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Abstract We present in this paper a finite element analysis of Navier-Stokes equations in a
time-varying domain. The method of weighted residuals is used together with the semi-
discretization approach to obtain the discrete equations. In this approach, where the physical
domain is allowed to vary, care is taken to retain the space conservation law property. We describe
in detail the transformation of equations between fixed and moving grids. The validity of this
method has been tested against two problems which are amenable to analytic solutions. Time
accurate results show favorable agreement with analytic solutions. Having verified the
applicability of the Galerkin finite element code to problems involving moving grids, we
consider the fluid flow in a vessel, where a portion of its boundary moves in time. Results are
presented with emphasis on the depiction of vortical flow details.

Introduction
Flow with moving boundaries can be encountered in many practical cases.
Among the representative examples that have been studied in detail is the flow
in internal combustion engines. Ship flow subject to changes in free surface
elevation is another type of problem worthy of study and has attracted a great
deal of research interest in recent years. The common feature of these flows is
that the physical boundary is a part of the solution procedures. This adds
additional complexity to the modeling of flow physics from the working
equations. With the advent of faster computers and ever-improving numerical
methods, it is now possible to tackle transient flow in a domain delineated by
time-varying boundaries. The goal for the present investigation was to
understand incompressible fluid flow in a flexible vessel. This problem is
haemodynamically important in that shear stress exerted by flowing blood on
the arterial wall has an essential effect on the early stage of atherosclerosis
formation (Ku et al., 1985). Detailed knowledge about the unsteady flow
separation in a time-varying blood vessel is, thus, needed. As a necessary step
towards extending the scope of blood flow simulation (Sheu et al., 1999), we are
prompted to conduct analysis on moving grids in the hope of simulating
complex haemodynamics such as that considered in Taylor et al. (1998).

While many numerical solution algorithms have been developed for
simulating unsteady flows in the literature, problems involving moving
boundaries have been considered by relatively few authors. Early works
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devoted to tackling problems with moving boundaries are detailed in
Demirdizic and Peric (1990). The solution for this class of problems is best
analyzed in non-Eulerian (moving) coordinates. To this end, one can derive the
corresponding conservation equations in moving coordinates through
transformation of variables. These field equations can be derived more
straightforwardly in general moving coordinates under the concept of the Lie
derivative (Satoru and Tomiko, 1987; Schouten, 1954). The grid fitted to the
body moves in time and is not fixed in space. For analyses conducted in
moving grids, it is important to incorporate the space conservation law (SCL)
into the formulation (Trulio and Trigger, 1961). As the name indicates, the SCL
relates the change of an elementary computational cell to the coordinate frame
velocity. Failure to satisfy the space conservation law will cause the artificial
mass to accumulate or diminish. Thomas and Lombard (1979) were among the
first to recognize the need for solving this equation simultaneously with other
conservation equations. Demirdizic and Peric (1983) later provided
computational evidence to justify the rational use of the SCL equation as a
constraint to simulate problems on non-stationary grids. In the present study,
we adopted the concept of a moving grid in the finite element analysis.

The remainder of this paper is organized as follows. The next section is
intended to derive working equations on moving grids. The finite element
discretization method is briefly outlined. We then provide an analytic verification
of the applicability of the code implemented on moving grids. For the sake of
description, we use the convection-diffusion equation to benchmark our proposed
scheme. This is followed by consideration of an analytic test problem for the
solution of Navier-Stokes equations. In the result section, we present the numerical
simulation of incompressible fluid flow in a vessel which partly undergoes a large-
amplitude oscillation. Finally, we conclude with some remarks.

Mathematical model
Most of the flow problems of engineering interest fall into the incompressible
flow category. The governing equations for an unsteady, incompressible
viscous flow in grids fixed in space are as follows:

ux � vy � 0 ; �1�
ut � u ux � v uy � ÿpx � � � uxx � uyy � ; �2�
vt � u vx � v vy � ÿpy � � � vxx � vyy � : �3�

The above primitive-variable formulation involves use of a velocity vector and
pressure as working variables for a fluid with kinematic viscosity �. The main
reason for adopting equations (1-3) is that this primitive variable formulation
accommodates closure initial and boundary conditions (Ladyzhenskaya, 1969).
For accuracy reasons, adaptation of grid lines to the flow direction is desirable
when simulating a flow which is unsteady in nature. Under these
circumstances, movement of grid lines warrants careful consideration in flux
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discretization conducted in between two consecutive time steps. To describe
the method, we will consider the prototype equation of (2)-(3), namely, the
scalar transport equation:

�t � u �x � v �y ÿ � � �xx � �yy � � 0: �4�
We can now rewrite equation (4) in moving grids and detail the derivation. Let the
moving grids be denoted by ��; �� at time t. There exists a transformation relating
��; �� and the fixed coordinates �x; y� in a one-to-one mapping as follows:

x � x��; �; t�; �5�
y � y��; �; t�: �6�

The material derivative of � is by definition expressed as

D�

Dt
� @�
@t

����
��;��

� @�
@t

����
�x;y�
� @�
@x

@x

@t

����
��;��
� @�
@y

@y

@t

����
��;��

:

�7�

Define the grid velocity vector vg � �ug; vg� as follows:

ug � @x

@t

����
��;��

; �8�

vg � @y

@t

����
��;��

: �9�

We can rewrite equation (7) as

@�

@t

����
�x;y�
� @�
@t

����
��;��
ÿr� � vg : �10�

The above equation provides a theoretical basis for a formulation falling within
the moving grid context. Substitution of equation (10) into the target equation
(4) yields

@�

@t

����
��;��
��uÿ ug� �x � �vÿ vg� �y ÿ � ��xx � �yy� � 0: �11�

Having obtained the transformation relation between fixed and moving
coordinates given in (10), we can transform working equations (1)-(3) in fixed
grids into their moving coordinate counterparts:

ux � vy � 0 �12�
ut � �uÿ ug� ux � �vÿ vg� uy � ÿpx � � � uxx � uyy �; �13�
vt � �uÿ ug� vx � �vÿ vg� vy � ÿpy � � � vxx � vyy �: �14�
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Finite element analysis in moving grids
The finite element method has emerged as one of the most powerful analysis
tools for simulating fluid flow problems. This method has the advantage of
tackling complex geometries and accurately implementing Neumann-type
boundary conditions. These attributes have provided us impetus for the
utilization of this method in simulating flow in the flexible vessel.

We first consider the transport equation (11) and discretize it using a semi-
discretization approach. We apply the Galerkin weighted residuals finite
element model to discretize spatial derivatives through introduction of test and
basis finite element spaces. Following standard finite element procedures, we
can derive the corresponding ordinary differential equation as follows:

B
d�

j

dt

�����
��;��
�A �

j
� S: �15�

We can then approximate the remaining time derivative term using the
forward time-stepping scheme. The resulting algebraic system reads as

1

�t
B �n�1

j

���
��;��
� S � � 1

�t
B ÿ A��n

j

���
��;��

: �16�

The above Galerkin formulation provides prediction accuracy which is formally
second order in space and first-order accuracy in time for cases with uniform grid
size. The solution to equations (12)-(14) can be obtained using the mixed
formulation. An outstanding feature of this formulation is that the pressure
appears only in equations (13)-(14). This complicates the calculation of field
variables from the matrix equations, which contain as many zeros as does the
continuity equation in the diagonal, since eigenvalues are poorly distributed
under these circumstances (Gunzburger, 1989). We denote the constrained space
L2

0�
� for the pressure, which consists of square integrable functions having zero
mean over 
. In the present mixed finite element formulation, we introduce the
Sobolev space H1

0�
� for the velocity vector. This space consists of one square
integrable derivative over 
 and vanishes on the boundary ÿ. Given the above
finite element spaces, we seek weak solutions for u 2 H1

0�
� and p 2 L2
0�
� from

the weak statement of equations (12)-(14). In this study, the test functions
w 2 H1

0�
� � H1
0�
� and q 2 L2

0�
�are used for the vector and scalar quantities,
respectively.The key element in the choice of basis functions so as to avoid node-
to-node pressure oscillations is accommodation of the LBB (inf-sup or div-
stability) condition (Brezzi and Douglas, 1988; Babuska, 1973; Brezzi, 1974). To
get rid of this pressure mode, we employ biquadratic polynomials, Ni, to
approximate u and bilinear polynomials, Mi, to approximate p. This variable
setting closely resembles the staggered mesh that is used to store the pressure and
velocity unknowns in the finite volume analysis of incompressible fluid flow. The
resulting ordinary equation in time is, as before, discretized using the first-order
time-stepping scheme.
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Verification of the finite element formulation
As a first step towards verifying the finite element model developed on moving
grids, we consider the following variable transport equation:

�t � 2 y �x � x �y ÿ y2 ��xx � �yy� � f �x; y; t�: �17�
In the above equation, the source team f �x� is chosen as

f �x; y; t� � eÿt y 2 x3 ÿ 2 y3 ÿ 3 x2y� 4 xy2 ÿ 2 x2 ÿ 2 y2 � 3 xy
ÿ � �18�

so that equation (17) is amenable to the analytic solution:

��x; y; t� � eÿt x �xÿ 1� y2: �19�
The problem considered is schematically shown in Figure 1. The lower
boundary of the physical domain, defined in 0 � x � 1:0 ; 0:5 � y � 1:5,
varies with time from flat to its configuration according to the harmonic
motion. At time t � 0, the unit square is covered with uniform grids, with a
resolution of 17� 17. The grid velocity is prescribed as follows:

vg � � ug ; vg � � � 0 ;
�

2
sin�2 ��� cos��t� �� ÿ 1� �: �20�

Taking the time increment �t as 10ÿ4, we started the calculation from t � 0
and terminated at t � 1. For the problem which is subject to analytic boundary

Figure 1.
The schematic of the

problem considered for
the solution of scalar

transport model
equation
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conditions, we measured the prediction errors in their L2-error norms for each
103 time steps. The resulting errors are tabulated in Table I, from which it is
easy to conclude that analysis conducted in moving grids has been analytically
verified.

Having successfully verified the Galerkin formulation of the scalar transport
equation in moving grids, we now proceed to obtain analytic verification of the
Navier-Stokes code so far developed. The test problem is as follows:

ux � vy � 0 �21�
ut � u ux � v uy � px ÿ uxx ÿ uyy � f1�x; y; t�; �22�
vt � u vx � v vy � py ÿ vxx ÿ vyy � f2�x; y; t�: �23�

The source vector f � �f1; f2� for this study is chosen to be

f1�x; y; t� � 1

2
eÿ2t x �x� 1� �2 x� 1� y2 ÿ eÿt �x2 � x� 1� y; �24�

f2�x; y; t� � 1

2
eÿ2t �2 x2 � 2 x� 1� y3 ÿ 1

2
eÿt 2 x �y2 � 3� � y2 � 2
� �

: �25�
Given the above source vector f , equations (21)-(23) are amenable to the
analytic solutions given below:

u � x � x� 1 � y eÿt; �26�

v � ÿ 1

2
� 2 x� 1 � y2 eÿt; �27�

p � x y eÿt: �28�
The physical domain was initially configured as a rectangular:
0 � x � 1:0 ; 0 � y � 0:5 : To start the calculation, we uniformly discretize

the domain, resulting in a grid system with a resolution of 41� 21. This grid
moved according to the grid velocity given below:

vg � � 0 ; ÿ�
5
� sin�2��� cos��t� �: �29�

Calculation started from t � 0 and terminated at t � 1 with a uniform time
increment �t � 10ÿ2. We plot prediction errors in their L2-norm and tabulate

Table I.
A summary of
prediction errors for
the test problem given
in equations (17)-(19)

Time L2 norm Time L2 norm

0.1 1:3494526� 10ÿ5 0.6 7:0078463� 10ÿ5

0.2 2:4916741� 10ÿ5 0.7 4:7497390� 10ÿ5

0.3 4:5586862� 10ÿ5 0.8 2:2928949� 10ÿ5

0.4 6:7825187� 10ÿ5 0.9 8:9777435� 10ÿ5

0.5 7:8615689� 10ÿ5 1.0 5:1143585� 10ÿ5
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them for every ten �t in Tables II and III for the pressure and velocity
unknowns, respectively. To better illustrate the result, we also plot the
computed and analytic pressure contours in Figure 2. As Tables II and III and
Figure 2 show, it has been confirmed that the present finite element code can be
applied with confidence to analysis of transient flows with a moving boundary.
Given that the space conservation law plays an essential role in transient
calculations with moving boundary, it is important to assure that in a cell with
an area A the following property is satisfied at the discrete level:

d

dt

Z
A

dAÿ
Z

S

vg � ds � 0: �30�

In the above, s denotes the unit tangent along the boundary of the cell of
interest and vg is known as the grid velocity vector.

