion equation in two-dimensions requires proper
speci®cation of the boundary vorticity to close the problem. This is a di�cult task since no-slip condition
for the velocity cannot be reformulated in equivalent conditions of boundary value type for the vorticity.
Therefore, special methods, ranging from approximate techniques based on interpolation to more theo-
retically rigorous methods relying on the in¯uence matrix method (or capacitance matrix technique) [9] and
the application of vorticity integral conditions [4], have to be employed in order to determine the boundary
vorticity. The present steady-state study was undertaken to provide a new method for numerical imple-
mentation of the boundary vorticity in two-dimensions.

Common to the vorticity-based formulation of incompressible Navier±Stokes equations is that they
involve solving the transport equation for vorticity. We will now turn to determining the working equations
for the velocity components. In the literature, there exist two major types of governing equations for the
velocity components:

(1) Cauchy±Riemann problem: In this approach, the divergence-free constraint equation is solved to-
gether with the de®nition of the vorticity to obtain velocity components [12±14]:

r� u � x; �5�

r � u � 0: �6�
As Eqs. (5) and (6) show, one can also refer to the Cauchy±Riemann problem as the div±curl problem.
According to Quartapelle [4], the above ®rst-order velocity±vorticity formulation was proved to be
equivalent to the set consisting of the equations given in (1) and (2), provided that the velocity vector b
speci®ed on the boundary satis®es the following compatibility condition:I

n � b ds � 0: �7�

In the above, n is the unit vector normal to the boundary and ds denotes the length of an in®nitesimal
element of the boundary.

(2) Poisson equation problem: The working equations for the velocity components can also be obtained
by taking the curl of the de®nition x � r� u and by using the continuity equation given in (2). The re-
sulting second-order Poisson equations for velocity components u and v are derived, respectively, as

r2u � ÿxy ; �8�

r2v � xx: �9�
The theoretical equivalence between this classical second-order velocity±vorticity formulation and the
velocity±pressure formulation has been given. For the details, we refer to the paper by Daube et al. [23].

In this paper, we adopt the Poisson equation approach mainly because there exist well-established
schemes for solving the classical problem comprising Eqs. (8) and (9). Another reason why we abandon the
div±curl problem in favor of the second-order velocity±vorticity approach is the ambiguity as to whether
the discrete Cauchy±Riemann relations can be retained on collocated grids [23]. From the programming
point of view, we prefer to deal with the Poisson problem on collocated grids without invoking grid
staggering complexities for the incompressible Navier±Stokes equations. A point worthy of note is that the
transport equation for the vorticity (4) is a benchmark equation for the development of the multi-
dimensional advection±di�usion ¯ux discretization scheme.

3. Advection±di�usion scheme for the vorticity transport equation

Referring to the computational module shown in Fig. 1, the solution /p is approximated by

ÿ
X

i�W;E;S;N;SE;NE;NW;SW

Ai/i � Ap/p � 0: �10�
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Inspired by the idea of Patankar [24] who proposed the exponential scheme, we can incorporate the ex-
ponential nature of the general solution for Eq. (4) into the scheme development. By doing so, we assume
that the above weighting coe�cients Ai have the form:

AE � a1 exp

�
ÿ uh

2

�
; �11�

AW � a1 exp
uh
2

� �
; �12�

AN � a2 exp

�
ÿ vh

2

�
; �13�

AS � a2 exp
vh
2

� �
; �14�

ANE � a3 exp

�
ÿ uh� vh

2

�
; �15�

ASE � a3 exp
ÿuh� vh

2

� �
; �16�

ANW � a3 exp
uhÿ vh

2

� �
; �17�

ASW � a3 exp
uh� vh

2

� �
; �18�

AP � ÿ�AE � AW � AS � AN � ASW � ASE � ANE � ANW�: �19�

Our strategy for determining a1; a2 and a3 is based on the modi®ed equation analysis. The same idea has
been used by Shay in his development of discretization scheme for Navier±Stokes equations [25]. After a
considerable derivation in a domain covered with uniform grids with the size of Dx � Dy � h, the modi®ed
equation for Eq. (4) is derived as

