
Numerical investigation of vortical evolution in a backward-
facing step expansion ¯ow

T.P. Chiang, Tony W.H. Sheu *, C.C. Fang

Department of Naval Architecture and Ocean Engineering, National Taiwan University, 73 Chou-Shan Road, Taipei,

Taiwan, ROC

Received 16 September 1997; received in revised form 25 March 1999; accepted 16 April 1999

Abstract

A numerical investigation of laminar ¯ow over a backward-facing step is presented for the Reynolds number in the

range of 506Re6 2500. The objective of this numerical investigation is to add to the existing knowledge of the

backward-facing step ¯ow to deepen our understanding of the expansion ¯ow structure. We proceed with the analysis

by verifying the computer code through the Pearson vortex problem. We then perform a parametric study by varying

the Reynolds number, with the aim of determining whether or not there exists a critical Reynolds number, above which

reattachment length on the channel ¯oor decreases. We also concentrate on subjects that have been little explored in the

¯ow, examples of which are the onset of a single vortex in the primary eddy and how the recirculating bubble con-

taining ¯ow reversals is torn into smaller eddies. Eddy distortion, leading to mobile saddle points, and the merging of

eddies are also discussed in this study. Ó 1999 Elsevier Science Inc. All rights reserved.
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Applied Mathematical Modelling 23 (1999) 915±932

Nomenclature
ui velocity component along i-direction
p pressure
xm coordinate along m-direction
t time
m kinematic viscosity
Umax maximum inlet channel velocity (� 1)
Umean mean inlet channel velocity (� 2

3
)

h height of the upstream channel (� 1)
Re� Reynolds number de®ned by Re� � Umaxh=m
Re Reynolds number de®ned by Armaly et al. (� 4

3
Re�)

H height of the downstream channel (� 1:9423)
r expansion ratio (� H=h � 1:9423)
S non-dimensional step height (� r ÿ 1 � 0:9423)
x1 length of reattachment for the ®rst ¯oor eddy
x2 length of separation for the second ¯oor eddy
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1. Introduction

As a subject of practical importance in ¯uid mechanics, ¯ow in channels with reversals has
been the focus of intensive study. Examples, among others, are found in heat exchangers, ducts
for industrial use, ¯ows around buildings and microelectronic circuit boards. To aid in exper-
imental and computational investigations of this class of ¯ows, the ¯ow past a backward-facing
step has been chosen as a representative test bed since it involves a con®guration which is re-
garded as having the simplest geometry. Geometrical simplicity does not imply that the phe-
nomena of the ¯ow are also simple. Among the rich features that attract the interest of
researchers are ¯ow separation, reattachment and multiple recirculation regions present in the
channel.

For reasons of practical and fundamental importance stated above, numerous numerical re-
sults have been published in the literature which are focused on studying the e�ects of the Rey-
nolds number [1±3] and the expansion ratio [4] on the ¯ow pattern behind the step. Comparatively
few studies have been addressed to the upstream and downstream channel lengths which might
alter the ¯ow development in the channel [5]. The present transient analysis was undertaken to
add to the existing knowledge of backward-facing step ¯ow in the hope of deepening our un-
derstanding of expansion ¯ow over a wide range of Reynolds numbers. We restrict ourselves to
¯ows with Reynolds numbers lower than 2500. This avoids the complication of simulating ¯ow
turbulence.

Numerical simulation of transport equations in a domain of multiple dimensions also en-
counters a stability problem, known as oscillatory velocities arising from prevailing ¯ow ad-
vection, and an inaccuracy problem, known as the false di�usion error. Our goal is to achieve
high-order accuracy without much sacri®ce of stability. We apply in this paper a quadratic
upwind scheme to approximate the convective ¯ux terms in a domain, which has been non-
uniformly discretized. Other spatial derivative terms in the equations are approximated by a
centered scheme to obtain second-order accuracy. As to the approximation of time derivative
terms, we simply apply the ®rst-order accurate Euler implicit time-stepping scheme. Since dis-
cretization errors stemming from the curvilinear coordinate transformation are generally con-
siderable and are hard to resolve for con®gurations involving complexities or for curvilinear
lines having appreciable changes in curvature, we conduct analysis here in a Cartesian coor-
dinate system.

