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Abstract 

We present in this paper a method of characteristics which permits the investigation of supersonic inviscid fluid flow in 
an axisymmetric cowl plug nozzle. The characteristic analysis involves use of a space marching solution algorithm. For 
computation of the steady-state solution of hyperbolic equations, the inlet condition is one key to success in providing a good 
representation of the physics of the flow. To achieve this goal, we apply the asymptotic and perturbation method to determine 
the supersonic startline M= 1.04 by expanding flow variables and thermodynamic properties with respect to values computed 
under the transonic condition M=l. An inherent feature of the method of characteristics is its ability to solve for flows in the 
characteristic network along which left- and right-running characteristic equations apply. Along these characteristic lines, 
dependent variables are solved for from their respective compatibility equations. A modified Euler predictor-corrector 
two-step numerical scheme is used to discretize characteristic and compatibility equations. The analysis proceeds with 
solving the supersonic flow through the plug nozzle, for which the physical domain is bounded by the free pressure boundary 
that is not determined a priori. In this study, different ambient pressures are considered to investigate their effects on the gas 
dynamics in the flow passage. Results are presented in terms of pressure, temperature, and Mach number distributions. 
Obtained also from this study is a clear understanding of the effect of pressure ratios on the shape of the plume. 

Nomenclature 

α Mach angle 

δ free parameter in (1) 

γ ratio of specific heats 

ρ density 

θ f low angle 

a sound speed 

a0 stagnation sound speed 

g gravitational constant 

Μ Mach number 

ρ pressure 

R gas constant 

r spatial independent variable along the 

r-direction 

Τ temperature 

w,ν velocity components in the x,r directions, 

respectively 

X spatial independent variable along the 

x-direction 

Introduction 

In the last three decades, different areas 

regarding simulation of high speed aerodynamics 

have witnessed t remendous developments , examples 

of which are grid generation techniques, solution 

algori thms and computer hardware capabilities. All 

these developments have led to the stage where it is 

nowadays possible to consider the f low simulation 

as a tool for use in complex aerodynamic f low 

analysis. This is particularly the case when 

experimental databases are scarce or incomplete. In 

this light, numerical analysis of an aerodynamic 

f low field in a single plug nozzle fo rmed the core of 

the present study. It was best hoped that much 

physical insight could be obtained cost-effect ively 

through the f low simulation technique. 

We consider in this paper inviscid f low in a 

single plug nozzle, shown schematical ly in Fig. 1. It 

is customary to characterize the propulsive nozzle 
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cowl 

flow into subsonic, transonic and supersonic flow 
regimes. The reason for this characterization lies in 
the fact that for steady-state inviscid flow, the 
governing equations change in character from 
elliptic to hyperbolic in the transition from subsonic 
to supersonic flow. This inherently different nature 
of the differential equations plays an important role 
in explaining why it is important to analyze subsonic 
and supersonic flows separately. In this study, we 
focus on the solution of the supersonic flow field at 
the steady-state. In the case of inviscid fluid flow, 
the working equations are, by nature, hyperbolic. 
For computation of this class of flow fields, there 
exists a large number of hyperbolic conservation 
laws to choose from. Among the hyperbolic models 
in existence, in no case was the desired total 
variation (TVD) I I I property retained in the flow 
simulation involving spatial dimension more than 
one. Because of the lack of a theoretically supported 
discontinuity-capturing theory, numerical simulation 
of this flow using the conventional finite difference 
and finite volume methods encounters very 
resource-intensive computational demands. 

Other problems arise when the problem to be 
investigated involves complex geometries. Under 
these circumstances, transformation of the working 
equations needs to be made between the physical 
and computational domains. Care must be taken to 
provide grids of good quality to avoid prediction 
errors arising from the calculation of Christoffel 

symbols 111. As has been alluded to, we turn to other 
approaches. The method most often claimed to be 
successful is the method of characteristics. The 
success of this classical approach lies in its 
accommodation of a theoretical basis for the 
hyperbolic differential equation. In fact, this method 
has been proved to be highly accurate, to be 
relatively straightforward in implementation, and 
comparatively free of numerical instabilities. Most 
importantly, this analysis code has the ability to 
determine where the free pressure boundary is 
located. This makes the method of characteristics 
more suitable for simulation of problems involving 
boundaries which are not determined a priori. In 
practice, even when methods which compute the 
entire flow field are used, the solution in the 
supersonic regime is discarded in favor of a 
recalculation using the method of characteristics. 

