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DEVELOPMENT OF A MONOTONIC
MULTIDIMENSIONAL ADVECTION-DIFFUSION
SCHEME

S. K. Wang, Tony W. H. Sheu, and S. F. Tsai
Department of Naval Architecture and Ocean Engineering, National Taiwan
University, 73 Chou-Shan Rd., Taipei, Taiwan , Republic of China

The objecti ve of this study is to present a finite-element advection-diffusion scheme for the

steady scalar transpor t equation. The novelty is the use of two advection-diffusion schemes

in combination in a way which ensures the satisfaction of the monotonicity property in their

matrix equation. Common to these two fundamental finite-element models is that matrix

equations are all classified to be irreducibly diagonal dominant. The resulting M-matrix

finite-element method is the method of choice to resolve sharp profiles in the flow. The first

finite-element method unconditionally provides monotoni c solutions . The gain in the

stability is due to the introduction of the upwind information along the local streamline. The

second basic scheme is classified as conditionally monotoni c and is well suited to predicting

lower Peclet number flows. This Petrov-Galerkin finite-element model manifests itself by the

use of Legendre polynomials to span finite-element spaces. An inherent feature of this

formulation is the orthogona l property, which enables a considerable saving in the

numerical evaluation of integral terms. Computational evidence reveals that the Legendre-

polynomial finite-element model can provide more accurate solution s in low Peclet number

conditions. As the Peclet number is increased to higher values that forbid a monotoni c

solution , the unconditionall y monotoni c finite-element model is used to complement the

Legendre-polynomial finite-element model. This helps enhance the stability. A combined

formulation renders a composite scheme that offers promise to optimize the scheme

performance. In order to show that the present composite scheme is computationally

efficient, the method needs to be rigorously tested against available analytic results. This

composite scheme was found to provide monotonic solutions under high and low Peclet

number conditions and provided accurate solution s at less computational cost. Use of this

composite scheme promises a wider range of practical problems that can be modeled

numerically.

INTRODUCTION

In the physical sciences and engineering, Navier-Stoke s flows may be far too

complex and an in-depth assessment of discretization schemes is seldom possible.

Therefore, it is preferred to consider the scalar convection-diffusion equation,

which is the simplest prototype equation capable of characterizing these flows. This
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NOMENCLATURE

h mesh size W weighting functioni

h , h mesh sizes in the computational plane a optimum factorj h

J Jacobian of the Transformation d permutation notationi,j

N basis function D x, d y mesh size along the x and yi

Pe Peclet number directions, respectively

P ith term of the Legendre polynomial m diffusivity of the fluidi

s streamline coordinate j , h normalized spatial coordinates

U, V ratio of velocity components u, v to F primary variable for the scalar transport

diffusivity m equation

u, v velocity component in x and y

directions, respectively

model equation is also a very useful vehicle for benchmarking the discretization

methods so far devised, since it is more amenable to analytic solutions. This

explains in part why this model problem is still the subject of much research

interest, academically as well as practically.

Over the years, a great deal of research effort has been dedicated to resolving
difficulties incurred by the prevailing convection terms. A more fundamentally

challenging problem encountered in science and industry is due to wiggles which

steepen ahead of discontinuities, further complicating the analysis. The need to

wipe out these oscillatory solutions was the main motivation for the present study.

To develop a discretization scheme which is computationally efficient, it is also

crucial to take solution accuracy, computational efficiency, and ease of program-
ming into account concurrently. Retaining these computationally desirable proper-

ties is a difficult task. What fits for solution accuracy may often not fit for solution

stability. In this study, solution monotonicity and solution accuracy serve as two

design guidelines behind our construction of the advection-diffusion scheme.

The key to conducting an accurate multidimensional flow simulation is to
( )prevent cross-wind diffusion or false diffusion errors. It is most effective to

circumvent this difficulty by introducing flow-oriented mechanism into the formu-

lation. As alluded to earlier, steep gradients appear which can cause the solution to

deteriorate further. Under these circumstances, a flow-oriented flux discretization

scheme no longer suffices for production of oscillation-free solutions. In attempt-

ing to suppress over- or under-shoots in the solution, researchers have developed

bounding schemes. Many of these schemes have been developed to accommodate
( ) w xthe total variation diminishing TVD property 1 . However, extension of TVD

schemes to multidimensional flow simulations has not yet been placed on a

rigorous analytic foundation.

