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In this article, we develop a two-dimensional � nite-difference scheme for solving the con-
vection-diffusion equation. The numerical method involves using transformation on the
prototype scalar transport equation and transferring it to a Helmholtz equation. We apply
the alternating-direction implicit scheme of Polezhaev to solve for the Helmholtz equation.
As the key to success in simulating the convection-diffusion equation, we exploit the sol-
ution pertaining to the Helmholtz equation in the course of scheme development, thereby
providing high-level accuracy to the prediction. Since this is a new method developed
for solving the model equation, it is illuminating to conduct modi� ed equation analysis
on the discrete equation in order to make a full assessment of the proposed method.
The results provide us with useful insights into the nature of the scheme. It is standard
practice to validate the code by investigating test problems which are amenable to exact
solutions to the working equation. Results show exact agreement for the one-dimensional
test problem and good agreement with the analytic solutions for two-dimensional problems.

1. INTRODUCTION

In this article, we develop a numerical method for solving the con-
vection-diffusion scalar transport equation. This equation is encountered in a broad
range of £uid dynamics and heat transfer applications. The model equation to be
investigated is also academically important since it is regarded as the simplest
prototype equation for modeling most of the transport phenomena. It is this prac-
tical as well as theoretical importance that makes numerical prediction of this model
equation worthwhile and thus motivates the present study. We restrict our attention
to two-dimensional cases in the x^y plane.

A reliable transport scheme must have the ability to suppress numerical
instabilities arising from convective terms. The problem of numerical instabilities
of this sort is, in particular, severe when convective terms dominate diffusive terms
in multiple dimensions [1]. The aim of the present article is to ¢nd a way to avoid
dealing with these convective terms in the equation. One way to make progress
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is to apply a mapping by relating the original passive scalar to the other auxiliary
scalar. The use of transformation as described in Section 2 transforms the original
prototype equation into the Helmholtz equation, thereby avoiding convective terms
which may cause solutions to diverge. It is, then, a question of constructing a scheme
to solve for the Helmholtz equation, and this is another main theme of the present
study. When solving the Helmholtz equation, we are concerned with prediction accu-
racy and computational ef¢ciency since we do not regard a scheme as useful if it
cannot provide accuracy at a certain high level.

The rest of this article is organized as follows. Section 2 presents the working
equation. In Section 3, we transform the model equation into the Helmholtz
equation, which is one of the main themes of this study. This is followed by pres-
entation of the ¢nite-difference scheme used to solve the Helmholtz equation in
two dimensions. Our emphasis is on the application of the alternating-direction
implicit scheme of Polezhaev [2]. In each iterative scheme, prediction of higher accu-
racy is our underlying goal to achieve. Section 4 is devoted to a fundamental study on
the proposed £ux discretization scheme, with an emphasis on modi¢ed equation
analysis. Section 5 presents numerical results that demonstrate the validity of
the method. In Section 6, we give concluding remarks.

2. WORKING EQUATION AND SOLUTION ALGORITHM

We consider in this article the following two-dimensional model equation for
simulating the transport of a passive scalar F in the domain O:

uFx vFy k Fxx Fyy G 1

In the above, G is the source term, u and v represent velocity components along the x
and y directions, respectively, and k denotes the diffusion coef¢cient. The above
equation, subject to the Dirichlet-type boundary condition, F g on O, constitutes
a closure boundary-valued problem.

NOM ENCLATURE

c coef¢cient of f shown in Eq. (9)
C(m) cosine Fresnel integral

( 2 p m
0 n2 dn)

f source term shown in Eq. (9)
h mesh size
k diffusivity of the working £uid
S(m) sine Fresnel integral

( 2 p m
0 n2 dn)

u velocity component along the x
direction

v velocity component along the y
direction

x, y spatial coordinates
G source term shown in Eq. (1)
f auxiliary scalar de¢ned in Eq.

