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Abstract

Computational investigations have been performed in order to study the side-wall e�ect on a ¯uid
downstream of a channel expansion which is plane. The expansion ratio under investigation is 3 and the
aspect ratios are 3, 3.5, 3.75, 4, 5, 6, 7, 8, 9, 10, 12, 18, 24, 48, in the three-dimensional analyses. For the
¯ow with a value of Re � 60, results show symmetric nature of the ¯ow when the channel aspect ratio
has a value less than 3.5. Beyond this critical aspect ratio, ¯ow symmetry can no longer be sustained
due to the Coanda e�ect. This con®rms the experimental observation that a decrease in aspect ratio has
a stabilizing e�ect. Unless the aspect ratio is increased further to a value above 12, ¯ow in the third
dimension plays an essential role to characterize the inherent nature of the ¯ow. In this study, we also
con®ne ourselves to studying ¯ow separation, reattachment, and recirculation by employing a
theoretically rigorous theory of topology. Much insight into the vortical ¯ow structure can be revealed
from limiting streamlines, on which critical points, such as spiral focal points and saddles, are
plotted. 7 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

It is well known that a ¯ow through a channel with sudden expansion about its centerline
becomes asymmetric as the Reynolds number increases. This is often referred to as the Coanda
e�ect in the literature [1]. In mathematical terms, bifurcation occurs when multiple stable
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solutions to Navier±Stokes equations exist [2]. The origin of such steady asymmetric ¯ow is
due to an increase in velocity near one wall and the accompanying decrease in pressure near
that wall; once the resulting pressure di�erence is established across the channel, ¯ow
asymmetry is maintained. No physically rigorous explanations for this ¯ow asymmetry have
been presented. Cherdron et al. [3] attributed these instabilities to disturbances generated in the
step corner of expansion, which are ampli®ed in the shear layer. In 1985, Sobey further
con®rmed the asymmetric disturbance, con®gured in a vortex sheet, in the experiment [4]. A
better understanding of such shear-layer related instability in the sudden-expansion channel
¯ow is important to provide a basis for understanding the pitchfork bifurcation in a high
Reynolds number ¯ow and the presence of Hopf bifurcation in a time-periodic ¯ow [2].
There have been extensive studies of this problem in the literature. One can explore into ¯ow

bifurcation analytically by applying the bifurcation theory [2,5±7]. An observation common to
many of other ¯ow studies is that the solution remains unique at su�ciently low Reynolds
numbers. Sobey and Drazin [2] clari®ed the possibility of observing multiple stable solutions in
the channel ¯ow using bifurcation theory. They also demonstrated that the unique symmetric
¯ow which exists at small Re is not stably maintained at larger Re due to the presence of a
pitchfork bifurcation. The emergence of two stable asymmetric ¯ows is indicative of the
occurrence of such bifurcation. As the value of Re is increased further, the ¯ow may evolve in
two ways. One possibility is that the steady two-dimensional asymmetric solutions will become
unstable. Under the circumstances, ¯ow in the third dimension becomes prevailing. There exists
another type of bifurcation, known as the Hopf bifurcation, which may result in a time-
periodic solution. Our purpose here is not to study the Coanda e�ect using bifurcation theory.
Thus, we have no intention to provide an exhaustive list of references to this subject, but
rather to point to two most recently published papers [8,9], which may provide additional
information on this topic.
Many experimental investigations have also been performed on this problem, for instance,

by Macagno and Hung [10], Durst et al. [11], Cherdron et al. [3], Sobey [4], Sobey and Drazin
[2], Fearn et al. [5], and Durst et al. [12]. The main results are that in a channel of symmetric
geometry, the symmetric ¯ow becomes unstable as the Reynolds number exceeds the critical
value. The critical Reynolds number depends strongly on the expansion ratio, E, as well as on
the aspect ratio, A, of the channel [3]. They experimentally con®rmed the Coanda e�ect which
causes the ¯ow attached to one wall to have a higher velocity and, thus, a lower pressure; as a
result, the asymmetric ¯ow can be stably maintained by the cross-channel pressure gradient.
One point worth addressing is that the ¯ow over a backward-facing step is a special case of
this class of experimental work [13].
There have also been considerable numerical investigation of sudden-expansion ¯ow. Much

of the previous work has been directed towards two-dimentional simulation of Navier±Stokes
equations [4±7,10,12,14]. These computational studies have revealed the general trends of
previous experimental observations. Under high Reynolds number conditions, experimental
observation has shed new light on the inappropriate use of the two-dimentional assumption in
numerical investigation of the expansion ¯ow into the channel. In recent years, signi®cant
progress has made three-dimensional Navier±Stokes ¯ow simulations possible. To make full
use of the available power, we can provide information which adds to the knowledge of the
¯ow structure through analysis of higher Reynolds number ¯ows in three dimensions. This is