In the development of oscillation-free multidimensional schemes, one has the

w xchoice to apply a global positivity principle 2, 3 to explicit schemes. While this

principle has a sound theoretical basis and is easy to implement in existing
computer codes, the limited application scope forbids the use of this idea to

analyses which involve solving field variables from a simultaneous set of algebraic

equations. This has prompted the current research into an alternative filtering

technique which is applicable to finite-element analyses. Inspired by the work of
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w xAhue and Telias 4 , we constructed a weighting function which favors the field

w xvariable at the upstream side 5 ] 8 . Guided by the theoretically rigorous theory of

w xthe M-matrix 9, 10 , an attempt has been made to construct weighting functions in

order to guarante e monotonic solutions even in the flow having sharp gradients or

discontinuities.

The organization of this article is as follows. We begin by describing the

convection-diffusion model equation. This is followed by an introduction of two

underlying monotonicity-preserving finite-element models. We have employed these
monotonic schemes in combination to obtain higher solution accuracy without

compromising stability. For validation purposes, we will consider two problems

which have closed-form solutions in a square cavity. Two numerical examples are

also considered, both of which have high-gradient solutions. A key issue that

underlies the present work is to provide a means of determining the weighting

factor to optimize the composite scheme. Finally, some conclusions are drawn.

MULTIDIMENSIONAL FINITE-ELEMENT MODELS

The working equation is that of the steady-state equation for simulating the

scalar F transported in the two-dimensional flow:

( ) ( )U F q V F s F q F 1x y xx yy

In the above equation, U and V are defined by U s u r m and V s v r m . For ease of

illustration, we will restrict our attention to a simple flow. In all cases investigated,

the flow considered is with constant velocity components u and v. Another
assumption made here is that diffusivity of the fluid, m , is kept constant throughout

the analysis. When solving the elliptic partial differential equation, we demand

specification of boundary data of F on the entire boundary of the simply con-

nected domain D.
ÃOur strategy for obtaining finite-element solutions, F , to the model equation

Ã Ã Ã Ã( ) ( )1 is to make the residual R s U F q V F y F q F orthogonal to thex y xx yy

weighting function. The solutions thus computed can be viewed as a search for the
( )weak solutions to Eq. 1 . In the weak formulation, care must be taken to devise

( )weighting or test functions appropriately as the maximum values of Pe s U D xx

and Pe s V D y greatly exceed the critical value of 2. The analysis is followed by ay
Ã 4 ( )substitution of bilinear basis functions, say N for F s p N j , h F , into thei is 1 i i

weighted residual statement to obtain stiffness matrices for all elements. The
analysis is followed by a finite-element assemblage to form a global coefficient

matrix.

In attempting to enhance the finite-element equation, we assign spatially

unequal weights to convective terms so that field variables at the upwind side are

favored. It has to be remarked that diffusive fluxes need to be unequally weighted

w xto render a consistent weighted-residual finite-element model 11 . For this study,

w xthe chosen weighting functions are as follows 7 :

( ) ( ) ( ) ( ) ( )W s D d P j q d P j d P h q d P h 2i i j 0 0 j 1 1 h 0 0 h 1 1
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In a discretized domain with grid spacings h and h , the coefficients shown in Eq.j h
( )2 are as follows:

1 uh j vh hj i h i
D s exp expi ( ) ( )4 2 m 2 m

where

1 1
( ) ( )d s W t P t dtHj 0 j 0

2 y 1

3 1
( ) ( )d s W t P t dtHj 1 j 1

2 y 1

1 1
( ) ( )d s W t P t dtHh 0 h 0

2 y 1

3 1
( ) ( )d s W t P t dtHh 1 h 1

2 y 1

uh jj
( ) ( )W j s 1 q j j exp yj i ( )2 m

vh hh
( ) ( )W h s 1 q h h exp yh i ( )2 m

( ) ( ) ( )In Eq. 2 , we have tacitly used Legendre polynomials P t s 1 and P t s t to0 1

span finite-element spaces. The advantage of choosing Legendre polynomials

becomes apparent in view of the following orthogonal property:

2q1
( ) ( ) ( ) ( )P t P t dt s d i is a dummy index 3H i j i j

2 i q 1y 1

It was in recognition of this fact that we rewrite the bilinear shape functions
( )N j , h in terms of Legendre polynomials P and P as follows:i 0 1

1
( ) w ( ) ( ) x w ( ) ( ) x ( )N j , h s P j q j P j P h q h P h 4i 0 i 1 0 i 1

4

The use of Legendre polynomials to span finite-element spaces results in an

substantial reduction of the computational effort in calculating integrals. The

tremendous gain in computation speed and save in storage greatly expands the
application scope.

It has been known for quite some time that a real, irreducible, diagonally

dominant matrix is the key to obtaining a monotonic solution profile. One major

characteristic of this matrix is its off-diagonal entries, which are nonpositive.

w xGuided by the maximum principle 4 , the present study was undertaken to check
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whether the analysis formulated within the Legendre-polynomial finite-element

framework is classified as an unconditionally monotonic solution. To this end, we
( )can derive a compact discrete equation of 1 which involves a nine-point computa-

tional molecule. All coefficients in the discrete equation are functions of the Peclet

number. By varying the values of Pe and Pe , we can determine under whatx y

( )conditions the sufficient but not necessary condition for obtaining a monotonic

solution can be derived. As Pe and Pe are smaller than 3.6, the computedx y

solutions will, by definition, be monotonic. The need to perform calculations in this
fairly restricted Peclet number range places limitations on the computational

techniques as a practical tool when conducting a large-scale simulation. Thus, we

have a strong need to extend the monotonic stability range for improving the

computational efficiency. In this study, we consider the scheme of Rice and

w xSchnipke 3 as an aid to resolve this problem.

w x ( )As Rice and Schnipke 3 did, we take u F ’ u F q v F as a constant values s x y

in each element. Taking the case with u ) 0 and v ) 0 as an illustrative example,

the resulting matrix equation for each element can be derived as

0 0 0 0

0 0 0 0
u u u u ( )s s s s 5( ) ( )yF F A y 1 y F A A y 1 y F Ap n f n f f p fD s D s D s D su 0

0 0 0 0

where

4

( ) < < ( )A s N j , h J d j dh 6 apH Hf i

is 1

F1
( )0 F F ’ max min , 1 , 0 F 1 6bp w 5( )F2

F4
( )0 F F ’ max min , 1 , 0 F 1 6cn w 5( )F3

( ) ( ) ( )F s v x y x q u y y y 6d1 3 4 4 3

( ) ( ) ( )F s v x y x q u y y y 6 e2 1 4 4 1

( ) ( ) ( )F s v x y x q u y y y 6 f3 2 1 1 2

( ) ( ) ( )F s v x y x q u y y y 6g4 2 3 3 2

Referring to Figure 1, the length of D s takes on the value

1 r 22 2( ) ( ) ( )D s s x y x9 q y y y9 73 3



S. K. WANG ET AL.90

Figure 1. The notations used in the finite-element model of

Rice and Schnipke.

FUNDAMENTAL STUDIES ON TWO UPWIND MODELS

With discretization schemes described above , it is then a question of checking
their predictions against suitable test problems. We consider an analytic test

problem to benchmark the solution accuracy and examine the scheme monotonic-

ity of two investigated finite-element models. The model problem is schematic in

Figure 2. Subject to the prescribed boundary data, the advection-diffusion equation
( )1 is amenable to the following boundary-layer-type solution:

v w( ) x 4v w( ) x 41 y exp x y 1 U 1 y exp y y 1 V
( ) ( )F x, y s 8

w ( ) x w ( ) x1 y exp yU 1 y exp yV

( )Figure 2. Schematic of the test problem for Eq. 8 .
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( )Table 1. Computed L error norms with different ve locities U, V and the grid numbers for Eq. 8 using2