This paper is organized as follows. We first 
present the mathematical model for a steady flow of 
an inviscid ideal gas, supplemented by the 
appropriate boundary conditions. This is followed by 
an introduction to the method of characteristics used 
in solving the working equations. This section also 
discusses the advantages of this formulation in terms 
of the memory demand Besides these, advantages of 
this characteristic formulation with regard to errors 
are discussed We then report on results obtained for 
problems having different flow conditions. The 
paper closes with conclusions. 

Working equations 

We will restrict our attention to the analysis of 
inviscid compressible flow in the absence of heat 
transfer, work and body force. For simplicity, 
vorticity is considered to be negligibly small in the 
present investigation Under these circumstances, the 
entropy is constant throughout and the flow becomes 
homentropic. The governing equations for the 
resulting homentropic flow are of the general form; 

. , o, du , ,N dv „ du t , » „ . . . (u2 - a2 — + (v2 - a2 — + 2ur — - δ a2 - = 0 , ( 1 ) d x or or r 
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In the above, a is the sound speed, which can be 

easily shown as a function o f a specific heat ratio, γ, 

the stagnation sound speed, a 0 , and the velocity 

magnitude: 

a2 = — ~r— (u2 + v2). (3) 

In equation (1), 5=0 corresponds to the planar 
flow and δ=1 to the axisymmetric flow. We denote 
by u and ν the flow velocity components in the χ and 
r directions, respectively. It is a simple matter to 
show that equation (1) is derived from the Euler 
equation through use of a continuity equation 
Equation (2) represents, in essence, the irrotationary 
condition. As for equation (3), it is derived as a 
direct result of energy conservation 

Following conventional practice /3/, the above 
hyperbolic differential system is transformed 
equivalently into the following set of characteristic 
and compatibility equations. Along the left-running 
characteristic line, the working equations are 
obtained as follows: 

^ = tan (0 + α), ax 
dlul δ sin θ sin a , άθ - -p-p cota + - — — — - dr — 0 . |u| r sin(0 ± a) 

(4) 

(5) 

In the opposite direction, the working equations 

along a right-running characteristic line are 

represented by 

dr .. . — = tan [θ - a), ax 
dlul δ sin θ sin a , — -dr = 0. |«| r sin(0 — a) 

(6) 

(7) 

In equations (4 -7 ) , θ is the flow angle, α is the 

Mach angle, and |u| = ( h 2 + v 2 ) " 2 is the velocity 

magnitude. As with many other numerical analyses, 

we assume that the gas under investigation is 

regarded ideal. This implies that the following 

equation o f state holds in the flow: 

ρ = pRT. (8) 

In the above equation, ρ is the pressure, ρ is the 

density, Τ is the temperature and R is the gas 

constant 
Before embarking on a numerical treatment of 

equations given in (5-8), which are subject to a 
prescribed inlet condition, it is instructive to 
summarize here other rederived thermodynamic 
properties. Equations (4-7) constitute the core of the 
analysis, from which the primary dependent 
variables |w| and θ are solved. This is followed by 
calculation of the velocity components u and ν from 
|m| and Θ. With a velocity field u determined, the 
following thermodynamic relationships apply: 

T = T0- (u2 + ,r), 

P=( 

27 Rg 

P2 ] 
1 + *ζ±λΡ> 

(9) 

(10) 

In equation (10), Μ is the Mach number, which 
is computed as 

M = 
(τ RgT) 1/2 • (11) 

In the above, g denotes the gravitational 
constant The above derivation also involves T0 and 
Po, which are the stagnation temperature and 
pressure, respectively. Having obtained the 
thermodynamic properties given in equations (9-10), 
the density of the gas is determined from the 
equation of state as follows : 

p = RT (12) 

Determination of supersonic startline 

Equations (4-7) represent characteristic and 
compatibility conditions along left- and 
right-running characteristics. They constitute the 
working equations for the primary variables |m| and 
Θ. In the characteristic network, we seek the solution 
of equations (4-7) subject to the appropriate 
boundary conditions described in the next section 
Starting from the initial data for |m| and Θ, working 
equations can be solved in the network of 
characteristics. In seeking to perform accurate 
simulation of a hyperbolic equation, specification of 
primary variables at the supersonic startline is a 
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major consideration provided that the working 
equations are to be solved using a charac-
teristics-based method. Such a method applies only 
to the hyperbolic differential system. Therefore, the 
validity of applying the method of characteristics to 
obtain solutions requires specification of supersonic 
flow at the nozzle inlet 