T.P. Chiang et al. / Computers & Fluids 29 (2000) 467±492468



the motivation for the present paper. The ¯ow con®guration we use in our study is that of an
idealized expansion of Fearn et al. [5] in order to allow comparison of the predicted and
experimental results. We present steady-state solutions for Re � 60 and 140 in the channel with
a ®xed value of the expansion ratio E (03). In this study, we also pay special attention to how
the side wall can a�ect the ¯ow asymmetry in expansion channels with di�erent aspect ratios.
The remainder of the paper is divided into four sections. Section 2 describes the

mathematical model, which represents the conservation of mass and momentum for the
incompressible ¯uid ¯ow. This is followed by presentation of the numerical model used to
solve the steady Navier±Stokes equations, subject to proper boundary conditions, in three
dimensions. The results are discussed in the subsequent section and relevant ¯ow topologies
inferred from three-dimensional data are depicted. Finally, in Section 5, we make concluding
remarks regarding the implications of the computed results.

2. Mathematical model

Computational modeling of channel ¯ow requires, in the general case, solving three-
dimensional transient ¯ow equations. In this study, we concentrate on steady-state equations
for a ¯ow with a Reynolds number Re < 150: This steady-state assumption has been
experimentally con®rmed by Fearn et al. [5]. In rectangular coordinates, the relevant equations
of motion which are constrained by the divergence-free incompressibility condition are posed

Fig. 1. The geometry and ¯ow condition for the three-dimensional ¯ow analysis in the plane-symmetric channel
with sudden-expansion ratio E � 3:
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as follows:

u � ru � ÿrp� 1

Re
r2u, �1�

r � u � 0 �2�
The above primitive variable formulation has advantages over formulations using vorticity-
based variables where the research scientists are more acquainted with the physical meaning of
velocity and pressure variables. This helps us explore the physics of a ¯ow inferred directly
from computed data. The other advantage of the primitive-variable formulation is the
accommodation of the closure boundary condition [15].
The primitive variables adopted are made dimensionless by choosing half of the upstream

channel height �h � 2), shown schematically in Fig. 1, as the reference length and 1.5 times of
the mean velocity �umean � 2=3� prescribed over at the inlet of the upstream channel, which is
60 h ahead of the expansion plane. For this study, the Reynolds number of the ¯ow is de®ned
as Re � �32umean��12h�=n, where n is known as the kinematic viscosity. For the present in¯ow±
out¯ow problem to be mathematically well-posed, the working equations must be subject to
boundary conditions. At the inlet plane, which is su�ciently distant from the expansion plane,
we prescribe a ¯ow with a uniform velocity vector (2/3, 0, 0). At the opposite end of the
channel, we also assign boundary conditions. According to Fearn et al. [5], a length of 80 h is
su�cient for the ¯ow to develop fully again, thus allowing us to specify zero gradient
conditions at the synthetic outlet. No-slip boundary conditions are prescribed on the solid wall
of the channel.

3. Numerical model and code validation

We will now transform working equations into their discrete counterparts using a ®nite
volume method so that they are amenable to computer simulation. Primitive variables are
stored on staggered, interconnected grids, each of which is associated with a representative
primitive variable [16]. Grid staggering prevents node-to-node pressure oscillations from arising
in the approximation of pressure gradient terms. While considerable complexity is added to the
programming e�ort, there is an advantage in the implementation of the boundary conditions
on staggered grids. The main attribute of the formulation is that we can dispense with the
pressure boundary condition along the boundary, where no storage points are given for the
pressure.
A serious problem which was encountered while performing the ¯ow analysis was the