(4)
F primary passive scalar
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3. NUM ERICAL M ODEL

There are several ways to rectify numerical instabilities stemming from con-
vective terms in transport equation (1). The strategy we will consider for overcoming
this dif¢culty is described as follows. We ¢rst rewrite Eq. (1) as

Fxx Fyy 2AFx 2BFy F 2

where

A
u
2k

3a

B
v

2k
3b

F
G
k

3c

Unless otherwise stated, the subscript p in qp denotes the derivative of q with respect
to p.

We can now proceed to transform Eq. (2) using a newly introduced passive
scalar f, which relates the primary variable F through the mapping given by

F eAx Byf x y 4

Our formulation involves substituting Eq. (4) into Eq. (2), thereby obtaining a
partial differential equation for the transport of f as follows:

2f K 2f f 2Cfx 2Dfy 5

where

K 2 A2 B2 C2 D2 E 6a

C Axx Bxy 6b

D Ayx Byy 6c

E Axxx 2Ax Bxxy Ayyx 2By Byyy 6d

f
F

eAx By 6e

In what follows, velocities u and v and £ow property of the £uid k are assumed
to be uniform throughout the domain of £ow for purposes of illustration. When
solving the resulting classical equation, we can apply the integral approach, which
involves using Green’s functions [3]. Unfortunately, computation of Green’s
functions is generally a dif¢cult task; thus, they are seldom used in practice. As
a result, we are led to consider conventional methods, such as the ¢nite-difference
method chosen for the present study. For purposes of computational ef¢ciency
in solving the multidimensional equation, we apply the alternating-direction implicit
(ADI) scheme of Polezhaev [2] to solve Eq. (5). According to this operator-splitting
strategy, calculation proceeds iteratively through two steps given below.

Predictor step:

fxx K2f fn
yy 7
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Corrector step:

fn 1
yy K2fn 1 fxx 8

Taking a look at Eqs. (7)^(8), it becomes clear that the key to success in solving
Eq. (1) lies in the calculation of the following model equation:

kfxx cf f 9

As is the case when a partial differential equation is solved, we aim to obtain a
higher prediction accuracy for the model equation. Therefore, we employ the
following general solution for the Eq. (9):

f ael1x bel2x f
c

10

In the above, a and b are constants. Substituting Eq. (10) into Eq. (9), we have two
equations for l1 and l2 , respectively:

kl2
1 c 0 11

kl2
2 c 0 12

The above two equations enable us to determine l1 and l2 as follows:

l1
c
k

13a

l2
c
k

13b

We proceed to derive the discrete expression for Eq. (9) at an interior point i.
Our strategy is to approximate derivative terms in Eq. (9) in a center-like form
as follows:

m
h2 fi 1 2fi fi 1

c
6

fi 1 4fi fi 1 f 14

or

m
h2

c
6

fi 1 2
m
h2

c
3

fi
m
h2

c
6

fi 1 f 15

In the above, h is the uniform grid size. Given the above discrete representation of
Eq. (9), the quality of prediction depends solely on m shown in Eq. (14) or
(15). As previously noted, we seek higher accuracy through use of the exact
solutions evaluated at nodal points i and i 1. By virtue of Eq. (10), we can
substitute fi ael1xi bel2xi f c, fi 1 ael1hel1xi bel2hel2xi f c, and
fi 1 ae l1hel1xi be l2hel2xi f c into Eq. (15) to derive

m
ch2

6
el1h el2h 4
el1h el2h 2

16
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4. MODIFIED EQUATION ANALYSIS

As the two-step iterative procedures terminate, the solution at the point (i, j) is,
in principle, obtained from the following ¢ve-point stencil equation:

ai j 1fi j 1 ai 1 jfi 1 j ai jfi j ai 1 jfi 1 j ai j 1fi j 1 0 17

Five coef¢cients shown in Eq. (17) are summarized as below:

ai j 1 ai 1 j ai 1 j ai j 1
1

el1h el2h 2
18a

ai j
el1h el2h 2
el1h el2h 2

18b

Expanding fi j 1, fi 1 j , fi 1 j , and fi j 1 in a Taylor series with respect to fi j

and substituting them into Eq. (17), after some algebra the modi¢ed equation
[4] for Eq. (5) is derived as