For accurate prediction of the flow physics in the 
nozzle, the determination of a supersonic staitline is 
important and provided another motivation for the 
present work. With the objective of determining a 
line of constant Mach number (M > 1) as the 
supersonic startline in the prediction of supersonic 
nozzle flow, we follow the same approach as that 
given in /4/. According to Thompson and Flack 151, 
we can apply the asymptotic and perturbed method 
to represent flow variables at Μ = 1.04 in terms of 
those at Mach number M = 1 and small perturbation 
quantities. The resulting supersonic startline for Μ = 
1.04 is shown schematically in Fig. 2. A detailed 
exposition of the numerical method leading to this 
supersonic startline has been given in 161 along with 
a brief introduction to the asymptotic and 
perturbation method. 

Fig. 2: The supersonic startline for the Mach 
number with the value of 1.04. 

Numerical model 

As alluded to earlier, equations (4—7), together 
with constant stagnation properties prescribed a 
priori, represent the working equations. We now 
turn our attention to the solutions of (4-7), which are 
not analytically available in practice. To obtain the 
solutions, we approximate equations (4-7) in a way 
akin to those used in finite difference approaches to 
construct a characteristic network as shown in Fig. 
3. With the given boundary and initial conditions, 

Fig. 3: Characteristic network for the analysis of 
plug nozzle flow. 

we solve for the field variables at the characteristic 
intersections in the characteristic network. The 
numerical algorithm chosen to solve equations (4-7), 
subject to various boundary conditions described 
later, is based on a modified Euler predictor-
corrector scheme /3Λ As the name of the scheme 
indicates, a space-marching is accomplished in two 
steps. In the predictor step, the coefficients in the 
finite difference equations are calculated at the 
known initial points. This is followed by prediction 
of these coefficients at new solution points. In the 
corrector step, average values of the primary 
dependent variables |M| and θ are calculated along 
each characteristic, and these values are used to 
calculate the coefficients in the finite difference 
equations. The above iterative procedure continues 
until the values calculated at two successive 
iterations are less than the user's specified 
tolerances. 

We now turn our attention to equations (4-7). For 
illustrative purposes, consider a representative 
characteristic network, as shown schematically in 
Fig. 4, where nodes indicated by 1 and 2 are points 
at which the flow properties are known, and where 
point 3 is taken as a solution point at the intersection 
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Right Characteristic l«|.i = 

Left Characteristic 

Fig. 4: Geometry and point numbering scheme for 
interior point calculation. Point 1 and point 
2 represent the initial value points and point 
3 represents the solution point. 

of the right characteristic passing through point 1 
and the left characteristic passing through point 2. 
The method of characteristics proceeds with 
calculation of the spatial location of (x3,r3) using the 
finite difference equations of (4) and (6): 

73 - η = (x3 - x,) [tan(0 - α)]ΐ3 , 

Ti-T 2 = (x3 - Xi) [tan(0 + a)]23 · 

(13) 

(14) 

Solving equations (13) and (14) for x3 and r3, we 
have 

x3 

r3 = 

where 

(r2 - n ) Ci3 c23 + Xi s13 c23 - x2 «23 C13 
«13 C23 - S23 C13 

(xi - x2) S13 523 + r2 Sis c23 - η S23 C13 
«13 C23 - «23 Cl3 

C13 = \ ([cos(0 - α)]ι + [cos(0 - α)]3), 

C23 = \ ([cos(0 + α)]2 + [cos(0+ α)]3), 

s13 = - ([sin(0 - α)]ι + [sin{(9 - α)]3), 

s23 = \ ([sin(0 + α)]2 + [sin(0 + α)]3) · 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

The analysis is followed by finding primary 

variables |«| and θ at point 3 from the finite 

difference form of the compatibility equations (5) 

and (7). This yields 

01 - 02 + Q13 lull + Q23 |a|2 <5 G13 (r3 - r2) + δ F23 (r3 - r2) 
Ql3 - Q23 

and 

03 = 01 - 013 (|«|3 - M l ) + δ GM ('·.·! - Γ|) . 

where 

1 cot «ι coto:3 
Q13 = Χ (-ΓΊ ·" ~T~i—) · 

l«li Iii|3 
1 cot (Xi cot.«3. 

Q-23 = Τ (-j—j 1- -7-j ) · 
2 |«|> Im|3 

sin 0i sin 0:! 