The remaining sections are organized as follows. Working equations which permit speci®cation
of closure initial/boundary conditions are given in Section 2, followed by a brief outline of the
segregated-type algorithm, and an introduction to the ®nite volume discretization method em-
ployed and the ¯ux discretization scheme adopted. The justi®cation for using this analysis code is
presented in Section 3. In Section 4, we describe ®rst the problem under investigation. The
Reynolds number used in this study follows the same de®nition as that given in Armaly et al. [1]
to facilitate the direct comparison with the experimental data. Time steps and mesh sizes are also
detailed in this section. With the ®nite volume solutions obtained, we choose the streamline as the
target vector ®eld to explore the vortical ¯ow structure by appealing to the theory of topology. A
topological study on the computed primitive velocity vectors provides insight into the structure of
vortical ¯ows. Finally, we draw conclusions in Section 5.

x3 length of reattachment for the second ¯oor eddy
x4 length of separation for the roof eddy
x5 length of reattachment for the roof eddy
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2. Working equations and numerical method

We consider in this paper Newtonian ¯uids which are subjected to the incompressibility
constraint condition. Together with this divergence-free condition, Navier±Stokes equations
representing the equations of motion are cast in the dimensionless form:

oui

ot
� o

oxm
�umui� � ÿ op

oxi
� 1

Re�
o2ui

oxmoxm
; �1�

oui

oxi
� 0: �2�

The idea behind the choice of the above velocity±pressure formulation is that this variable setting
accommodates closure conditions [6].

We have transformed the above elliptic±parabolic di�erential equations into their algebraic
counterparts, which are amenable to computer simulation, using the ®nite volume method.
Numerical simulation of incompressible ¯uid ¯ow, however, encounters spurious pressure modes.
This presents a di�culty which can be overcome by adopting the staggered-grid approach [7]. In
the staggered-grid approach, grids used o�set the velocities by a half mesh width in their re-
spective coordinate direction from the pressure. Such a grid setting facilitates ®nite volume in-
tegration of working equations in their representative volumes where the corresponding primitive
variable is stored at the cell center.

The absence of a pressure variable in the constrained working equation (or divergence-free
continuity equation) tends to weaken the matrix equations, in the sense that matrix equations
become increasingly ill-conditioned. It is this di�culty which motivated us to apply the algo-
rithmic idea of the segregated approach to solve for ®nite volume discretization equations in an
iterative manner. The key to successfully applying the segregated approach is to satisfy the so-
lenoidal kinematic constraint r � u~� 0. In this study, we employ the pressure di�erence p0 as a
representative working variable to replace the continuity equation. The resulting Poisson equa-
tion for p0 is used to compensate the pressure±velocity decoupling. As a direct consequence of this
decoupling nature of the working equations, it is appropriate to apply the semi-implicit iterative
algorithm, namely SIMPLE-C [8], to solve three momentum equations and one Poisson equation
for the pressure di�erence in a cyclic predict-and-correct process. The solution algorithm is de-
tailed as follows.

In each time step, calculation starts by setting the pressure values to be those just obtained.
This is followed by solving three momentum equations to obtain their representative primitive
velocities through introduction of under-relaxation E-factors to the discrete equations. We take
larger E-factor for the prevailing velocity-component to speed-up the calculation. We also cal-
culate the coe�cients shown in the p0 equation using the most updated velocities. When solving
the Poisson equation for p0, we introduce an over-relaxation factor h, which has a value as high as
1.99. The solution for p0 is obtained in an alternating-direction-implicit fashion. As is usual, 4±8
inner iterations are needed. Upon obtaining p0, we correct the pressure by adding ap0 to the old
pressure value. Depending on the E-factors, the free parameter a is not necessarily set to be 1.
Having obtained the pressure values, we make a shift of nodal pressures with respect to an ar-
bitrarily referenced nodal pressure. This step is crucial to accelerate convergence of solutions. We
then check whether the continuity constraint condition is satis®ed. If not, we return to the original
outer-iteration step and repeat the calculation. This alternating-direction-implicit calculation
terminates until the convergence criterion is reached. In all the cases investigated, the solution was
said to have converged when the global pressure and velocity residuals reached a value of 10ÿ12.
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A serious problem with ¯ow analyses was the false di�usion error. To remedy this di�culty, a
QUICK discretization scheme implemented on non-uniform grid [9] is considered as a re®nement
to Leonard's original scheme [10] for the spatial discretization. This upwind treatment of ad-
vective terms stabilizes the discrete system and provides a numerical scheme that is globally third-
order accurate in space. Other spatial derivatives in the equations are approximated using a
second-order accurate centered scheme.