fxx fyy K2f c1 fxx fyy c2 fxxxx fyyyy 19

where

c1 a0
h2

2
1 20a

c2 a0
h4

4
20b

a0
2K2

eKh e Kh 2
20c

and H.O.T. is higher-order terms. By applying L’Hoª pital’s rule twice, we can have

h 0
c1

h 0

K2h2

eKh e Kh 2
1

h 0

2K 2h
KeKh Ke Kh 1

h 0

2K2

K2eKh K2e Kh 1 0

Therefore, the analytic solution can be obtained as the grid size approaches zero,
implying the satisfaction of the scheme consistency.

5. VALIDATION STUDY

As is normally the case when a new scheme for solving the differential equation
is presented, we have to validate the proposed scheme. For this reason, we will
employ test problems which are amenable to analytic solutions. We begin by
validating the Helmholtz equation and then the convection-diffusion equation. Both
one- and two-dimensional problems are investigated.
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5.1 Validation of the Helmholtz Equation

To illustrate the applicability of the proceeding one-dimensional scheme for the
Helmholtz equation, we consider a stringent test problem given below:

fxx k2f gld x Z 21

In the above, d is the delta function. As for Z, its value ranges between l and l.
Subject to the boundary conditions f(l) f( l) 0, the solution to Eq. (21) can
be derived analytically as

f x k Z

gl
k

k l Z
2kl

k x l l x Z

gl
k

k l Z
2kl

k l x Z x l
22

The proof is detailed in the Appendix. The solution is computed at the chosen
values of Z 0, l 1, g 1,000, and k 113. For the case with uniform grid size
h 10 3, it is found from Figure 1 that the ¢nite-difference solution reproduces
the analytic solution of the test equation. The values of h and k are chosen in order
to demonstrate the ability of the present scheme to capture the sharp pro¢le of f

Figure 1. A comparison of numerical solution with that of the exact solution given in Eq. (22).
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The theory showing that the present scheme can compute nonoscillatory pro-
¢les is known as the M-matrix theory. Considering the one-dimensional scheme
ai 1fi 1 aifi ai 1fi 1 fi , the coef¢cients given in Eq. (15) are featured by
having the properties: (i) ai 0, ai 1 0 and ai 1 0; (ii) ai ai 1 ai 1 . These
conditions are unconditionally satis¢ed, implying that the matrix [ai] in

aifi f is classi¢ed as being an M-matrix [5, 6]. The construction of the
tri-diagonal M-matrix explains why solution pro¢les can be well captured without
showing ripples.

Simulations were also performed in the two-dimensional domain. In this
article, we justify the use of the proposed ADI scheme to simulate the following
equation in the square 0 x, y p:

fxx fyy f 0 23

The above equation, subject to the Dirichlet-type boundary condition for f, is amen-
able to the following exact solution [7]:

f y
2

2
p
4

y C
2 r y

p
S

2 r y
p

2
2

p
4

y C
2 r y

p
S

2 r y
p

24

In the above, S( ) and C( ) denote the Fresnel sine integral and Fresnel cosine
integral, respectively.

As Figure 2 shows, the solution computed at h p/20 agrees well with the exact
solution. We also carried out computations on continuously re¢ned grids, namely,
h p/10, p/20, p/40, p/60, and p/80, and computed the prediction errors in their
L2 norms. This was followed by plotting log(err1/err2) against log(h1 h2) for the
errors err1 and err2 computed at two continuously re¢ned grids h1 and h2 . As
Figure 3 shows, the rate of convergence is obtained as 1.91 using the proposed
scheme.