uxx � vxy ÿ 1

Re
�xxx � xyy� � axxx � bxyy � cxxy � H :O:T : �20�

The left-hand side of Eq. (20) can be rederived provided that the following equations for a1 and a2 hold:

a1 � u
2h sinh uh

2

ÿ �ÿ 2 a3 cosh
vh
2

� �
; �21�

a2 � v
2h sinh vh

2

ÿ �ÿ 2 a3 cosh
uh
2

� �
: �22�

Fig. 1. Grid notation used in the development of the compact scheme.
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The normal di�usivities a and b and the skew diffusivity c shown in Eq. (20) are obtained as

a � uh
2

coth
uh
2

� �
; �23�

b � vh
2

coth
vh
2

� �
; �24�

c � 4h2a3 sinh
vh
2

� �
sinh

uh
2

� �
: �25�

As is apparent from Eqs. (21), (22) and (25), the key to success in this ¯ux discretization development lies in
determining the skew di�usivity c. Given that the monotonicity preserving property is crucial to avoid
under- and over-shoots in regions of strong variation, a key issue that underlies this paper is to preserve the
solution monotonicity. The idea behind acquiring solution monotonicity from an implicit scheme is the M-
matrix theory [26,27] which demands that the coef®cient matrix be irreducibly diagonal dominant. By
de®nition, the matrix �aij�n�n has the property of jaijj >

Pn
i;j�1;i6�j jaijj for at least one i. As apparently

revealed by Eq. (19), the compact scheme developed here is by no means a scheme which can provide
monotonic solutions unless a small positive value � (say � � 10ÿ7) is added to one of the matrix diagonals to
make the coef®cient matrix irreducibly diagonal dominant. Following the theorem given in [26,27], given an
irreducibly diagonal dominant matrix �aij�n�n with aij6 0 for all i 6� j and aij > 0 for all 16 i6 n, it follows
that Aÿ1 > 0. By de®nition, a non-singular real matrix whose entries aij are non-positive (i.e., aij6 0 for all
i 6� j) and Aÿ1 > 0, the matrix A is called an M-matrix and the solutions x computed from A x � b are
unconditionally monotonic. We follow the underlying M-matrix theory to choose a3 in order to satisfy the
requirement of aij < 0 �i 6� j�:

a3 � min
u

2h sinh�uh� ;
v

2h sinh�vh�
� �

: �26�

In order to solve solutions from the 9-point stencil matrix equations, we adopt the modi®ed strongly im-
plicit procedure (MSIP) of Schneider and Zedan [28]. The use of the MSIP solver requires that an auxiliary
matrix P be added into the matrix equation A to decompose the matrix A� P into the product of L and U
matrices as follows:

L U /n�1 � P /n: �27�

The resulting advantage can be clearly seen that ®nite-di�erence solutions / can be obtained in two steps:

step 1 : L V n�1 � P /n; �28�

step 2 : U /n�1 � V n�1: �29�

The auxiliary matrix P is chosen in such a way that the matrix A� P has an L U factorization, where the
upper and lower triangular matrices retain the sparse structure as A has. To accelerate the convergence of
the solution, an adaptive optimization algorithm of Lage [29,30] is incorporated into MSIP.

We consider a scalar problem as a model to validate the compact monotonic scheme for the vorticity
transport equation. The test problem is that of the skew advection±di�usion problem schematically
shown in Fig. 2. In a square cavity of unit length, a titled line with an angle of m � tanÿ1�v=u� passes
through (0,0) and divides the cavity into two subdomains. Subject to the boundary condition given in
Fig. 2, it is expected to have a marked change of / across the dividing line. The velocity vector of
magnitude 1 remains unchanged in the ¯ow and is parallel to the dividing line. In this study, the square
domain is uniformly discretized, resulting in a grid with h � 0:05. The ¯uid under investigation has a
viscosity of m � 10ÿ4.
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As Fig. 3 reveals, oscillation-free solutions are observed in regions close to as well as away from the
dividing line. Results computed from the ®rst-order upwind scheme and the compact scheme of Dennis and
Hudson [31,32] are also plotted for the comparison purposes. This example clearly demonstrates the
suitability of using the proposed compact scheme to model problems involving steep gradients. To show
that the M-matrix can be constructed using the present compact monotonic scheme, we plot weighting
coe�cients A1±A9 against Peclet numbers Pex and Pey in Fig. 4.