the Legendre-polynomial finite-element model

U and V Norm 11 = 11 21 = 21 31 = 31 41 = 41 51 = 51

y 8 y 8 y 8 y 8 y 8U s 1, L 8.05 = 10 6.26 = 10 6.93 = 10 5.50 = 10 6.46 = 101
y 9 y 9 y 9 y 9 y 9V s 1 L 1.18 = 10 1.10 = 10 1.12 = 10 1.07 = 10 1.09 = 102
y 9 y 9 y 9 y 9 y 9L 4.56 = 10 4.56 = 10 4.56 = 10 4.56 = 10 4.56 = 10`
y 8 y 8 y 8 y 8 y 8E 5.67 = 10 5.22 = 10 5.31 = 10 4.98 = 10 4.98 = 10shp
y 8 y 8 y 8 y 8 y 8U s 10, L 8.26 = 10 7.57 = 10 6.93 = 10 5.95 = 10 5.86 = 101
y 9 y 9 y 9 y 9 y 9V s 10 L 1.22 = 10 1.16 = 10 1.13 = 10 1.11 = 10 1.11 = 102
y 9 y 9 y 9 y 9 y 9L 4.26 = 10 4.26 = 10 4.26 = 10 4.26 = 10 4.26 = 10`
y 8 y 8 y 8 y 8 y 8E 7.59 = 10 7.02 = 10 6.52 = 10 6.35 = 10 6.08 = 10shp
y 5 y 6 y 9 y 9 y 9U s 100, L 8.29 = 10 1.51 = 10 8.46 = 10 6.17 = 10 5.07 = 101
y 6 y 8 y 10 y 10 y 10V s 100 L 4.41 = 10 7.62 = 10 3.70 = 10 2.87 = 10 2.67 = 102
y 5 y 7 y 9 y 9 y 9L 4.54 = 10 7.70 = 10 2.06 = 10 2.06 = 10 2.06 = 10`
y 4 y 6 y 8 y 9 y 9E 1.66 = 10 2.14 = 10 1.47 = 10 9.77 = 10 7.54 = 10shp

Computations were conducted on continuously refined uniform grids 11 = 11,

21 = 21, 31 = 31, 41 = 41, and 51 = 51. The prediction errors cast in their

L , L , L , and E norms. These norms are tabulated in Tables 1 ] 4 and are1 2 ` shp

defined below:

n

< < ( )L s F y F 9ap1 i(computed) i(exact)

is 1

1 r 22n < <p F y Fis 1 i(computed) i(e xact)
( )L s 9b2

n

< < ( )L s max F y F i s 1, . . . , n 9c` i(computed) i(exact)

m ny 1

< ( ) ( ) <E s F y F y F y Fp psh p i q1, j(computed) i q1, j(exact) i , j(computed) i , j(exact)

j s 1 is 1

( )9d

In this study, consideration is given to the case of 1 F U, V F 105.

As the computed errors shown in Tables 1 ] 4, two approache s under consid-

eration are not without complications. It is preferable to apply the Legendre-poly-

w xnomial finite-element model 7 to simulate lower Peclet number flows, while for

cases with higher Peclet numbers it is advantageous to apply the finite-element

w xmodel of Rice and Schnipke 3 . This study reveals that oscillatory solutions are

never found in this characteristic finite-element model. The Legendre-polynomial

finite-element model, on the other hand, outperforms the model of Rice and

w xSchnipke 3 in prediction accuracy. Since there is a room for improving accuracy

and stability concurrently, we are motivated to apply them in combination to
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( )Table 2. Computed L error norms with different ve locities U, V and the grid numbers for Eq. 8 using2

the finite-element model of Rice and Schnipke

U and V Norm 11 = 11 21 = 21 31 = 31 41 = 41 51 = 51

y 1 y 1 y 1 y 2U s 100, L 1.72 4.97 = 10 2.17 = 10 1.17 = 10 7.16 = 101
y 2 y 2 y 3 y 3 y 3V s 100 L 3.55 = 10 1.09 = 10 4.84 = 10 2.62 = 10 1.62 = 102
y 1 y 2 y 2 y 2 y 3L 1.49 = 10 5.10 = 10 2.34 = 10 1.29 = 10 8.00 = 10`