numerical di�usion error. As a remedy to this di�culty, a QUICK discretization scheme
implemented on non-uniform grids [17] is considered as a re®nement to Leonard's original
scheme [18] for the spatial discretization. This upwind treatment of advective terms stabilizes
the discrete system and provides a numerical scheme that is globally second-order accurate in
space. Other spatial derivatives in the equations are approximated using a second-order
accurate centered scheme.
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In Eqs. (1) and (2), there is no explicit pressure equation which can be used to solve for the
pressure ®eld. The lack of an explicit pressure equation presents a serious computational
di�culty in the mixed formulation. The di�culty lies in the loss of diagonal dominance and,
thus, weakens the discrete system. The segregated approach, advocated by Patankar [19], is a
well-known straightforward method for resolving this di�culty. In this study, we employ the
pressure di�erence p 0 as a representative working variable to replace the continuity equation.
The resulting Poisson equation for p 0 is used to compensate the pressure±velocity decoupling.
As a direct consequence of this decoupling nature of the working equations, it is appropriate
to apply the semi-implicit iterative algorithm. A substantial reduction in disk storage is the
obvious bene®t. In this study, we applied a semi-implicit solution algorithm, which is similar to
the SIMPLE-C [20], to solve three momentum equations and one Poisson equation for the
pressure di�erence in a cyclic predict-and-correct process. The details of this solution algorithm
is as follows.
We start the calculation by setting the pressure values to zero. This is followed by solving

three momentum equations to obtain their representative primitive velocities through
introduction of under-relaxation E-factors to the discrete equations. We take larger E-factor
for the prevailing velocity-component to speed-up the calculation. We also calculate the
coe�cients shown in the p 0equation using the most updated velocities. When solving the
Poisson equation for p 0, we carry out the calculation using an over-relaxation factor as high as
1.99. The solution for p 0 is obtained in an alternating-direction-implicit fashion. As is usual, 10
to 20 inner iterations are needed to obtain convergent p 0 solutions. Upon obtaining p 0, we
correct the pressure by adding ap 0 to the old pressure value. Depending on the E-factors, the
free parameter a is not necessarily set to be 1. Having obtained the pressure ®eld, we make a
shift of nodal pressures with respect to an arbitrarily referenced nodal pressure. This step is
crucial to obtain a fast convergence of solutions. We then check whether the continuity
constraint condition is satis®ed. If not, we return to the original outer-iteration step and repeat
the calculation until the convergence criterion is reached. In all the cases investigated, the

Table 1
Predicted L2-error norms and the rates of convergence for the analytic test problem described in Section 3

Grid spacings �Dx, Dy, Dz) Predicted L2-error norms

Velocities Pressure

2/2 0.1565Eÿ01 0.2247Eÿ00
2/3 0.8376Eÿ02 0.1277Eÿ00
2/4 0.5067Eÿ02 0.8777Eÿ01
2/5 0.3394Eÿ02 0.6646Eÿ01
2/6 0.2451Eÿ02 0.5299Eÿ01
2/7 0.1866Eÿ02 0.4404Eÿ01
2/8 0.1482Eÿ02 0.3775Eÿ01
2/9 0.1218Eÿ02 0.3316Eÿ01
2/10 0.1027Eÿ02 0.2874Eÿ01
Rates of convergence 1.7 1.3
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solution was said to have converged when the global pressure and velocity residuals reached a
value of 10ÿ15.
To formally justify the applicability of the ®nite volume code to investigate the channel ¯ow

details, it is customary to conduct an analysis of the incompressible Navier±Stokes equations
in three dimensions. As a validation problem, we considered the problem of Eithier and
Steinman [21] and conducted ®nite volume analyses on continuously re®ned grids. The
predicted L2-error norms tabulated in Table 1 led us to know that the ¯ux discretization
method applied on uniform grids provides rates of convergence for the velocity, 1.7 and the
pressure, 1.3, respectively [22].