Fig. 3. The plot of / at di�erent x for showing the oscillation-free solution pro®les: (a) x � 0:2; (b) x � 0:4; (c) x � 0:6; (d) x � 0:8.

Fig. 2. A schematic of the skew advection±di�usion problem.
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4. Vorticity integral condition

The key element in the vorticity±velocity formulation is to obtain the a priori unknown boundary values
of the vorticity for the second-order transport Eq. (4). The theory behind our derivation of the vorticity
boundary condition is the Green's identity, which relates two scalar potentials / and w as follows:

Z
X

/r2wÿ wr2/ dA �
I

/
ow
on

�
ÿ w

o/
on

�
ds: �30�

Fig. 4. Contour plots of A1±A9 against Peclet numbers Pex and Pey for the presently developed compact monotonic schemes: (a) A1;

(b) A2; (c) A3; (d) A4; (e) A5; (f) A6; (g) A7; (h) A8; (i) A9.
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Provided that the scalar potential w is assigned as the stream function, the following two equations ensure
satisfaction of mass conservation:

u � ow
oy
; �31�

v � ÿ ow
ox
: �32�

It is addressed here that the present determination of vorticity boundary data limits the application scope to
two-dimensions owing to the use of above de®nitions. Given the de®nition vorticity x � r� u, we have

r2w � ÿx: �33�
Substitution of the above equation into (30) yields

ÿ
Z
�/x� wr2/� dA �

I
/

ow
on

�
ÿ w

o/
on

�
ds: �34�

Now, let / be the scalar potential which satis®es the Laplace equation. The boundary value of / is enforced
to be zero everywhere except at one point where the value is one.

r2/ � 0 in X; �35�

/i � dij on oX: �36�
By virtue of Eqs. (35) and (36), Eq. (34) can be further simpli®ed toZ

ÿ/x dA �
I

/
ow
on

�
ÿ w

o/
on

�
ds: �37�

Let Q be wr/, we can apply the divergence theorem on Q to yieldZ
X
r � Q dA �

Z
oX

Q � n ds �38�

or Z
X
r � �wr/� dA �

Z
oX

w
o/
on

ds: �39�

By applying the identity r � �wr/� � rw � r/� wr2/, we have

r � �wr/� � rw � r/ �40�
through use of r2/ � 0. The above equation enables us to simplify Eq. (39) toZ

oX
w

o/
on

ds �
Z

X
r/ � rw dA: �41�

As the above equation is used with the vector identity which involves the velocity us that is tangential to the
boundary

ÿ ow
on

����
oX

� us: �42�

We can rewrite Eq. (37) asZ
X

/x dA �
I

oX
/us ds�

Z
X

v
o/
ox

�
ÿ u

o/
oy

�
dA: �43�

This completes the derivation of the vorticity integral equation for the transport Eq. (4).
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It is worth noting that the assignment of / � 1 in Eq. (43) leads toZ
X

x dA �
I

ox
us ds: �44�

In the light of the above equation, the vorticity ®eld in the computational domain should satisfy the integral
condition expressing that the vorticity integrated over the domain is equal to the contour integral of the
tangential component of the velocity along the boundary of the domain. In other words, the total vorticity
solely depends on the circulation of the velocity along the periphery of the ¯ow domain.