y 1 y 1 y 1 y 2E 1.73 5.36 = 10 2.38 = 10 1.29 = 10 7.93 = 10shp
y 1 y 3 y 4 y 5 y 6U s 1,000, L 1.76 = 10 6.86 = 10 4.43 = 10 3.93 = 10 4.40 = 101
y 3 y 4 y 6 y 7 y 8V s 1,000 L 3.90 = 10 1.54 = 10 9.98 = 10 8.87 = 10 9.94 = 102
y 2 y 4 y 5 y 6 y 7L 1.65 = 10 7.24 = 10 4.84 = 10 4.34 = 10 4.88 = 10`
y 1 y 3 y 4 y 5 y 6E 1.91 = 10 7.58 = 10 4.91 = 10 4.36 = 10 4.89 = 10shp

5 y 3 y 7 y 10 y 11 y 11U s 10 , L 1.77 = 10 7.15 = 10 5.14 = 10 3.35 = 10 4.90 = 101
5 y 5 y 8 y 11 y 13 y 13V s 10 L 3.94 = 10 1.61 = 10 1.11 = 10 4.00 = 10 5.82 = 102

y 4 y 8 y 11 y 12 y 12L 1.67 = 10 7.55 = 10 5.38 = 10 1.10 = 10 1.56 = 10`
y 3 y 7 y 10 y 11 y 11E 1.93 = 10 7.91 = 10 5.48 = 10 1.22 = 10 1.71 = 10shp

( )Table 3. Computed L error norms for Eq. 8 using the Legendre-polynomial finite-element model2

at different flow directions

U and V Norm 11 = 11 21 = 21 31 = 31 41 = 41 51 = 51

y 5 y 6 y 9 y 9 y 9U s 100, L 8.29 = 10 1.51 = 10 8.46 = 10 6.17 = 10 5.07 = 101
y 6 y 8 y 10 y 10 y 10V s 100 L 4.41 = 10 7.62 = 10 3.70 = 10 2.87 = 10 2.67 = 102
y 5 y 7 y 9 y 9 y 9L 4.54 = 10 7.70 = 10 2.06 = 10 2.06 = 10 2.06 = 10`
y 4 y 6 y 8 y 9 y 9E 1.66 = 10 2.14 = 10 1.47 = 10 9.77 = 10 7.54 = 10shp
y 7 y 8 y 8 y 8 y 8U s 100, L 5.44 = 10 3.71 = 10 1.77 = 10 3.40 = 10 1.86 = 101
y 8 y 10 y 10 y 10 y 10V s 50 L 1.36 = 10 8.59 = 10 5.54 = 10 7.63 = 10 5.67 = 102
y 8 y 9 y 9 y 9 y 9L 8.13 = 10 4.10 = 10 4.10 = 10 4.10 = 10 4.10 = 10`
y 6 y 8 y 8 y 8 y 8E 1.08 = 10 3.96 = 10 2.00 = 10 2.51 = 10 1.86 = 10shp

( )Table 4. Computed L error norms for Eq. 8 using the finite-element model of Rice and Schnipke2

at different flow directions

U and V Norm 11 = 11 21 = 21 31 = 31 41 = 41 51 = 51

y 1 y 1 y 1 y 2U s 100, L 1.72 4.97 = 10 2.17 = 10 1.17 = 10 7.16 = 101
y 2 y 2 y 3 y 3 y 3V s 100 L 3.55 = 10 1.09 = 10 4.84 = 10 2.62 = 10 1.62 = 102
y 1 y 2 y 2 y 2 y 3L 1.49 = 10 5.10 = 10 2.34 = 10 1.29 = 10 8.00 = 10`

y 1 y 1 y 1 y 2E 1.73 5.36 = 10 2.38 = 10 1.29 = 10 7.93 = 10shp
y 1 y 1 y 1 y 1U s 100, L 2.29 8.81 = 10 4.90 = 10 3.24 = 10 2.37 = 101

y 2 y 2 y 2 y 3 y 3V s 50 L 4.74 = 10 2.04 = 10 1.20 = 10 8.28 = 10 6.22 = 102
y 1 y 2 y 2 y 2 y 2L 2.12 = 10 9.59 = 10 5.62 = 10 3.80 = 10 2.81 = 10`

y 1 y 1 y 1 y 1E 1.91 6.41 = 10 3.10 = 10 1.83 = 10 1.22 = 10shp
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render a composite scheme:

( ) < < ( )A s 1 y a A q a A 10Le gendre polynomial Rice and Schnipke

Establishing the rule to determine a is considered essential to obtaining high-reso-
( )lution solutions to Eq. 1 . The main consideration behind finding a proper choice

of a concerns the solution accuracy and the scheme monotonicity.
( )The cases under consideration are 1 U s V s 250 with grid number 11 = 11,

( ) ( )2 U s V s 500 with grid number 21 = 21, and 3 U s V s 1,000 with grid

number 41 = 41. All cases studied here are with the same Peclet numbers,

Pe s Pe s 25. We plot the L error norms against a in Figure 3. Common tox y 2

each curve is the presence of an inflection point, at which the error norm takes on

its minimum value. As Figure 3 reveals, errors decrease from two ends of the
weighting factor a until the turning point is reached. Decreasing the value of a
suggests increasing use of the conditionally monotonic scheme. It has to be

( )remarked that curves having the same value of Pe , Pe inflect at the same valuex y

of a . This enlightens that the optimal value of a depends highly on the Peclet

number. For the sake of completeness, we have also investigated three other cases:
( ) ( ) ( ) ( )U, V s 250, 125 with grid number 11 = 11, U, V s 500, 250 with grid num-

( ) ( )ber 21 = 21, and U, V s 1,000, 500 with grid number 41 = 41. Under these
(circumstances, three test conditions are all with the same Peclet number Pe ,x

( )Figure 3. L error norm distributions against a , as shown in 10 , for three2

different conditions which have the same Peclet numbers Pe s Pe s 25.x y
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) ( )Pe s 25, 12.5 . We plot the computed error norms against a in Figure 4. Asy

these curves show, inflection points still occur at the same value of a .
The above success in applying the composite model to solve problems with

different grid sizes and flow angles has important implications on showing that the

approach has been extended to a wider Peclet number range. We now turn our

attention to constructing a contour map of a so that errors computed from
( )Eq. 10 are minimized. For each pair of Peclet numbers, we plotted the optimal

value of a in a map with Pe as the abscissa and Pe as the ordinate. Given a pairx y

of Pe and Pe , one can find from Figure 5 the weighting factor a which providesx y

the smallest prediction error. It is this contour map of a which gives us a

well-established basis for applying this composite scheme to other problems.

Question now arises as to whether or not the choice of a , shown graphically

in Figure 5, is sensitive to problems being chosen. To answer this question, we
consider another model equation which is also amenable to analytic solution.

Subject to the boundary condition schematic in Figure 6, the analytic solution for
( )the model scalar transport equation 1 is derived as

( ) ( ) w( ) ( ) x v w( ) ( ) x 4sin p y exp r x exp V r2 y y y 1 y exp r y r x y 12 s 1 2
( )F x, y s

w ( ) x ( )1 y exp r y r sin p y2 1 s

( )11

( )Figure 4. L error norm distributions against a , as shown in 10 , for three2

different conditions which have the same Peclet numbers Pe s 25, Pe s 12.5.x y
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Figure 5. Contour map of the optimal weighting factors a .

Figure 6. Schematic of the test problem considered for validation.
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where h s D x s D y denotes the grid size and

1
( )U s cot u 12 a

4h

1
( )V s 12 b

4h

V
y1 ( )u s tan 12 c( )U

1 2 p
y1 ( )y s 1 y tan 12 ds ( )p V

1
2 2 2X ( )r s U q U q V q 4 p 12 e1

2

1
2 2 2X ( )r s U y U q V q 4 p 12 f2

2

By conducting the time-consuming calculations, we can obtain the optimal a
for this problem. What is remarkable from Figure 7 is that the optimal values of a
obtained from two different analytic problems essentially follow the same curve.