G l 3 2 lMx rι [sin(0 - a)] ' M3 r3 [sin(0 - a)]3 

sin 02 + 
sin U3 

2 L M2 r2 [sin(0 + a)]2 M3 r3 [sin(0 + a)]3 

(21) 

(22) 

(23) 

(24) 

(25) 

1(26) 

As in the interior point calculation just 
mentioned, primary variables need to be calculated 
at point 6 on the upper boundary and at point 9 on 
the lower boundary shown schematically in Fig. 5. 
Given that the wall boundary is a streamline, we can 
exploit the streamline equation given below 

J / 

Fig. 5: Geometry and point numbering scheme for 
solutions computed at the upper and lower 
solid boundary points, respectively. Points 
4 , 5 , 7 , 8 are inlet data points while points 6 
and 9 are solution points on the upper and 
lower solid surfaces, respectively. 

dr 
dx 

= tan f 

to find (xe, r6) and (x9, r9) as follows 

_ rb - r4 + x4 ^46 ~ xi HS6 

S46 - #56 

re = + (x6 ~ X5) #56 , 

(27) 

(28) 

(29) 
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Xg = 
• r T + x7 S79 - x& Hs< 

S79 — Η89 

rg = r8 + (19 - ^s) #S9 , 

where 

#56 = - (tan 05 + tan 06) 

#89 = 2 (tan + tan09), 

•S46 = 2 ( t a n (^4 + 04) + tan(ö6 + α6)), 

5T9 = - (tan(07 - a9) + tan(ft, - a9)). 

(30) 

(31) 

(32) 

(33) 

(34) 

(35) 

Having determined where the solution points are 
located, we now compute the remaining primary 
variables |w| at points 6 and 9. These values can be 
calculated as follows from the appropriate 
compatibility equations: 

Ne = \ m + 

Iii 9 = Ii 7 • 

ö 6 - ö l + dG46 (rß-r . , ) 

-(θ* 

Θλ6 

9 r ) + δ G-g (r9 - r - ) 

where 

sin »4 + • sin t 
2 M47-4 sin(04 + q4) A/6 r6 sin(06 + q6) 

C79 = ö ( 
sin 07 sin dg 

(36) 

(37) 

r)<38) 

)(39) 
2 M7 r7 sin(07 - Q-) Mg r9 sin(09 - a9) 

The other primary variables θ at boundary points 

are obtained as 

dv 

θ6 = tan_1(—)δ6 , 

cLv Qg = tan_1(—)89 . 

(40) 

(41) 

To conclude the present analysis, we turn to 
determination of the plume configuration. In Fig. 6, 
we designate points 10, 11, 13, and 14 as initial data 
points at which flow properties are known. Points 12 
and 15 are solution points at the intersection of the 
characteristics passing through points 10 and 13 and 
at the streamlines passing through points 11 and 14. 
The properties at points 12 and 15 are, by definition, 
known, which implies t h a t pw = p \ 2 a n d p X A = p\5. As 

Free Pressure 
Boundary 1 2 , 

Free Pressure 
Boundary 

Fig. 6: Geometry and point numbering scheme for 
solutions computed on the upper and lower 
pressure boundary points respectively. 
Points 10, 11, 13, 14 denote the initial data 
points, while points 12 and 15 are solution 
points at the upper and lower free pressure 
boundaries, respectively. 

before, the spatial coordinates (χι* Λ2) and (*ι5, ri5) 
can be determined from the characteristic equations 
along lines passing through points 10 and 13. The 
resulting coordinates at the free pressure boundary 
are obtained as 

X12 ': - no + Zio S11 • 111 Η 1112 
S1012 — #1112 

Γ12 = Γιι + #1U2 (.Cl2 ~ 111) , 

^ _ Γ).| — Γ13 + X|3 Si;n3 — .C|.| #[415 
Sl315 — #1115 

r15 = r14 + #1115 (̂ 15 — l u ) 1 

(42) 

(43) 

(44) 

(45) 

where #1112, #1415, Si 012 and S13i5 take forms similar 
to those shown in equations (32)-{35). At solution 
points 12 and 15, primary variables |w| are calculated 
from the equations given in (11)-(14). The results 
are expressed as: 

|li| 12 = -̂ 13 &13 . 

and 

|u| 15 = MlS «15 , 

where Μ, αϊ (=13,15) are as follows : 

POs 
M , = [( 

ai = (-yRg 

- i ) 
7 - l J 

11/2 

fj> \ 1/2 
1 + ' 