Without loss of generality we consider the mesh, shown schematically in Fig. 5, to describe the numerical
implementation of the integral condition (43). To construct the matrix equation for the boundary solutions
of x1;x2 . . . ;x24, we divide the 20 boundary cells into two classes. The ®rst class of cells is denoted by
corner cells h1i; h6i; h11i and h16i, as a shown in Fig. 6. In each corner cell, we apply the integral equation
(44) to relate four vorticities. Taking the corner cell h1i as an example, we have

x1 � x2 � x24 � 2

h
�u1 � u2 ÿ ua ÿ u24 � v2 � va ÿ v1 ÿ v24� ÿ xa: �45�

Fig. 5. Nodal assignment for the boundary vorticity in a domain covered by 36 elements.

Fig. 6. Boundary cell assignment in a domain containing 36 elements.
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For boundary cells other than corner cells, we apply the integral equation (43) in a region containing four
cells. As an example, in a square containing elements h3i; h4i; h22i and h23i, we can derive the following
equation to relate the boundary vorticities x3;x4; and x5 as follows:

C1x3 � �C1 � C2�x4 � C2x5

� ÿC1xb ÿ �C1 � C2�xc ÿ C2xd ÿ xb � xg � xh � xc

4

h i
� /b � /g � /h � /c

4

� �
ÿ xc � xd � xh � xi

4

h i
� /c � /d � /h � /i

4

� �
�

I
oX

/us ds
�

�
Z

X
v
o/
ox

�
ÿ u

o/
oy

�
dA
��
�Dx � Dy�; �46�

where C1 � �/3 � /4 � /b � /c�=4; C2 � �/4 � /5 � /c � /d�=4. Similar derivation is carried out cell-by-
cell, starting with cell 234-abc-fgh, followed by cell 345-bcd-ghi; . . . 8 9 10-ejo-din . . . :, and ending at cell 22
23 24-kfa-lgb. We are in short of eight equations to close the algebraic system for the 24 boundary vor-
ticities. For the purpose of closure, we apply Eq. (43) to eight 4-cell elements which are adjacent to the
corner cells. Speci®c to the derivation of these eight equations is that the solution for / is subject to the
Kronecker data at the corner point ``2'' if the 4-cell elements h2i; h3i; h21i; h22i are taken as an example. As
a result of the above derivation, we can derive the matrix equation �A�24�24 �x1;x2; . . . ;x24�T
� �b1; . . . ; b24�T.

A check on the matrix equation �A�24�24 shows that this matrix is nearly singular. Therefore, the
boundary vorticities are very di�cult to solve. To overcome this di�culty, we reformulate the matrix
equation by taking x2 as the unknown while x3 and x4 are obtained by other means and are assigned to the
right-hand side of the equation. The resulting source term b2 takes the following form:

b2 �ÿ �C1 � C2�x3 ÿ C2x4 ÿ C1xa ÿ �C1 � C2�xb ÿ C2xc ÿ xa � xf � xg � xb

4

h i
� /a � /f � /g � /b

4

� �
ÿ xb � xc � xg � xh

4

h i
� /b � /c � /g � /h

4

� �
�

I
oX

/us ds
�

�
Z

X
v
o/
ox

�
ÿ u

o/
oy

�
dA
��
�Dx � Dy�; �47�

where C1 � �/2 � /3 � /a � /b�=4, C2 � �/3 � /4 � /b � /c�=4, x3 � ��v4 ÿ v2�=�2Dx�� ÿ �ÿug � 4ub

ÿ3u3�=�2Dy� and x4 � ��v5 ÿ v3�=�2Dx�� ÿ ��ÿuh � 4uc ÿ 3u4�=�2Dy��. Following the same idea as that
given above, other source terms b6; b8; b12; b14; b18; b20; and b24 can be derived and are summarized in
the Appendix A for the sake of completeness.

5. Numerical studies

5.1. Lid-driven cavity ¯ow problem

Research into the lid-driven cavity ¯ow structure is an area of continuing interest and was selected as a
benchmark problem for a major international workshop [33]. This problem has attracted considerable
attention because this ¯ow con®guration is relevant to many industrial applications. The geometrical
simplicity facilitates experimental calibrations or numerical implementation and, thus, provides benchmark
data for comparison and validation. The ¯ow physics inside this cavity are, however, by no means simple.
Several ¯ow characteristics which prevail in processing industries, such as boundary layers, eddies of dif-
ferent sizes and characters, and various instabilities, may coexist.

