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TWO-DIMENSIONAL SCHEME FOR
CONVECTION-DIFFUSION WITH LINEAR
PRODUCTION

Y. H. Chen and Tony W. H. Sheu
Department of Naval Architecture and Ocean Engineering, National Taiwan
University, 73 Chou-Shan Rd., Taipei, Taiwan, Republic of China.

In this article we consider the scalar transport governed by the convection-diffusion
equation with linear production in two dimensions. The underlying idea in the development
of a steady discretization scheme is to incorporate the analytical solution, obtained within a
one-dimensional context, into the formulation. The method adopted here features exponen-
tial character in the weighted coefficients of the matrix equation, which generates a scheme
with high accuracy. The analysis is followed by extending this discretization scheme to solve
the convection-diffusion-production equation with a source term. In this article we present
an analytical validation study of the method applied to two classes of model equations.
Having verified that the method applies equally well for a transport scalar in either case
with constant or variable flow velocity, we employ the one-dimensional scheme in the
predictor and corrector steps to obtain the two-dimensional solution in an alternating-
direction-implicit fashion. The result obtained for the test considered in this article follows
the trend of analytic data.

INTRODUCTION

The linear scalar advection-diffusion equation has long been examined as the

simplest prototype for Navier-Stokes equations. Sufficient detail can be gained

from analysis of this equation at considerably less expense. This explains why this

equation has been a subject of academic importance in the area of fluid dynamics
and heat transfer over the last few decades. It is fundamentally difficult to solve

this equation due to the presence of potentially destabilizing first-order derivative

w xterms in the equation 1 . Numerical pathologies immediately appear as derivatives

of this sort are approximated by centered schemes. Although the use of different

upwinding remedies has achieved some success in suppressing oscillatory solutions,

the need to add artificial damping terms, implicitly or explicitly, to the formulation
has placed limitations on the computing techniques. It is the objective of the

current study to fix this problem by designing a stable flux discretization scheme

which retains a high level of accuracy at relatively low added computing expense.

The Helmholtz equation represents another classical problem in the field of

applied mathematics. This elliptic equation is used to describe propagating and

w xevanescent waves in acoustic fields 2 . Other application examples include electro-
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NOMENCLATURE

E,W,S,N east , west, south, north of node P v velocity of the flow along the y
shown in Figure 1 direction

1 2 2Ö( )g specified value of f along the b b s u " u y 4KR2 K

boundary G the boundary of V
h uniform grid size F a scalar which serves as the

K diffusivity of the fluid dependent variable

P centroid of an element V the physical domain under

R strength of the production term investigation

u velocity of the flow along the x = gradient operator

direction = ? divergence operator

magnetic waves and diffusion problems in semiconductors. In the literature ,

research efforts have particularly been paid to the scheme stability because of the

potential loss of ellipticity with increasing wave numbers in the propagation region.
As a subject of fundamental importance , it is the objective of the present

study to simulate the generalized equation for the above two classes of equations,

namely, the convection-diffusion-productio n equation. Difficulties involved in solv-

ing steady-state solutions of this model equation arise from the skew-symmetric

convective term and the positive production term in the equation, since they have

potentially destabilizing effects. The intention to gain insight into the behavior
inherent in the solution is, thus, certainly worthy of consideration.

In the next section we describe the working equation. This is followed by the

description of the discretization method presented in the article. The underlying

idea in the development of an advection-diffusion-productio n scheme is to incorpo-

rate the analytic information into the formulation. We also show that for steady

problems our scheme is applicable to homogeneous r inhomogeneous problems
with variable velocities. This is followed by extending the analysis to two dimen-

sions employing the developed one-dimensional flux discretization scheme in each

step of the alternating-direction-implici t solution algorithm. The introduced dis-

cretization errors become known by the modified equation analysis. We then

present results for three test problems to benchmark the scheme presented here.

Conclusions are drawn in the final section.

MODEL EQUATION

In this article we consider a linear advection-diffusion-productio n equation.

For this steady-state study, we employ a linear source to model production in the

domain V .

2 2 ( )K = f y u = f " R f s 0 1

In the above equation, = 2 is the Laplacian operator, and = is the gradient
( )operator. In Eq. 1 , K denotes the diffusion coefficient, assumed to be constant

and positive. For simplicity, u is the constant flow velocity prescribed a priori in the

formulation. As for R 2 , it represents the strength of the linear source. The
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boundary of the open domain V , namely, G , is taken as being piecewise smooth. To
( )close the elliptic differential equation 1 , we consider here only the Dirichlet-type

boundary condition for purposes of presentation:

( )f s g on G 2

NUMERICAL ANALYSIS

One-Dimensional Linear Equation

In an isotropic medium where K is assumed to be constant over the entire

domain, we consider first the constant flow case so as to facilitate description of

the method. The equation under investigation is given by

d 2f d f
2 ( )K y u " R f s 0 3

2 dxdx

By performing a change of variable given by

ux
( )f s F exp 4( )2 K

a standard Helmholtz equation for F is obtained as

d 2 F u 2

2 ( )K q " R f s 0 5
2 ( )4Kdx

In light of the analytic solution of F which takes the form

2 2 2 2u R u R
( )F s a exp . x q b exp y . x 6X X2 2( ) ( )K K4K 4K

we are led to know that propagating or evanescent waves coexist in the solution.
( ) ( ) ( )By substituting Eq. 6 into 4 , the general solution of 3 takes the following

form:

1 1
2 2 2 2Ö Ö ( )f s a exp u q u . 4KR x q b exp u y u . 4KR x 7( ) ( )

2 K 2 K

( ) ( )It can be inferred from Eq. 7 that the solution of 3 consists of two types of
solutions. The nature of the solution either varies exponentially at a composite rate

or propagates exponentially at a modulated pace. Let

1
2 2Öb s u q u . 4KR( )1

2 K
( )8

1
2 2Öb s u y u . 4KR( )2

2 K
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( )The general solution to Eq. 1 can be rewritten as

( ) ( ) ( )f s a exp b x q b exp b x 91 2

( )We now turn to determining a and b in Eq. 7 . Referring to Figure 1, the
( ) ( ) ( )solution f x is expressed as the sum of f x f and f x f :1 W 2 E

( ) ( ) ( ) ( )f x s f x f q f x f 101 W 2 E

The solution f is sought in a domain V , with closed boundary surface G , upon
which the following constraint conditions apply:

( )f h s 01

( )f yh s 11
( )11

( )f h s 12

( )f yh s 02

Subject to the above four conditions, we can easily derive the functional expres-

sions of f and f as follows:1 2

( ) ( )exp b h q b x y exp b h q b x1 2 2 1
( ) ( )f x s 121 2 2Ö( )2 sinh h r K u " 4KR

( ) ( )exp b x y b h y exp b x y b h1 2 2 1
( ) ( )f x s 132 2 2Ö( )2 sinh h r K u " 4KR

Given the above derivation, f is obtained asP

( ) ( ) ( ) ( )f s f 0 s f 0 f q f 0 f 14P 1 W 2 E

( ) ( ) ( )Substituting f and f , given by Eqs. 12 ] 13 , into Eq. 14 , we can obtain the1 2

( )discrete representation of Eq. 3 at point P:

( )A f q A f q A f s 0 15P P W W E E

Figure 1. Illustration of solution f at points P, E, W in a

domain with D x s h.
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where

( )A s y1 16P

( ) ( )exp b h y exp b h1 2
( )A s 17W 2 2Ö( )2 sinh h r K u " 4KR

( ) ( )exp y b h y exp y b h2 1
( )A s 18E 2 2Ö( )2 sinh h r K u " 4KR

1( ) w ( ) ( )xBy employing the identity given by cosh b h r 2 s exp b h r 2 q exp y b h r 2 ,2

( ) ( )the weighting coefficients shown in Eqs. 17 , 18 are rewritten as

( )exp uh r 2 K
( )A s 19W 2 2Ö( )2 cosh h r K u " 4KR

( )exp yuh r 2 K
( )A s 20E 2 2Ö( )2 cosh h r K u " 4KR

The resulting tri-diagonal system of equations can be efficiently solved by the

w xThomas direct solution solver 3 .

Convection-Diffusion-Production Problem with a Source Term

In this article we also consider the transport equation with a linear produc-
( )tion S x :

d 2f d f
2 ( ) ( )K y u " R f q S x s 0 21

2 dxdx

( )Let f * and f be particular and numerical solutions of 21 , respectively. The new
Ãvariable f , defined by

Ã ( )f s f y f * 22

satisfies

2 Ã Ãd f d f
2 Ã ( )K y u " R f s 0 23

2 dxdx

The idea behind the construction of the perpendicular solution f * is that the
( )analytic derivation just presented can be applied directly to solving Eq. 23 . By

applying the same procedure as that considered in the previous section, the
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( )following equation is derived from the use of Eq. 22 :

( )A f q A f q A f s S 24P P W W E E u

where

U U U ( )S s A f q A f q A f 25u P P W W E E

We now turn to solving the particular solution f *. Let f * be approximated

through Taylor series expansion with respect to x . Provided that the Taylor seriesP

expansion is terminated at the polynomial order N , f * is given as

N
n

( ) ( )f * s g x y x 26p n P

n s 0

( )Having approximated f * as shown in Eq. 26 , we can easily derive

Nd f * n y 1( ) ( )s n g x y x 27p n Pdx n s 1

2 Nd f * n y2( ) ( ) ( )s n n y 1 g x y x 28p n P2dx n s 2

( )In a similar fashion, we can also approximate S x by virtue of Taylor series

expansion as follows:

N (n) ( )S x nP
( ) ( ) ( )S x s x y x . 29p Pn !n s 1

( ) ( ) ( )By substituting equations 22 , 26 ] 28 into

2 Ã Ãd f d f
2 Ã ( ) ( )K y u " R f q S x s 0 30

2 dxdx

( )we can obtain the expressions of g , g y 1, and g y 2 n s N , . . . ,2 as follows:N N n

( N ) ( )yS xP
( )g s 31N 2( )" R N !