4. Results and discussion

We considered here incompressible ¯uid ¯ows through symmetric channels with sudden
expansion. Despite its simple geometry, this problem has served as a convenient test for the
study since ¯ow over the step shows features of more complex geometry ¯ows, such as ¯ow
asymmetry in a symmetric channel. Fig. 1 gives an impression of the three dimensional shape
of the channel. It is seen that the step of the channel is symmetrically displaced with respect to
the channel centerline. This channel is characterized by an expansion ratio E (03), which is the
ratio of the channel height, H, downstream of the expansion to the height, h, upstream, and an
aspect ratio A, which is the ratio of the channel span, B, to the upstream channel height, h.
The x-direction is de®ned as being the direction in which the bulk of the ¯uid travels.
A mean ¯ow was prescribed at the channel inlet, which was upstream of the sudden

expansion step with a length of 60 h. The ¯uid under investigation ¯owed through a 1 : 3
symmetric expansion into a larger straight channel, which had a length of 80 h. With the
objective of studying the side wall e�ect on the ¯ow asymmetry observed downstream of the
step, we considered in this study 14 aspect ratios A = 3, 3.5, 3.75, 4, 5, 6, 7, 8, 9, 10, 12, 18,
24, and 48. For a better understanding of the expansion ¯ow behavior, we also considered
Reynolds numbers Re � 60 and 140 for the two-dimensional analyses and 60 for the three-
dimensional analyses. We conducted calculations in the full domain, which consisted of a
streamwise length Lx � 140h, including an inlet section Li � 60h prior to the sudden

Table 2
Grid details for conducting the two-dimensional grid-independence study

Grid NDx Dx NDz Dz

Upstream Downstream (min, max) (min, max)

A 15 20 (0.43, 22.0) 15 (0.25, 0.58)

B 21 29 (0.30, 15.0) 21 (0.15, 0.43)
C 30 40 (0.20, 11.0) 33 (0.10, 0.26)
D 39 51 (0.10, 9.0) 45 (0.06, 0.20)
E 47 63 (0.06, 8.0) 57 (0.04, 0.18)

F 47 93 (0.04, 5.0) 69 (0.02, 0.16)
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expansion, a vertical height Lz � 3h and spanwise widths Ly � 3048h: For this study, non-
uniform mesh distributions were used, with ®ner grid spacings near the step and in the vicinity
of no-slip walls. Six continuously re®ned grids (Grid-A, Grid-B, . . . , Grid-F) are considered
and are detailed in Tables 2 and 3.
To ensure that the solutions computed on grid spacings described above are su�cient to

predict real ¯ow physics, it is common practice to conduct grid-independent test. This three-
dimensional test is impractical and is, in fact, beyond our ability since it involves a signi®cant
use of computer time. Thus, grid-independent tests were conducted in the two-dimensional
context using meshes tabulated in Table 2. In the subsequent discussion of grid-independent
results, it is instructive to con®rm the validity of the code by considering ®rst the Reynolds
number Re � 60: This value falls within the range characterizing unsymmetric ¯ow in a
channel with E � 3 [5]. Previous experimental study revealed that laminar ¯ow remains
symmetric at Re � 26: As the Reynolds number is increased up to 35, no symmetric ¯ow was
observed in the channel with E � 3: In this grid-independent study, the problem was ®rst
solved on coarser grids. This was followed by determining whether more grid points were
needed; then, an improved mesh is generated. This process was repeated until the required level
of accuracy was achieved. As is apparent from Fig. 2a, that solutions computed on Grid-F
compare very favorably with the experimental data [5]. Due to lack of space, we only plot in
this grid-independent study velocity pro®les at streamwise locations which are near the end of
roof and ¯oor eddies, x � 7 in Fig. 2b and x � 20 in Fig. 2c. Velocities at these locations are
most di�cult to resolve. Through this grid re®nement study, it is concluded that grid density
higher than Grid-B is su�cient to provide an accurate prediction.
We plot Fig. 3 to illustrate the ¯ow asymmetry by showing that ¯ow near the channel roof

increases in velocity at the expense of the velocity in the vicinity of the channel ¯oor. As a

Table 3
Grid details in the y-direction for the three-dimensional study

Aspect ratio NDy Dy Grid
A (min, max)

3 30 (0.10, 0.28) C
3.5 30 (0.10, 0.35) C

3.75 30 (0.10, 0.38) C
4 30 (0.10, 0.42) C
5 36 (0.10, 0.44) C
6 40 (0.10, 0.49) C

7 40 (0.10, 0.60) C
8 40 (0.10, 0.72) C
9 40 (0.10, 0.84) C

10 40 (0.10, 0.97) C
12 40 (0.10, 1.22) C
18 40 (0.10, 2.00) C

24 40 (0.10, 2.93) C
48 60 (0.10, 4.14) C
24 70 (0.02, 2.11) F
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Fig. 2. (a) Comparison of two-dimensional solutions, computed on Grid-F, with the experimental data of Fearn et
al. [5] for a ¯ow with Re � 60 in the channel with E � 3; (b) Grid re®nement tests for velocities plotted at x � 7; (c)