In this section, we present a two-dimensional simulation for the ¯uid ¯ow in a square cavity de®ned by
B : D � 1 : 1. The Reynolds numbers chosen for this study were 400 and 1000, which were computed based
on the lid speed, the width of the cavity, and the kinematic viscosity of the ¯uid. As shown in Fig. 7, this
cavity is subject to a lid motion at the upper plane. In this study, the solutions were computed on uniform
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grids of di�erent resolutions. Through grid convergence tests, it is clearly seen from Fig. 8 that solutions
computed under 101� 101 for Re � 400 while 131� 131 for Re � 1000 provide grid independent solutions.
We determined the vortex centers of di�erent kinds shown in Fig. 9 and tabulated them together with data
computed by Ghia et al. [34] in Table 1. A comparison was made by plotting the velocity pro®les along the
centerlines in Fig. 10 for the case Re � 400 and in Fig. 11 for a higher Reynolds number, Re � 1000. For
comparison purpose, the velocity pro®les of Ghia et al. [34] are also plotted in Figs. 10 and 11.

Fig. 7. A schematic of the lid-driven cavity problem considered in Section 5.1.

Fig. 8. Grid convergence tests for the lid-driven cavity ¯ow problems computed at Re � 400 and 1000. (a) u�x � 0:5; y; Re � 400�;
(b) v�x; y � 0:5; Re � 400�; (c) u�x � 0:5; y; Re � 1000�; (d) v�x; y � 0:5; Re � 1000�;.
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5.2. Backward-facing step problem

Expansion ¯ows in straight channels with steps have been another focus of intensive study over the
last few decades and have been the subject of an international workshop [35]. Although this ¯ow represents
one of the simplest expansion ¯ows, the physics involved are rather complex due to the formation of

Fig. 10. Velocity pro®les plotted on the centerlines for the case Re � 400 (a) u±y plot at x � 0:5; (b) v±x plot at y � 0:5.

Table 1

Comparison of cavity problem for Ghia et al. [34] and presenta

x location �x; y� Re � 400 Re � 1000

Primary 0.5579, 0.6119 0.5331, 0.5745

(0.5547, 0.6055) (0.5313, 0.5625)

First BL 0.0548, 0.0438 0.0821, 0.0754

(0.0508, 0.0469) (0.0859, 0.0781)

First BR 0.88, 0.126 0.8542, 0.1187

(0.8906, 0.125) (0.8594, 0.1094)

Grid size 101� 101 130� 130

�257� 257� �129� 129�
a Remark: ( ) is Ghia et al. [34] computational value.

Fig. 9. An illustration of di�erent types of vortex in the lid-driven cavity.
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recirculating vortices and ¯ow reversals downstream of the step. We consider this problem to be compu-
tationally important because of the availability of experimental data [33,34] and the simplicity of the ge-
ometry.

Several Reynolds numbers, Re � 100; 200; 400; 500 and 800, were considered in this study. Among
the basic features pertinent to the problem, as illustrated in Fig. 12, is the ¯ow separation from the
step corner. As in many real ¯ows, separation of a boundary layer is followed by downstream reat-
tachment to a solid wall. Determining the reattachment location, as measured from the step, is, thus,
the primary focus of this study. It is also important to see the separation±reattachment eddy on the
channel roof.

Notwithstanding, the importance of eddy formation in the channel, we plot reattachment lengths of the
primary eddy behind the step in Fig. 13 for cases with di�erent Reynolds numbers. We compared our
results with measurement data [36] as well as other numerical data [37,38] for the sake of completeness. We
also plot the separation length of the roof eddy in Fig. 14 and compare results with experimental [36] and
numerical [37] data for the Reynolds numbers considered in this study. Fig. 15 plots the reattachment
location of the roof eddy together with data given by Armaly et al. [36] and Gartling [37]. From this
comparison, it is now considered that our compact scheme is applicable to Navier±Stokes ¯ow simulations
of the vortical ¯ow structure.