(N ) ( N y1)( ) ( )y1 uS x S xP P
( )g s q 32N y 1 2 22( ) ( )N y 1 ! " R( )" R

(n y1) ( )1 S xP
( ) ( ) ( )g s n n y 1 1 y K g y 1 y n s N , . . . ,2 33n y 2 n2 ( )n y 2 !" R

This completes the one-dimensional formulation.
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Convection-Diffusion-Production Scheme in Two Dimensions

We now turn to extending the scheme development to analyze the following

equation:

( ) 2 ( )yK f q f q u f q v f " 2 R f s 0 34x x y y x y

In the above , u and v represent the velocity components along the x and y
directions, respectively. Other coefficients involve K and R 2 , which denote the
diffusion coefficient and the production coefficient, respectively. For illustrative

purposes, all these values are assumed to be constant throughout. For simplicity,
( )we consider Eq. 34 , which is subject to the Dirichlet-type boundary condition

( )f s g on ­ V 35

( )We choose to follow the idea of alternating direction implicit ADI scheme
( )to solve Eq. 34 . In the course of operator splitting, calculation of the solution

( )from Eq. 34 is accomplished in the following two steps.

Predictor step:

U U 2 ( )u f y K f " R f * s f * 36x x x

where

k k 2 k ( )f * s yv f q K f . R f 37y y y

Corrector step:

k q1 k q1 2 k q1 k q1 ( )v f y K f " R f s f 38y y y

where

k q1 U U 2 ( )f s yu f q K f . R f * 39x x x

In each step of the predictor-corrector calculation, we apply the nodally exact

scheme given in the previous section to obtain the solutions. The numerical model

was run using the two-step iterative solver, with a convergence criterion expressed

w k q1 k k q1 x y10by f y f r f - e . In this study, the tolerance e is set equal to 10 . As

the convergence criterion is reached, the two-step solution is exactly the same as

that computed from the following five-point stencil equation:

( )A f q A f q A f q A f q A f s 0 40W W E E N N S S P P
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Figure 2. Definition of nodal points E, W, S, N, P in the two-dimen-

sional analysis.

The coefficients at nodes E, W, S, N, and P, shown schematically in Figure 2, are as

follows:

( )exp uh r 2 K
( )A s 41aW 22h

( )exp yuh r 2 K
( )A s 41bE 22h

( )exp vk r 2 K
( )A s 41cS 22 k

( )exp yvk r 2 K
( )A s 41dN 22 k

2 2 2 2Ö Ö( ) ( )cosh h r 2 K u y 4KR cosh k r 2 K v y 4KR
( )A s y y 41eP 2 2h k

In order to shed light on the operator-splitting approximation error added

w xinto the two-dimensional analysis, we will conduct a modified equation analysis 4 .

Substituting Taylor-series expressions into the five-point-stencil finite-difference

equation, involving f , f , and f nodal points, we obtain the followingi , j i " 1 , j i , j " 1

modified equation after some algebra:

( ) 2K f y f y u f y v f q 2 R fx x y y x y

h2u 2R 2 k 2 v 2R 2 h2R 4 k 2R 4

s y y q q f
2 2( )12 K 12 K24K 24K

h2 u 2 h4u4 k 2 v 2 k 4 v 4

q y y f q y y fx x y y3 3( ) ( )8 K 8 K384K 384 K

h2u 3 h4u 5 k 2 v 3 k 4 v 5

q y y f q y y fx y2 4 2 4( ) ( )24K 1920 K 24K 1920 K

h2K h4u 2 h6 u4 k 2K k 4 v 2 k 6 v 4

y q q f y q q fx x x x y y y y4 4( ) ( )12 96 K 12 96 K4680 K 4680 K

( )42
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As the above equation shows, it is clear that the consistency property that is

necessary to obtain a convergent solution is satisfied as grid size h approache s
zero.