Computed results
Considering excellent agreement of the model predictions with all of the
analytic solutions given in the previous section, the proposed method permits
direct solution of the Navier-Stokes equations and can be applied with
confidence to explore more complex flow phenomena. We now consider
incompressible fluid flow with kinematic viscosity 0:0025 in a domain
delineated by time-dependent boundaries. At t � 0, the vessel was configured
to be flat. Inside the vessel, a flow was of the fully developed type with an

Table II.
A summary of

prediction errors for
pressure in the

numerical solution of
equations (21)-(25)

Time L2 norm Time L2 norm

0.1 0:241058� 10ÿ3 0.6 0:506236� 10ÿ3

0.2 0:342123� 10ÿ3 0.7 0:370805� 10ÿ3

0.3 0:490374� 10ÿ3 0.8 0:262840� 10ÿ3

0.4 0:595274� 10ÿ3 0.9 0:220708� 10ÿ3

0.5 0:599269� 10ÿ3 1.0 0:225021� 10ÿ3

Table III.
A summary of

prediction errors for
velocities u and v for

the numerical solution
of equations (21)-(25)

Time L2 norm Time L2 norm

L2-error norm for u
0.1 0:132936� 10ÿ5 0.6 0:658466� 10ÿ6

0.2 0:176829� 10ÿ5 0.7 0:490666� 10ÿ6

0.3 0:182225� 10ÿ5 0.8 0:916945� 10ÿ6

0.4 0:157429� 10ÿ5 0.9 0:139295� 10ÿ5

0.5 0:114449� 10ÿ5 1.0 0:169938� 10ÿ5

L2-error norm for v
0.1 0:129945� 10ÿ5 0.6 0:718854� 10ÿ6

0.2 0:168458� 10ÿ5 0.7 0:324970� 10ÿ6

0.3 0:180234� 10ÿ5 0.8 0:568773� 10ÿ6

0.4 0:163438� 10ÿ5 0.9 0:892528� 10ÿ6

0.5 0:123798� 10ÿ5 1.0 0:104950� 10ÿ5
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average velocity of umean � 2. This gave Reynolds number of 400. The flow
under investigation falls in the laminar flow range. The test problem
schematically shown in Figure 3 reveals that a part of the vessel walls was
allowed to move in time. For the present study, the upper and lower collapsible
vessel walls were defined a priori by the curves given below:

x � � ;

y � � ; else

� ÿ � 0:2 sin� 2 � � � ÿ 1 � �sin�!�t� � ; 1 < � < 2

�
:
�31�

In the above, ! denotes the frequency of the oscillating vessel wall.

Figure 2.
A comparison of
computed (Ð) and
analytic (- - -) pressures
for the solutions of
Navier-Stokes equations

Figure 3.
The schematic of the
vessel under
investigation
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The incoming flow was fixed throughout the analysis. This is physically
plausible since the inlet plane was placed sufficiently upstream of the
harmonically oscillating section of the vessel. The distance downstream the
perturbed vessel in which the stress-free boundary condition is applied is 5.
This length was sufficiently downstream of the perturbed vessel, allowing the
fluid to leave the computational domain with very little upstream influence. On
physical grounds, no-slip conditions applied at the vessel wall. The grid
considered here has a resolution of 15� 101 shown in Figure 4. In order for an
oscillatory flow to be accurately predicted, the grid must be clustered near the
vessel wall. Moreover, we demand that grids moving in time be smoothly
distributed with order to avoid probable prediction deterioration due to grid
distortion. Following this line, the movement of grids is prescribed according to
equation (31).

As is typical with the numerical analysis of flow problems, a grid
independent test is conducted to justify that the grid is properly chosen. To this
end, the model was run on a domain of three grid resolutions. In this study,
11� 61, 19� 321, 35� 641 nodes are considered in the x and y direction,
respectively. The results obtained for three investigated grids are plotted at the
same selected sections shown in Figure 5. Observation of the presented u and v
profiles in Figures 5(a) and 5(b), respectively, indicates that they follow the
same trend. The difference observed at the chosen sections is negligibly small.
This implies that the grid with 15� 101 nodes is sufficient to describe the flow
and this grid will be used in the following discussion of results. To obtain a
faithful record of the flow development, we begin our presentation of results by
plotting a sequence of pressure contour plots and streamlines in Figure 6. This
plot shows that the flow subject to the oscillating boundary has a rich and
complex structure. Much more detailed study of results will be required before
the physical phenomenon can be fully understood.