Fig. 12. Schematic of the backward-facing step problem considered in Section 5.2.

Fig. 11. Velocity pro®les plotted on the centerlines for the case Re � 1000 (a) u±y plot at x � 0:5; (b) v±x plot at y � 0:5.
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Fig. 13. The reattachment locations, x1, on the ¯oor of the channel versus Re.

Fig. 15. The reattachment locations, x5, on the ¯oor of the channel against Re.

Fig. 14. The separation locations, x4, on the roof of the channel against Re.
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6. Concluding remarks

The goal for the present study was to simulate incompressible viscous ¯ows by means of the velocity±
vorticity formulation. In order for the solutions to be accurately predicted, it is important to develop a
theoretically rigorous framework which can provide us with boundary vorticity without using ®eld vari-
ables outside of the physical domain. The equation governing the boundary vorticity is derived in integral
form. Thus, boundary vorticities are simultaneously solved from the matrix equation. The two-dimensional
solution algorithm involves a scalar transport equation for the vorticity variable and two Poisson equations
for velocity components. We pay special attention to numerical simulation of the convection±di�usion
equation for the transport of vorticity. It is demanded that the solutions computed be monotonic. In the
development of compact scheme, we take the exponential nature of the solution of the convection±di�usion
equation into consideration. Speci®c to our ¯ux discretization scheme is that the coe�cient matrix of the
compact 9-point stencil scheme is classi®ed as an irreducibly diagonal dominant M-matrix. To better
understand the compact ®nite-di�erence scheme developed here, we have conducted the lid-driven cavity
and the backward-facing step problems. The results demonstrate that the integral approach designed to
provide the boundary vorticity is applicable to simulation of ¯uid ¯ows which are vortical in nature.
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Appendix A

b6 �ÿ C1x4 ÿ �C1 � C2�x5 ÿ C1xc ÿ �C1 � C2�xd ÿ C2xe ÿ xc � xh � xi � xd

4

h i
� /c � /h � /i � /d

4

� �
ÿ xd � xi � xj � xe

4

h i
� /d � /i � /j � /e

4

� �
�

I
oX

/us ds
�

�
Z

X
v
o/
ox

�
ÿ u

o/
oy

�
dA
��
�Dx � Dy�; �A:1�

where C1 � �/4�/5�/c�/d�=4, C2 � �/5�/6�/d �/e�=4, x4 � ��v5ÿ v3�=�2Dx��ÿ ��ÿuh� 4ucÿ 3u4�=
�2Dy��, x5 � ��v6ÿ v4�=�2Dx��ÿ ��ÿui� 4ud ÿ 3u5�=�2Dy��.

b8 �ÿ �C1 � C2�x9 ÿ C2x10 ÿ C1xe ÿ �C1 � C2�xj ÿ C2xo ÿ xd � xe � xi � xj

4

h i
� /d � /e � /i � /j

4

� �
ÿ xi � xj � xn � xo

4

h i
� /i � /j � /n � /o

4

� �
�

I
oX

/us ds
�

�
Z

X
v
o/
ox

�
ÿ u

o/
oy

�
dA
��
�Dx � Dy�; �A:2�

where C1 � �/e�/j�/8�/9�=4, C2 � �/j�/o�/9�/10�=4, x9 � ��vi ÿ 4vj� 3v9�=�2Dx����ÿu10ÿ u8�=
�2Dy��, x10 � ��vnÿ 4vo� 3v10�=�2Dx�� ÿ ��u11 ÿ u9�=�2Dy��.