COMPUTED RESULTS

Constant-Flow Analysis without Source Term

The analysis is conducted in a domain bounded by two ends, x s 0 and
( ) ( )x s 1. Subject to analytical data f 0 s g and f 1 s g at the two ends, the0 1

analytic solution takes the following form:

2 2 2( ) ( ) ( ) ( )Ög exp ux r 2K sin R r K y u r 4K 1 y x0

2 2 2w ( ) x ( ) ( )Öqg exp u x y 1 r 2 K sin R r K y u r 4K x1
( )f s 43exact 2 2 2( ) ( )Ösin R r K y u r 4K

For this constant-flow analysis, simulations were performed on two sets of data
( ) ( ) ( )u , K , R s 2,1,5 and 20, 1, 2 . Calculations were performed at uniformly

spaced points with a resolution of h s 0.1. As Figures 3 and 4, which plot the

computed results against spatial coordinate , indicate , the match of the analytic

solution with the computed solutions is strikingly good for both cases. This

demonstrates the integrity of the scheme and its performance .

Variable-Flow Analysis without Source Term

The success of applying our proposed scheme to a model linear convection-

diffusion-production equation motivated the analysis conducted for the case with

variable coefficients. The case we considered was with K s x2 r 2, u s x , and

( ) ( )Figure 3. Comparison of computed and analytic solutions for the case u , K , R s 20, 1, 2 described

in the results section.
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( ) ( )Figure 4. Comparison of computed and analytic solutions for the case u , K , R s 2, 1, 5 described in

the results section.

R s 1. In the domain, defined as 0 F x F 1, our calculation was performed in

uniform meshes with resolution h s 0.1, 0.05, and 0.025. As Figure 5 shows,

computed solutions approach analytic solution, f s x2 , as the grids kept being
refined. This demonstrated the applicability of our scheme to simulate the variable

convection-diffusion-productio n problem.

Convection-Diffusion-Production Equation with a Source Term

Having validated the applicability of our proposed scheme to simulate the
( )convection-diffusion-productio n scheme , we considered the problem with u , K , R

( ) ( ) ( 2 )s 6, 1, 2 and a source term given by S x s y2 3 x q 1 . In the domain

Figure 5. Computed solutions at grids with different resolutions, together with the analytic solution,
2 ( ) ( 2 )f s x , for the case u , K , R s x, x r 2, 1 described in the results section.
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( ) ( 2 )Figure 6. Comparison of computed and analytic solutions for the case u , K , R , S s 6, 1, 2,y 6 x y 2

described in the results section.

bounded by x s 0 and 1, the analytic solution takes the following form:

Ö( ) ( )y7 exp y3 q 6 cosh 5
Ö Ö( ) ( ) ( ) ( )f x s exp 3 x sinh 5 x y 6 cosh 5 x

Ö( )sinh 5

3 9 13
2 ( )q x q x q 44

2 2 2

In the same domain, 0 F x F 1, we also considered the variable coefficient
( ) ( 2 ) ( ) 3case given by u , K , R s x , x ,1 . The resulting analytic solution for S x s 4 x

y x2 was obtained as

( ) 2 3 ( )f x s x y x 45

As Figures 6 and 7 show, good agreement between analytic and computed solutions
is obtained for both cases. This completed our validation analysis, showing the

applicability of our scheme to simulate constant r variable model equations

with r without source terms.

Two-Dimensional Calculation

Tests were then run to validate the numerical scheme that has been devel-
( )oped to solve the two-dimensional equation 34 . The chosen two-dimensional test

is amenable to analytic solution. In the unit square 0 F x , y F 1, the solution is
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Figure 7. Computed solutions at grids with different resolutions, together with the analytic solution,
2 3 ( ) ( 2 3 2 )f s x y x , for the case u , K , R , S s x, x , 1, 4 x y x described in the results section.

computed under

3 2 3 28 x q 8 x q 3 xy q 5 x y
u s yx , v s yy , K s ,X 3 2( ) ( )2 x y x y q 2

and R 2 s 1. The resulting exact solution takes the following form:

( 2 ) ( 2 ) ( )f s x 1 y x y q 2 46

We computed solutions on two-dimensional, continuously refined grids. The

computed errors are cast in their L norms and are plotted against grid sizes in2

Figure 8. As this figure shows, good agreement with the analytic solution is

obtained, with a rate of convergence of 1.773.

CONCLUSIONS

This article has presented the results of our current efforts in developing a
discretization scheme for simulation of the two-dimensional convection-diffusion

equation with linear production. The basis for the method presented here is use of

the analytic solution in the development of one-dimensional flux discretization

scheme. Some progress has been made in extending this analytic formulation to

simulate the two-dimensional equation using the operator-splitting ADI scheme.

We benchmarked the developed scheme with great success by solving several test
problems analytically.
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( )Figure 8. The rate of convergence of the proposed scheme , where log L error norms are plotted2

( ) ( 2 )( 2 ) (against log D x . The analytic solution of the test problem is f s x 1 y x y q 2 for the case u , v ,
3 2 3 2 3 2) ( ( ) ( )( ) )ÖK , R s yx,y y, 8 x q 8 x q 3 xy q 5x y r 2 x y x y q 2 , 1 .
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