We also plot in Figure 7 the streamlines at the start of the flow development,
say at t � 0:02. Clearly evident from this figure is that the streamlines intersect
with the vessel wall only in the collapsible portion. The reason for this distinct
flow feature is attributed to the vessel velocity whose normal component is not
zero at the oscillatory vessel wall. Discussion of the results will be followed by
illustration of the complex and rapidly changing features of the transient flow.
As the vessel's harmonic motion commences, the external energy added to the
flow causes the flow pattern to vary. Because the vessel varies harmonically in
time, the flow passage becomes increasingly wavy, leading to eddy formation

Figure 4.
An illustrative example

of the grid for the
calculation of problem

under investigation
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in regions where the flow undergoes expansion. As time progresses, the
accompanying centrifugal force is sustained in the wavily configured vessel
and plays an increasingly important role on the time-evolving flow structure. It
is seen that `̀ vortex A'' grows in size and intensity.

Figure 5.
Grid independence test
on three grids of
different resolutions, (a)
u velocity profiles; (b) v
velocity profiles

Figure 6.
Time evolving plots
of pressure contours
and streamlines in the
vessel at (a) t � 0:02;
(b) t � 0:25; (c) t � 0:5;
(d) t � 0:75; (e) t � 1:0
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As time is increased further, three vortices can be clearly seen in Figure 8 at
t � 0:5. For the sake of description, we still call these vortices `̀ vortex A'',
`̀ vortex B'', and `̀ vortex C''. In the approach to the convexly configured cavity
on the lower vessel wall, the incoming flow fills in. Fluid particles which are
entrained to `̀ vortex A'' encounter a higher pressure in regions around the right
end of the cavity. The direct consequence of this high pressure region is an
upstream flow motion, which causes the recirculating flow to appear in `̀ vortex
A''. This eddy formation is mainly due to the concavely configured vessel. It is
seen that this eddy vanishes as the vessel turns flat again in the subsequent
harmonic motion. While the cavity where `̀ vortex B'' resides assumes a similar
shape to that where `̀ vortex A'' is located, the formation of `̀ vortex B'' takes a
different evolving route. `̀ Vortex B'' is seen to occur as a result of complex eddy
formation and merging. As time evolves, a vortex of smaller size, as shown in
Figure 8, is formed first. This is followed by forming a downstream primary
eddy. In between the two eddies, there is a topological singular point, as is
shown in Figure 9, called a saddle point. Owing to this critical point formed
inside the cavity, it is easy to see why this vortex assumes a horse-shoe vortex
shape. The main reason why the vortex formation is so different is attributed to
the fact that the formation of `̀ vortex B'' is strongly affected by the local high
pressure value found at the edge of `̀ vortex A''. At a time subsequent to t � 0:5,
`̀ eddy b'' will be entrained into its nearby vortex. The reason for this is that the
local high pressure established near `̀ vortex A'' can no longer sustain the
existence of `̀ eddy b''.

Figure 7.
A plot of pressure

contours and stream-
lines at t � 0:02

Figure 8.
A plot of pressure

contours and
streamlines at t � 0:5



HFF
9,8

844

The formation of `̀ vortex C'' closely resembles that of the primary vortex
established behind the step in the backward-facing step problem (Armaly et al.,
1983). `̀ Vortex C'' occurs as a result of flow expansion. The curved incoming
flow separates from the apex of the convexly configured vessel and reattaches
to the flat lower vessel wall. The size and intensity of this vortex depends on
the extent of deformation. It is seen that the larger the value of geometric
perturbation, the larger `̀ vortex C'' becomes. This is analogous to the backward-
facing step problem in that there is an increase in the reattachment length with
an increase in h=H , where h and H represent the step height and the channel
height, respectively. In contrast to `̀ vortex A'', `̀ vortex C'' does not disappear
immediately as the vessel wall flattens. Instead, the compressed eddy convects
downstream with decreasing intensity. Eventually, the vortex motion
emerging from the `̀ vortex C'' diminishes.

As Figure 6 shows, the pressure field reveals strong changes in the flow. The
change is seen to maximize in the vicinity where the vessel has a larger
curvature. This finding agrees with our expectation in that the pressure loss is
the direct consequence of the curved flow due to the change of the vessel's
configuration. At a still later time, say at t � 0:66, the harmonically-varying

Figure 9.
A clear representation of
the saddle point formed
in `̀ vortex B''

Figure 10.
A plot of pressure
contours and
streamlines at t � 0:66
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vessel wall decreases in amplitude. As alluded to earlier, for fluid particles in
vortices `̀ A'' and `̀ B'', drastic changes in the flow pattern are encountered. As
Figure 10 shows, streamlines intersect with the vessel walls. What is
remarkable is that `̀ vortex C'' seems not to be much affected. The fluid flow
which is pumped out of `̀ vortex A'' by the high pressure established on the
curved lower vessel wall is not completely entrained into the main flow. Rather,
this flow convects downstream and fills into `̀ vortex C''.