5.2. Validation of the Convection-Diffusion Equation

Having validated the scheme for solving the Helmholtz equation, we apply this
scheme together with the mapping given in Eq. (4) to compute the con-
vection-diffusion equation. In the ¢rst place, we consider the following equation
in 0 x 1:

Fx nFxx 0 25

This equation is amenable to the following solution [8]:

F x
1 e 1 x n

1 e 1 n 26

For the case with a uniform grid size h 1/200, the computed result shown in
Figure 4 is found to reproduce the analytic solution of the test equation. This test
veri¢es that the proposed ¢nite-difference scheme can provide a nodally exact
steady-state solution. At n continuously decreases (say, n 7 10 4), the prediction
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Figure 2. A comparison of ¢nite-difference and exact solutions: (a) exact solution given in Eq. (24); (b)
present solution.
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accuracy deteriorates due to errors arising from the calculation of Eq. (4). Such an
error is due solely to the machine error and has nothing to do with the method itself.
The effort to resolve this dif¢culty is currently under investigation so that we can
develop the scheme for use in practical situations.

Having validated the code against the above one-dimensional test problem, our
attention is now drawn to the two-dimensional convection-diffusion equation. As
noted previously, we have to provide evidence when validating the scheme. For this
reason, we solve for the following equation, which is amenable to the following ana-
lytical solution in 0 x, y 1:

a
m

Fx
b
m

Fy Fxx Fyy 27

For simplicity, a and b are assumed to be constant along the x and y directions
respectively. Subject to the Dirichlet-type boundary condition shown schematically
in Figure 5, the exact solution to the above linearized viscous Burgers equation (27)

Figure 3. The rate of convergence using the proposed ¢nite-difference scheme for solving Eq. (23).
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is given by [9]:

F x y
1 x 1 a m

1 a m
1 y 1 b m

1 b m
28

Following the methodology just described, we ¢rst solve the Helmholtz
equation (5) for f. The coef¢cient K2 for this test is K2 a2 b2 4m2. Comput-
ations at m 1 have been carried out at ¢ve mesh sizes, namely, h 1/8, 1/16, 1/32,
1/64, and 1/128. Upon obtaining the corresponding solutions f from the Helmholtz
equation, we can compute solutions F at ¢ve investigated grids according to the
mapping given in Eq. (4), yielding

F e a 2m x b 2m yf x y 29

For each case, the computed error is cast in its L2 error norm. This is followed by
plotting log(err1/err2) against log(h1 h2) for errors err1 and err2 , which are com-
puted at two consecutively re¢ned meshes h h1 and h h2 . With these error norms,
the rate of convergence of the proposed scheme is obtained and is plotted in Figure 6

Figure 4. A comparison of the numerical solution and the exact solution given in Eq. (26).
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for the sake of clarity. Good agreement with the results, as shown in Figure 7, and
fast convergence to the analytic solution are demonstrated.

This is followed by considering Eq. (1) which involves the variable velocity ¢eld
given by (u, v) (ey, 0). Under the circumstances that k 1 and G 0, the exact
solution is derived as F ey. The derivatives Fx and Fy shown on the right-hand
side of Eq. (5) are approximated by the centered scheme using the most updated
value of F. Upon obtaining the coef¢cients K2, f , C, and D, we can apply the pro-
posed ¢nite-difference scheme. The iterative calculation procedures continue until
the difference in f between two consecutive iterations falls below the user-speci¢ed
tolerance. Following the iterative procedures, the solutions computed in the square

1 x 1, 0 y 1 can be shown in Figure 8. The computed error cast in its
L2 norm is obtained as 4.4576 10 4 for the case involving the uniform grid size
Dx Dy 1/23.

With reasonable con¢dence in applying the presently developed ¢nite-
difference scheme in solving the convection-diffusion equation in two dimensions,
we will next consider a much more stringent skew advection problem. This case,
subject to boundary conditions, is shown schematically in Figure 9. This problem
is investigated because it allows us to benchmark the scheme’s ability to capture
the interior layer. In the square domain 0 x, y 1, we can run code at different
£ow angles y tan 1 b a 12.25 , 22.5 , and 45 , where a2 b2 1. The £uid
viscosity is considered to be m 3 10 2. Grids are uniformly overlaid on the domain

Figure 5. A schematic of the test problem, given by Eqs. (27)^(28), in a unit square.
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of interest and the results are plotted in Figure 10. As Figure 11 shows, all results
plotted along the line BD reveal a marked change of F across their respective
dividing line, thus demonstrating the applicability of the proposed scheme to capture
steep solution in the £ow interior.