b12 �ÿ �C1 � C2�x11 ÿ C1x10 ÿ C1xo ÿ �C1 � C2�xt ÿ C2xy ÿ xn � xs � xt � xo

4

h i
� /n � /s � /t � /o

4

� �
ÿ xs � xt � xx � xy

4

h i
� /s � /t � /x � /y

4

� �
�

I
oX

/us ds
�

�
Z

X
v
o/
ox

�
ÿ u

o/
oy

�
dA
��
�Dx � Dy�; �A:3�
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where C1 � �/o � /t � /10 � /11�=4, C2 � �/t � /y � /11 � /12�=4, x11 � ��vs ÿ 4vt � 3v11�=�2Dx��
ÿ��u12 ÿ u10�=�2Dy��, x10 � ��vn ÿ 4vo � 3v10�=�2Dx�� ÿ ��u11 ÿ u9�=�2Dy��.

b14 �ÿ �C1 � C2�x15 ÿ C2x16 ÿ C1xy ÿ �C1 � C2�xx ÿ C2xw ÿ xr � xw � xs � xx

4

h i
� /r � /w � /s � /x

4

� �
ÿ xs � xt � xx � xy

4

h i
� /s � /t � /x � /y

4

� �
�

I
oX

/us ds
�

�
Z

X
v
o/
ox

�
ÿ u

o/
oy

�
dA
��
�Dx � Dy�; �A:4�

where C1��/14�/15�/x�/y�=4, C2��/15�/16�/x�/w�=4, x15���v14ÿv16�=�2Dx��ÿ ��usÿ4ux�3u15�=
�2Dy��, x16���v15ÿv17�=�2Dx��ÿ��urÿ4uw�3u16�=�2Dy��.

b18 �ÿ �C1 � C2�x17 ÿ C1x16 ÿ C1xw ÿ �C1 � C2�xv ÿ C2xu ÿ xu � xv � xp � xq

4

h i
� /u � /v � /p � /q

4

� �
ÿ xv � xw � xq � xr

4

h i
� /v � /w � /q � /r

4

� �
�

I
oX

/us ds
�

�
Z

X
v
o/
ox

�
ÿ u

o/
oy

�
dA
��
�Dx � Dy�; �A:5�

where C1��/16�/17�/v�/w�=4, C2��/17�/18�/u�/v�=4, x17���v16ÿv18�=�2Dx�� ÿ���uqÿ4uv�3u17�=
�2Dy��, x16���v15ÿv17�=�2Dx��ÿ���urÿ4uw�3u16�=�2Dy��.

b20 �ÿ �C1 � C2�x21 ÿ C2x22 ÿ C1xu ÿ �C1 � C2�xp ÿ C2xk ÿ xu � xv � xp � xq

4

h i
� /u � /v � /p � /q

4

� �
ÿ xp � xq � xk � xl

4

h i
� /p � /q � /k � /l

4

� �
�

I
oX

/us ds
�

�
Z

X
v
o/
ox

�
ÿ u

o/
oy

�
dA
��
�Dx � Dy�; �A:6�

where C1 � �/20 � /21 � /p � /u�=4, C2 � �/21 � /22 � /p � /k�=4, x21 � ��ÿvq � 4vp ÿ 3v21�=�2Dx��
ÿ��u20 ÿ u22�=�2Dy��, x22 � ��ÿv1 � 4vk ÿ 3v22�=�2Dx�� ÿ ��u21 ÿ u23�=�2Dy��.

b24 �ÿ �C1 � C2�x23 ÿ C1x22 ÿ C1xk ÿ �C1 � C2�xf ÿ C2xa ÿ xa � xb � xf � xg

4

h i
� /a � /b � /f � /g

4

� �
ÿ xf � xg � xk � xl

4

h i
� /f � /g � /k � /l

4

� �
�

I
oX

/us ds
�

�
Z

X
v
o/
ox

�
ÿ u

o/
oy

�
dA
��
�Dx � Dy�; �A:7�

where C1 � �/22 � /23 � /k � /f �=4, C2 � �/23 � /24 � /f � /a�=4, x23 � ��ÿvg � 4vf ÿ 3v23�=�2Dx��
ÿ��u22 ÿ u24�=�2Dy��, x22 � ��ÿv1 � 4vk ÿ 3v22�=�2Dx�� ÿ ��u21 ÿ u23�=�2Dy��.
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