(46) 

(47) 

(48) 

(49) 
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As to primaiy variables θ at points (*i2, Λ 2) and 
(*i5> r\s)> they are obtained from the respective 
compatibility equations, yielding 

012 = 010 + [(I«|l2 - Nio) 01012 ~ <5 (̂ "-12 ~ Πο) G1012] , 

(50) 

015 = 013 ^ [(|w|l5 - Ν13) 01315 ~ <5 (̂ 15 ~ Hs) G1315] · 

(51) 

In the above equations, Θ10ΐ2, θ13ι5, Gi0i2 and 
Gi 315 are expressed as follows : 

1 .cot Q10 cot Q12 . 
"1012 — ή l"T~i '—Π >> 2 ImIio MI2 

1 COtQi3 COtOi5. 
"1315 — - 1 —j—;—ι—π—). 2 |u|l3 |u|l5 

1 ^ sinöio ^ sin 0i2 

(52) 

(53) 

2 Μ ίο τ ίο (sin(0 - α))10 Mn ru (sin(0 - a))12 

(54) 

G(315 — 

i ( sin (λ·. + sinfi; 
2 A/ l 3r1 3(sin(ö-«))i3 Mir, rl5 (sin(0 - «))1 5 

(55) 

Results and Discussion 

Problem description 

Of three basic types of exhaust nozzles, we 
consider in this study a plug nozzle through which 
passes the inviscid flow of a compressible ideal gas. 
The plug and cowl configurations are shown 
schematically in Fig. 1. The flow properties and 
spatial locations of the supersonic streamline have 
been specified based on the asymptotic and 
perturbation method. The Mach number is constant 
across the initial value line. The results presented 
here are for an ideal gas with the specific heat ratio γ 
= 1.337. The stagnation temperature and pressure 
shown in equations (9-10) take fixed values of 
1750°/? and 15 psia, respectively. Under the 
specified stagnation conditions, thermodynamic 

properties and primaiy variables at the supersonic 
inlet, the Mach number has a value of 1.04. Starting 
with the initial data, characteristic and compatibility 
equations can be solved in a characteristic network 
which extends outwards from the supersonic 
startline. Under these circumstances, the flow 
downstream of the supersonic inlet depends solely 
on the ambient pressure. In this study, we consider 
five different pressure ratios, PR ξ p o / p ^ = 4, 5, 6, 
8, 9, the ratio between the ambient pressure, / w » 
and the stagnation pressure po. 

Effect of pressure ratios on the gas dynamics 

In seeking to study the effect of pressure ratios 
on the gas dynamics in the symmetric exhaust plug 
nozzle, all the simulations will be discussed on the 
basis of plots representing the distributions of 
pressure, temperature and Mach number in the flow 
interior bounded by the plume and the plug nozzle. 
In addition, the pressure distribution along the wall 
of the plug nozzle is also presented for purposes of 
illustration. We present here first the results for the 
case with ρο/ραώ = 4. Figure 7 shows the pressure 
distributions at three selected streamwise locations. 
The plume configuration at which the pressure takes 
on the value of 3.75 psia is also plotted. Revealed by 
this figure is that the upstream pressure takes a 
larger value in the vicinity of the plug nozzle wall 
region than in the vicinity of the plume edge. As the 
flow proceeds downstream to x= 10 inch, the trend is 
reversed. 

Since the ideal gas assumption is made in the 

ν (inch) 

15 

10 
cowl 

Plume 

Wall 
m 

Pressure ρ (Psia) 

10 1415 20 25 30 
> x (inch) 

Fig. 7: Pressure distributions at planes χ = 5 in, 10 
in, and 15 in for the case with PR = 4. 
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y(inch) 

Plume 

1200 1300 
Τ Wall 

1000 1100 
Τ 1100 1200 

Temperature T("R) 

5 iS 3 20 25 S->-i(inCh) 

Fig. 8: Temperature distributions at planes χ = 5 in, 
10 in, and 15 in for the case with PR = 4. 