Grid re®nement tests for velocities plotted at x � 20:
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Fig. 3. Computed two-dimensional solutions plotted at the streamwise location x � 0:1 for the case Re � 60 and
E � 3 for illuminating the Coanda e�ect. Solid line is for the solutions plotted in �0:1,ÿ 3RzR0� and the dashed

line is for the solutions plotted in �0:1,0RzR3). Solutions are computed on the Grid-F and are plotted against z-
axis for: (a) u; (b) @u=@z; (c) @u=@x; (d) p; (e) ÿ@p=@z; (f) ÿ@p=@x:
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result of the Coanda e�ect shown in Fig. 2a, ¯uid ¯ows have higher velocity (Fig. 3a) and,
thus, lower pressure (Fig. 3d). Under the circumstances, the asymmetric ¯ow can be stably
maintained by the cross-channel pressure gradient. In 1986, Sobey and Drazin [2] theoretically
con®rmed that the symmetric ¯ow loses stability to one pair of asymmetric solutions. In other
words, the ¯ow undergoes a symmetry-breaking bifurcation. The ¯ow immediately downstream
of the two-dimensional step is characterized by two primary counter-rotating vortices. As a
result of two primary recirculating eddies, the ¯ow near the step corner is manifested by having
large gradients both in velocity (Fig. 3b and c) and pressure (Fig. 3e and f). We then provide
more numerical evidence of the Coanda e�ect through use of two-dimensional results for

Fig. 4. Comparison of velocity u, computed on the Grid-F, with the experimental data of Fearn et al. [5] at

streamwise locations x = 2.5, 5, 10, 20, and 40 for the Reynolds number Re � 140 and E � 3:
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Re � 140, computed on the Grid-F. As Fig. 4 shows, agreement with the experimental data of
Fearn et al. [5] is rather good, revealing that the ¯ow asymmetry indeed exists in the symmetric
channel. In the rest of this paper, we present the results, using the ®nest grid Grid-F, for
A � 24, E � 3 and Re � 60: Besides this three-dimensional validation case, we also consider
di�erent aspect ratios �3RAR48� in the three-dimensional calculations on coarser grid, Grid-
C. In contrast to the large number of two-dimensional solutions [4±7,10,12,14], few solutions
to the three-dimensional equations governing channel ¯ows have been performed [9,23]. This
motivated the present three-dimensional study.
Before discussing three-dimensional results, the validation study was undertaken in order to

allow comparison of the present results with the experimental results of Fearn et al. [5], so as
to provide a measure of accuracy of the present mathematical model. As is evident from Fig. 5,
agreement is rather good for the ¯ow with Re � 60: We also present in Fig. 6 the convergence
history for this validation study to show that three-dimensional solutions presented in Fig. 5
have perfectly converged. Three stages of di�erent convergence nature of the error reduction
are also shown in this ®gure.
A di�cult problem which was encountered while performing three-dimensional ¯ow

simulations was the enormous amount of data generated. Care must be appropriately taken in

Fig. 5. Comparison of u-velocity distributions at di�erent streamwise locations for the solutions computed on Grid-
C and Grid-F: (a) x � ÿ5; (b) x � 5; (c) x � 10; (d) x � 20; (e) x � 40: All solutions were obtained for Re � 60,

E � 3 and A � 24:
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order to extract meaningful ¯ow physics and, then, obtain a profound understanding of the
¯ow structure. This is a tedious task to conduct unless a theoretically rigorous method can be
adopted. In the literature, it is found that we can conduct a topological study of limiting
streamlines [24] and skin-friction lines [25] to achieve the goal. In this study, limiting
streamlines which are, by de®nition, streamlines passing very close to the wall surface were
chosen as our vector ®elds to gain physical insight into the pertinent ¯uid ¯ows. As the
topological theory states, limiting streamlines tend to diverge from lines of attachment [26].
The converse of lines of attachment is lines of separation. To lines of separation, neighboring
streamlines tend to converge. We make use of the kinematic aspect of limiting streamlines to
classify singular points, such as nodes, foci, and saddles. This helps depict the ¯ow structure
inferred from three-dimensional data. The plot of these singular points, supplemented with
lines of separation and attachment, can provide us additional ¯ow details.
In light of the topological theory brie¯y described above, we have plotted limiting

streamlines on the roof, ¯oor, step plane and vertical side wall for the channel with A � 24 and
Re � 60: Fig. 7 plots the limiting streamlines, from which one can clearly observe lines of