Concluding remarks
In this paper, a Galerkin finite element model has been presented for the
prediction of fluid flow in a domain with moving boundaries. To facilitate the
analysis, working equations have been derived in moving grids in order to
adapt to the flow field. It is noteworthy that use of the geometric conservation
law property is essential for analyses conducted on moving grids. In the spatial
discretization, we have applied the Galerkin finite element method to obtain a
second-order spatially accurate solution. The remaining ordinary differential
equation, which involves time derivatives, has been discretized using the first-
order accurate time-stepping method. The proposed formulation in moving
grids has been analytically verified through numerical studies on scalar
transport equation as well as the Navier-Stokes equations. Results have also
been presented for the flow in a vessel, where a portion of the surface bounding
the physical flow region moves in time. After conducting grid independent
tests, the physical details obtained in this study are summarized as follows. In
the flow evolution, three eddies of different characters have been found. There
is an eddy which closely resembles the primary eddy behind the backward-
facing step. Of the two eddies in the concavely configured cavity, one assumes
a horse-shoe vortex shape. A saddle point is observed prior to the merging of
two adjacent vortices of different sizes in this cavity. It is also worth noting that
streamlines which are orthogonal to the moving vessel walls are observed at
the beginning and at the end of the oscillatory motion.

References

Armaly, B.F., Durst, F., Perrira, J.C.F. and SchoÈnary, B. (1983), `̀ Experimental and theoretical
investigation of backward-facing step flow'', J. Fluid Mech., Vol. 127, pp. 473-96.

Babuska, I. (1973), `̀ The finite element method with Lagrangian multipliers'', Numer. Math.,
Vol. 20, pp. 179-92.

Brezzi, F. (1974), `̀ On the existence, uniqueness and approximation of saddle point problem
analysis from Lagrangian multipliers'', RAIRO, Anal. Num., Vol. 8 No. R2, pp. 129-51.

Brezzi, F. and Douglas, J. (1988),`̀ Stabilized mixed methods for the Stokes problem'', Numer.
Math., Vol. 53, pp. 225-35.

Demirdizic, I. and Peric, M. (1983), `̀ Space conservation law in finite volume calculation of fluid
flow'', Int. J. Numer. Meths. in Fluids, Vol. 8, pp. 1037-50.

Demirdizic, I. and Peric, M. (1990), `̀ Finite volume method for prediction of fluid flow in
arbitrarily shaped domains with moving boundaries'', Int. J. Numer. Meths. in Fluids,
Vol. 10, pp. 771-90.



HFF
9,8

846

Gunzburger, M.D. (1989), `̀ Finite element methods for viscous incompressible flows'', A Guide to
Theory, Practice, and Algorithms, Academic Press, New York, NY.

Ku, D.N., Giddens, D.P., Zarins, C.K. and Glagov, S. (1985), `̀ Pulsatile flow and atherosclerosis in
the human carotid bifurcation: positive correlation between plaque location and low and
oscillatory shear stress'', Arteriosclerosis, Vol. 5, pp. 293-302.

Ladyzhenskaya, O. (1969), The Mathematical Theory of Viscous Incompressible Flow, Gordon and
Breach, New York, NY.

Satoru, O. and Tomiko, I. (1987), `̀ A method for computing flow fields around moving bodies'', J.
Comput. Phys.,Vol. 69, pp. 49-68.

Schouten, J.A. (1954), An Introduction to Tensor Analysis and its Geometrical Applications, Ricci-
Calculus, Springer-Verlag, Berlin.

Sheu, T.W.H., Tsai, S.F., Hwang, W.S. and Chang, T.M. (1999), `̀ A finite element study of
the blood flow in total cavopulmonary connection'', Computer and Fluids, Vol. 28 No. 1,
pp. 19-39.

Taylor, C.A., Hughes, T.J.R. and Zarins, C. (1998), `̀ Finite element modeling of blood flows in
arteries'', Comput. Methods Appl. Mech. Engrg, Vol. 158, pp. 155-96.

Thomas, P.D. and Lombard, C.K. (1979), `̀ Geometric conservation law and its application to flow
computations on moving grids'', AIAA J, Vol. 17 No. 10, pp. 1030-7.

Trulio, J.G. and Trigger, K.R. (1961), Numerical Solution of the One-dimensional Hydrodynamic
Equations in an Arbitrary Time-dependent Coordinate System, University of California
Lawrence Radiation Laboratory Report UCLR-6522.