ν (inch) 
15 

Cowl 
Plume 

1 2 . , Μ 123 Μ Wall 
1 2 3Mach Number Μ 

ίο 15 20 25 30 x (inch) 

Fig. 9: Mach number distributions at planes χ = 5 
in, 10 in, and 15 in for the case with PR = 4. 

analysis, it is no surprise to find that the temperature 
shown in Fig. 8 has profiles similar to those plotted 
in Fig. 7 for the pressure. The Mach number 
distribution is presented in Fig. 9, which clearly 
reveals that the flow gradually becomes a constant 
Mach number in its approach to the downstream 
region. To close the presentation Of results for the 
case of PR = 4, we present in Fig. 10 the pressure 
distribution along the wall of the plug nozzle. The 
wall pressure drops sharply from the pressure 
computed on the upstream side. This is followed by 
a nearly constant pressure in the range of 8 inch ^ χ 
£ 13 inch. The wall pressure then increases. Due to 
space limitation, we do not plot the pressure or 
Mach number distributions for the remaining cases 
of PR = 5, 6, 8, 9. In Fig. 11, we plot wall pressures 
along the plug nozzle for other four investigated 
values of PR= 5,6, 8, 9. This figure provides readers 
with information about the effect of PR on the 
aerodynamic loading added to the plug nozzle. 

We also plot in Fig. 12 the shapes of the plume 

Po'Pamt, 
5 r 

1 L l t r . 1 . 1 . 
5 10 15 20 25 30 

X (inch) 

Fig. 10: Pressure distribution along the wall of 
plug nozzle for the case with PR = 4. 

for all the investigated conditions. These figures are 
fundamentally useful in identifying the type of 
aircraft since each one has its own plume shape. We 
close the paper with Fig. 13, which plots the 
temperature profiles, and Fig. 14, which plots the 
pressure profiles, in the characteristic network. 
These plots are important for providing us with 
valuable knowledge for designing cooling supply 
slot, from which the cold film discharges into the 
environment 

Concluding Remarks 

We consider the method of characteristics a 
computationally efficient hyperbolic flow simulation 
technique to analyze problems involving an 
axisymmetric exhaust plug nozzle and cowl 
boundary. The method used to simulate this problem 
was chosen mainly because of the involvement of a 
free pressure boundary condition. Unlike con-
ventional finite-difference methods, we seek 
solutions in a characteristic network which extends 
towards the downstream flow regime. The solution 
procedure used to construct the characteristic 
network utilizes the left- and right-running 
characteristics to determine the solution points. 
Along these characteristics, primary variables are 
solved for using compatibility equations which 
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P'Pa, Ρ'Ρ* 

30 

• χ (inch) χ (inch) 

(a) (b) 

Ρ ^ Pa, Ρ/p., 

x (inch) 

(c) (d) 

Fig. 11: Pressure distributions on the wall 
(a) PR = 5; (b) PR = 6; (c) PR = 8; (d) PR = 

of plug nozzle for PR with different values. 
9. 
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y (inch) 

Plume 

20 

(inch) 

y (inch) 

Plume 

I I I I I 

2 5 3 0 

* (inch) 

(a) (b) 

y (inch) y (inch) 

2 6 -

2 4 -

2 2 -

2 0 τ 

1 8 -

1 6 -

1 4 -

1 2 -

1 0 

6 

4 

2 

t 

° C 5 

Plume 

2 5 3 0 

x (inch) 

(c) ( d ) 

Fig. 12: Plots of plume shapes for cases with different values of PR. (a) PR = 4; (b) PR = 5; (c) PR = 6; (d) PR 
= 7. 
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y (inch) y (inch) 

. 13: Temperature profiles for investigated cases with different values of PR. (a) PR = 5; (b) PR = 6; (c) PR 
= 8; (d) PR = 9. 
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χ (inch) 

(a) 

x (inch) 

(b) 

y (inch) 

25 -

20 -

15 -

g L , . , 1 . 1 1 1 1 ι . ι 1 
0 t o 20 30 

* (inch) 

(c) (d) 

Fig. 14: Pressure profiles for investigated cases with different values of PR. (a) PR = 5 ; (b) PR = 6; (c) PR = 8; 
(d) PR = 9. 
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apply there. Starting from the analytically derived 
supersonic startline, analysis proceeds in a 
space-marching fashion, leading to substantial 
savings in disk storage and computing time. Another 
important point that has to be noted is that we apply 
a theoretically sound theory to depict the plume 
configuration. The plume formed under different 
flow conditions can be accurately and smoothly 
predicted without smearing due to numerical 
diffusion errors. In short, the characteristic method 
employed here is a very attractive alternative to 
other numerical methods which are based on 
finite-difference or finite-element methods. This 
analysis has demonstrated that the method adopted 
here is useful for design purposes and that it could 
be used to reduce costs significantly in the early 
stage of exhaust nozzle design 
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