Fig. 6. Convergence history plots for the three-dimensional case with Re � 60, E � 3, and A � 24 on Grid-F.
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reattachment on the channel roof and ¯oor. A characteristic feature of limiting streamlines on
the roof and ¯oor is that they are seemingly invariant with y, except in regions near the
vertical side-wall. Fig. 7 also sheds some light on the ¯ow complexity at the vertical side wall.
Two saddle points, marked by `1' and `2' are shown in the downstream locations near the roof
and ¯oor reattachment, respectively. Saddle points `1' and `2' are indicative of the termination
of spiral motion due to spiral motions centered at `A' and `B', respectively. The ®rst saddle,
below which there is a focal point `B', is found near the channel roof. Downstream of the ®rst
saddle, there exists a much weaker singular point, `2', whose classi®cation is similar to the ®rst
one. This saddle point is found in a streamwise location near the reattachment line. Above the
saddle point `2', there also shows a spiral focal point `C'. Emanating from the attracting spiral
focal point `A' is the vortical core line which is within the range of roof eddy. The second
vortical core line originates from the attracting spiral focal point `B'. The presence of singular
point `C' is particularly noteworthy. This critical point is present due to the vertical side-wall

Fig. 7. Three-dimensional illustration of surface ¯ow topology (critical points and lines of reattachment) and
pseudo-streamlines on the plane of symmetry from velocities computed on Grid-F. The ¯ow condition is for

Re � 60 in the channel with A � 24, E � 3:
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Fig. 8. Three-dimensional ¯ow pattern, computed on Grid-F, plotted at di�erent y planes for Re � 60 in the channel with A � 24 and E � 3:
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and are, thus, of local nature. Near the side-wall, lines of separation and reattachment are also
observed on the channel roof.
The three-dimensional nature of the ¯ow can be best depicted by plotting u±w pseudo-

streamlines in planes parallel to the side-wall plane. As Fig. 8 shows, the ¯ow is nominally
two-dimensional, except in the range of 0:45BRyR0:5B where boundary layer phenomenon
prevails. Owing to this side-wall boundary layer, shear force resists ¯uid particles to proceed to
the side wall. The resulting secondary ¯ow arises through a complex interaction between the
curved ¯ow, as manifested by the presence of primary eddies formed immediately behind the
step, and the boundary layer developed over the vertical side wall. It is important to address
that there exists a roof eddy in the vicinity of the vertical side-wall. This roof eddy corresponds
to the spiral-focal point `C' shown in Fig. 7. The secondary eddy is not found in the two-
dimensional analysis and is too weak to extend its in¯uence into the whole span of the
expansion channel characterized by E � 3 and A � 24: The side-wall boundary layer poses
shear drag on the primary motion of the ¯uid particles behind the step. This results in pressure
gradients along the y-direction and, in turn, an increasingly large v-velocity component. It is
this non-zero v-velocity component that causes the particle to move spirally with respect to the
vortical core line shown in Fig. 8. This explains why particles shown in Fig. 9 proceed towards
the symmetry plane y � 0: To show the longitudinal secondary ¯ow induced by the vertical
side-wall, we show in Fig. 10 streamline plots at selected x-planes downstream of the step
plane. An important feature worth noting in the close-up plot of side-wall topology is the
change of sign in the w-velocity component downstream of the spiral-focal point. Such a
nature of the ¯ow topology gives rise to longitudinal vortices, as clearly seen in the ®gure. The