Figure 7. Comparison study of the optimal values of a against Peclet

number Pe for two test problems.x
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This test provides justification for the validity and usefulness of the contour map

schematic in Figure 5 at all Peclet numbers.

NUMERICAL RESULTS

We now turn to studying the skewed transport problem configured in Figure

8. This problem has been chosen to benchmark upwinding schemes to resolve

high-gradient solutions in the flow. Inside the square cavity, a tilted line passes
( )through a corner point at 0, 0 , resulting in a line with a slope of m s V rU s 1.

Across the dividing line, there is a marked change of the solution.

Computational investigations have been performed on uniform grids for the

case of U s 100, V s 100. Since this problem is not amenable to analytic solutions,

we took the 161 = 161 Legendre-polynomial finite-element solutions as the ana-

lytic solution for the comparison sake. Figure 9 plotted the composite finite-
element solutions which were computed on 41 = 41 grids. For purposes of compar-

ison, we also plotted in Figure 9 other finite-element solutions computed on a
( )much finer grid 161 = 161 . The composite solution compares very favorably with

finer solutions; especially noteworthy is the prediction of oscillation-free solution

even in the immediate vicinity of the dividing line. This study lends credence to the

use of two monotonic schemes in combination to capture high-gradient solutions.
For completeness, we also considered the case with U s 105, V s 10 5 and plotted

in Figure 10 the computed solution profiles at y s 0.5. It is evident that the

present composite scheme has ability to sharply resolve the solution but at much

less computing expense.

Consideration is now given to the case with variable advective velocities. The
( )solution to Eq. 1 is sought in a square 0 F x, yF 1, subject to boundary

Figure 8. Schematic of the skew advection-diffusion problem.
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(Figure 9. Comparison of computed F at y s 0.5 for the skew advection-diffusion problem for the
)case with U s V s 100 .

Figure 10. Comparison of sharp profiles of F at y s 0.5 for the skew advection-diffusion problem
5( )for the case with U s V s 10 .
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Figure 11. Plots of the streamlines and boundary conditions of the test case
( )with velocity components given in Eq. 13 .

conditions given in Figure 11. For the velocity field given below,

w ( ) x ( )U s y2 l tanh l x y x 13a0

( ) ( )V s a tan a y 13b1 2

( )the analytic solution of F takes the form exactly the same as U given in Eq. 13a .

The case considered was that of x s 1, l s 100, a s 50, and a s 1.5. Evident in0 1 2

Figure 12 is that the analytic solution of F shows a prevailing boundary-layer

character. We present in Figure 12 three computed profiles, which provide justifi-

cation of the usefulness of the presently proposed composite scheme in both
stability and accuracy.

CONCLUDING REMARKS

We have presented in this article a composite scheme for solving the scalar

advection-diffusion transport equation. This article shows the potential advantage
that can be gained through the spontaneous use of two monotonic finite-element

models. In the construction of finite-element models, we applied the discrete

maximum principle as our theoretical basis for judging whether or not solution

monotonicity could be obtained. An inherent feature of the first model, featuring

the use of Legendre polynomials to span the finite-element space, is its ability to

retain the monotonic property as the Peclet numbers fall below 3.6. Use of the
scheme of Rice and Schnipke has been shown to considerably improve the

monotonicity of the solution since this scheme unconditionally accommodates the
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Figure 12. Computed solutions of F against x at y s 0.5 using different
( ) ( )finite-element models: a solutions computed on 11 = 11 grids; b

solutions computed on 21 = 21 grids.
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M-matrix property. A potential drawback of this scheme is that it is less accurate in

the lower Peclet number range. It is thus tempting to apply two monotonic schemes
in combination to complement each other. The key to success of constructing the

composite scheme to improve monotonicity and accuracy of the solution for all

Peclet numbers is rooted in the theoretical weighting factor derived in this article.
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