6. CONCLUDING REM ARKS

The aim of this numerical study is to tackle the convective instability in the
two-dimensional simulation of convection-diffusion transport equation. Our under-
lying strategy is to introduce a new variable, which has a direct relevance to the
passive scalar via the proposed transformation. The choice of the mapping relation
shows its merit in that the equation under investigation is a Helmholtz equation.
No convective terms are invoked, thereby completely overcoming the dif¢culty
related to convective instabilities. With the transformation being applied, the
key to success in predicting the convection-diffusion equation lies in the scheme
quality of solving the Helmholtz equation. As effective as the scheme may provide,

Figure 6. The rate of convergence for the two-dimensional convection-diffusion equation with analytic
solution given in Eq. (28) using the present ¢nite-difference scheme.
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Figure 7. A comparison of the numerical solution and the analytic solution given in Eq. (28) for the case
with m 1: (a) exact solution; (b) present solution.
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Figure 8. The computed solution F for the two-dimensional variable case considered in Section 5.2.

Figure 9. A schematic of the two-dimensional test problem for showing the ability of the proposed scheme
to resolve interior sharp layer.
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Figure 10. The computed contours of F for the investigated skew advection problem: (a) y 12.25 ; (b)
y 22.5 ; (c) y 45 .
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Figure 11. The distributions of F along the line BD: (a) y 12.25 ; (b) y 22.5 ; (c) y 45 .
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we have considered the alternating direction implicit scheme of Polezhaev. For the
sake of accuracy, we have developed a nodally exact £ux discretization scheme
for the one-dimensional Helmholtz equation. To elucidate the nature of the pro-
posed scheme, we have performed modi¢ed equation analysis. A full assessment
of the proposed scheme requires a rigorous test of the numerical method. For this
reason, we consider problems that exact solutions to the investigated model equation
are feasible. The computed L2 error norms and their resulting rates of convergence
validate the applicability of the two-step ¢nite-difference advection-diffusion scheme
to smooth £ow analysis. For the sake of completeness, computations have been
performed for a problem with a high gradient solution. Good ability to capture
the sharply varying pro¢le has been demonstrated.
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APPENDIX

By de¢nition, the inhomogeneous linear Helmholtz equation (21) is mathemat-
ically equivalent to

fxx k2f 0 l x Z Z x l

f l f l 0

1

2

The general solution of Eq. (A1) is as follows:

f
Aekx Be kx l x Z

Cekx De kx Z x l

3a

3b

Four equations are needed to determine four undetermined parameters A, B, C, D.
Substituting the boundary conditions f( l) 0 and f(l) 0 into Eqs. (A3a)

and (A3b), we get, respectively,

Ae kl Bekl 0 4

and

Cekl De kl 0 5

Derivation of the third and fourth equations is followed by integrating Eq. (A1),
resulting in Z

Z fxxdx k2 Z
Z fdx gl Z

Z d x Z . By virtue of the mathematical
identity Z

Z d x Z 1, we have

fx
Z
Z k2f Z Z Z gl 6

Let f be continuous at x Z; this continuity condition at x Z demands that

AekZ Be kZ CekZ De kZ 7

Under the continuity condition of f at x Z, Eq. (A6) turns out to be

fx x Z fx x Z gl 8

By taking derivatives of the two equations given in (A3) and substituting them into
Eq. (A7), we get

CkekZ Dke kZ AkekZ Bke kZ gl 9

After some algebra, four coef¢cients A, B, C, and D can be uniquely solved using
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Eqs. (A4), (A5), (A7), and (A9):

A
glekl k l Z

2k 2kl

B
gle kl k l Z

2k 2kl

C
gle kl k l Z

2k 2kl

D
glekl k l Z

2k 2kl
10

The analytic solution of Eq. (21) is thus obtained as

f

gl k l Z k l x
k 2kl

l x Z

gl k l Z k l x
k 2kl

Z x l
11
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