Fig. 9. Illustration of the side-wall induced particle motions spiralling towards the plane of symmetry. The side-wall
surface topology is also included for the ¯ow with Re � 60 in the channel with A � 24 and E � 3:
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longitudinal secondary ¯ow is more clearly illustrated by the velocity vector plots shown in
Fig. 11.
To justify the legitimate use of Grid-C in the rest of 14 three-dimensional calculations for

di�erent aspect ratios, we made a comparison of results computed from Grid-C and Grid-F
with the experimental data of Fearn et al. [5] for the ¯ow with Re � 60 and the channel with
A � 24 and E � 3: Fig. 5, which plots the u(z ) distribution at di�erent streamwise locations,
shows good agreement between numerical and experimental solutions. Much less CPU times
�CPUjGridÿF=CPUjGridÿC115� can be saved without loss of prediction accuracy. In Fig. 12,
velocity pro®les are plotted on the symmetry plane for channels with aspect ratios A = 3, 6,
12, 24 and 48. It is found from the ®gure that the two-dimensional results are strikingly
di�erent from the three-dimensional results in cases when A < 12: The main di�erence is due
to characteristic velocity �3=2umax� used in de®ning Reynolds numbers for two- and three-
dimensional ¯ow problems �umax � 1 in two-dimensional and umax > 1 in three-dimensional
problems). The readers are referred to Table 4, which tabulates the ratio umax=

3
2umean against B

Fig. 10. Three-dimensional plot of pseudo-streamlines, computed on Gird-F, at di�erent streamwise planes for

showing the longitudinal secondary ¯ow for Re � 60 in the channel with A � 24 and E � 3: The side-wall limiting
streamlines are plotted for the illustration purpose.

T.P. Chiang et al. / Computers & Fluids 29 (2000) 467±492482



Fig. 11. v-w velocity vector and u-contour plots for ¯ow Re � 60, computed on Grid-F, at di�erent streamwise

planes of the channel with A � 24 and E � 3: (a) at x � 21 plane; (b) at x � 24 plane; (c) at x � 27 plane; (d) at
x � 30 plane.
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Fig. 12. Comparison of u-velocity pro®les at the plane of symmetry computed from two- and three-dimensional
analyses for the ¯ow condition Re � 60 in the channel with E � 3 and di�erent aspect ratios: (a) A � 3; (b) A � 6;

(c) A � 12; (d) A � 24; (e) A � 48: All calculations were conducted on Grid-C.
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Fig. 13. Pseudo-streamlines plotted on the symmetry plane in channels with E � 3 and di�erent aspect ratios: (a)
A � 3; (b) A � 6; (c) A � 12; (d) A � 24; (e) A � 48; (f) 2D. All solutions were obtained on the Grid-C for the ¯ow

with Re � 60:
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at the channel inlet. Another reason for such di�erence is that three-dimensional nature of the
¯ow prevails in channels having smaller aspect ratios. This e�ect can be ascribed to the
increasingly important end-wall shear drag. In the channel having a very large aspect ratio, say
A � 48, the ¯ow is essentially two-dimensional in the core region. Virtually no di�erence is
observed between the two- and three-dimensional results shown in Fig. 12e. This is in accord

Fig. 14. Reattachment lengths x 1 and x 2 on the symmetry plane of the channel with E � 3 and di�erent aspect
ratios. All solutions were obtained on Grid-C for the ¯ow with Re � 60:

Table 4
The computed ratios of umax=

3
2umean in the upstream channels with di�erent aspect ratios

Aspect ratio, A Ratio of umax=
3
2umean

3 1.242
3.5 1.209
3.75 1.195

4 1.182
5 1.143
6 1.117

7 1.099
8 1.086
9 1.075
10 1.067

12 1.055
18 1.036
24 1.027

48 1.013
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Fig. 15. The side-wall surface streaking lines in channels with E � 3 and di�erent aspect ratios: (a) A � 3; (b)

A � 3:75; (c) A � 6; (d) A � 12; (e) A � 24; (f) A � 48: All calculations were made on Grid-C for the ¯ow with
Re � 60:
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with our expectation that the ¯ow in a channel with an in®nitely large value of A can be
rationally regarded as being two-dimensional.
Since ¯ow asymmetry in symmetric channels with sudden expansions has been the subject of

much attention, we were motivated to study the e�ect of A on the ¯ow asymmetry for an
incompressible ¯uid ¯ow at Re � 60 and E � 3: Fig. 13 presents a comparison of streamlines
plotted at the symmetry plane in channels with di�erent values of A. What is now evident is

Fig. 16. The surface ¯ow topology on the channel roof with E � 3 and di�erent aspect ratios: (a) A � 3; (b) A � 6;
(c) A � 12; (d) A � 24: All calculations were performed on Grid-C for the ¯ow with Re � 60:

T.P. Chiang et al. / Computers & Fluids 29 (2000) 467±492488



that ¯ow symmetry is stably maintained when A is equal to 3. As the aspect ratio of the
channel A is increased up to a value of 6, ¯ow asymmetry becomes clearly observed. To ®nd a
critical aspect ratio, above which the ¯ow undergoes a transition to asymmetry, we conducted
three-dimensional calculations in channels with aspect ratios falling in between 3 and 6.
Through numerical simulations, it is revealed from Fig. 14 that the critical aspect ratio is about
3.5. It is fair to conclude from Fig. 14 that the three-dimensional ¯ow approaches that of the
two-dimensional ¯ow as A > 12:
Typical of a ¯ow in a symmetric channel with sudden expansion is the vortical ¯ow formed

behind the step. The physical details of such ¯ow can be explored using the underlying theory
of topology. E�orts in this direction have prompted us to plot limiting streamlines at the side-
wall, roof and ¯oor of the channel. As seen from limiting streamlines plotted at the vertical
side wall, the ¯ow shown in Fig. 15 is symmetric with respect to z � 0 for the case of A � 3:
This is not the case for a ¯ow in larger aspect ratio channels. Revealed clearly by this ®gure is
a focal-saddle pair of critical points when the channel aspect ratio is increased to 6. We will
now provide details of the ¯ow separation and reattachment in the channel roof and ¯oor. To
do so, it is instructive to apply the topological theory to theoretically determine the separation
locations on the roof and reattachment locations on the roof and ¯oor of the channel. Fig. 16
plots the limiting streamlines on the channel roof. The lines of reattachment are clearly
revealed in the sense that neighboring limiting streamlines repel from these critical lines. The
lines of local separation/reattachment near the side-wall are also observed as A > 6: For
purposes of completeness, we plot in Fig. 17 lines of reattachment and separation on the
channel roof. We also plot in Fig. 18, limiting streamlines on the channel ¯oor and in Fig. 19,
lines of reattachment for the sake of comparison.

Fig. 17. Comparison of lines of reattachment on the channel roof with E � 3 and di�erent aspect ratios A = 3, 4,
5, 6, 12, 24, 48. All analyses were carried out on Grid-C for the ¯ow with Re � 60:

T.P. Chiang et al. / Computers & Fluids 29 (2000) 467±492 489



5. Concluding remarks

Computational investigation into the incompressible channel ¯ow over a symmetric sudden
expansion con®rms the general trends of previous two-dimensional investigations and provides
further information which adds to knowledge of the three-dimensional ¯ow structure.
Consideration has been given to the critical aspect ratio, above which an initially symmetric

Fig. 18. The surface ¯ow topology on the channel ¯oor with E � 3 and di�erent aspect ratios: (a) A � 3; (b) A � 6;
(c) A � 12; (d) A � 24; (e) A � 48: All analyses were carried out on Grid-C for the ¯ow with Re � 60:
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¯ow will develop into an asymmetric ¯ow due to the Coanda e�ect. Through intensive study, it
has been found that ¯ow symmetry remains a feature of the ¯ow in channels whose aspect
ratios are less than 3.5. Numerical solutions have also shown that the centerplane ¯ow is
nominally two-dimensional as the aspect ratio is larger than 12. Thanks to the theoretically
rigorous theory of topology, our understanding of the ¯ow structure has been increased
through depiction of lines of separation and reattachment, critical points, such as spiral focal
points and saddles. In contrast to experimental investigations, bifurcation observed is most
likely to be triggered by small asymmetries in the channel geometry and ¯ow conditions, we
attribute the numerical ¯ow asymmetry in the geometrically symmetric channel to bifurcation
triggered possibly by discretization errors, asymmetry of the numerical algorithm employed to
solve the basic equations of ¯uid ¯ows. Another source which causes ¯ow asymmetry to occur
is due to REAL-number representation in computer [27]. In any computer hardware system,
the di�erence between two consecutive ¯oating-point numbers (gap, or spacing) are uneven in
size. Even a negligibly small ¯ow asymmetry may be ampli®ed by locally high shear strain in
the vicinity of a step corner.
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Fig. 19. Comparison of lines of reattachment on the channel ¯oor with E � 3 and A = 3, 4, 5, 6, 12, 24, 48. All
analyses were carried out on Grid-C for the ¯ow with Re � 60:
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