3. Veri®cation of analysis code

As a ®rst step toward validation of the use of the computer code developed to simulate the
expansion ¯ow in the channel, we conduct here a test problem which is amenable to the analytic
solution. The test case is that of the Pearson vortex problem [11]. In a square domain of length 1,
we solve for primitive variables, subjected to the boundary values of the velocity and initial
condition (t � 0) given below:

u � ÿcospx sinpz eÿ2t=Re; �3�
w � sinpx cospz eÿ2t=Re: �4�

The analytic pressure reads

p � ÿ1
4
�cos2px� cos2pz� eÿ4t=Re: �5�

We performed calculations under conditions of Dt � 5� 10ÿ5 and Re � 104. The uniform
mesh sizes we consider in this validation test are with resolutions of 10� 10, 20� 20, 30� 30, and
40� 40. After 200 time steps, convergent results obtained at t � 0:01 showed increasing agree-
ment with analytical solutions shown in Fig. 1. This validation study provided us with con®dence
to proceed with the subsequent backward-facing step problem.

4. Computed results

4.1. Problem description and general ¯ow structure

The channel con®guration used for this study was that of Armaly et al. [1]. In the channel
shown schematically in Fig. 2, there is a built-in backward-facing step with a height of S � r ÿ 1.
This con®guration provides an expansion ratio of r � H=h � 1:9423. The larger channel, located
just downstream of the step, has a height H � 1:9423. In order to make the calculations af-
fordable, the channel is truncated at x � x0, which should be su�ciently distant from the step.
According to Armaly et al. [1], the length of x0 was suggested to be larger than 4x1, where x1

denotes the ®rst ¯oor reattachment length. This chosen length allows the ¯ow to develop into a
fully developed pro®le. We analyzed numerically this problem for a wide range of Reynolds
numbers covering simply the laminar ¯ow regime. The de®nition of the Reynolds number given in
(1) is

Re� � Umaxh
m

; �6�
where the chosen reference velocity Umax�� 1� is the maximum inlet channel velocity (or 1.5 times
of the mean inlet velocity), and m is the kinematic viscosity. For this study, h�� 1� is the height of
the upstream channel which is chosen as the reference length in the present normalization of
working equations. Having chosen the reference velocity, Umax, and the reference length, h, we can
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normalize the pressure by qU 2
max and the time by h=Umax. The density of the ¯uid, q, remains

unchanged with time and space in the present incompressible ¯ow simulation. In what follows, the
discussion of results is based on the Reynolds number Re, given by Armaly et al. [1], which is, by
de®nition, equal to 4

3
Re�.

To close the mixed set of partial di�erential equations (1) and (2), we prescribe a fully devel-
oped velocity pro®le at the channel inlet but a Neumann type boundary condition at the truncated
outlet plane. The chosen out¯ow velocity boundary condition is of the zero-gradient type. Along
the solid boundaries, the usual no-slip boundary conditions apply. For physical reasons, grids, as
shown in Fig. 2, are re®ned near the step plane, roof, and ¯oor of the channel to resolve the high-
gradient boundary layer pro®le. Along the primary ¯ow direction, x, and the transverse direction,
z, the extreme grid sizes are with the values of Dx�min;max� � �0:03; 1:0� and Dz�min;max� �
�0:03; 0:06�, respectively.

Fig. 1. Code validation for the Pearson vortex problem given in Section 3: (a) u�x; z�; (b) w�x; z�; (c) p�x; z�; (d) grid

convergent test on p�x � 0; z�.
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The aim of this study was to provide insight into the time evolution of the developed
vortical ¯ow as there is still much to be learnt from the computed time-accurate solutions. We
start the calculation at u � v � 0. The time increment used in the Euler implicit time-stepping
scheme varies with the time. The detailed time intervals are tabulated in Table 1. In our study,
time-accurate solutions obtained within each time step are that the mass ¯ow rate at every
cross-section, Q, must reach jQÿ Q0j=Q0 < 10ÿ6 where Q0 is the inlet mass ¯ow rate. The
iteration numbers needed to achieve the convergent solutions within a typical time step are
tabulated in Table 1 for the reader's reference. We have justi®ed the use of time steps tab-
ulated in Table 1 for the present study through the time-step re®nement test. By cutting the
time step by half, the maximum di�erence between the solutions computed under ®ner time-
step conditions and those presented in this paper is less than 4% in the time interval of
06 t6 40. As t > 60, two computed solutions are essentially the same. This time-step re®ne-
ment study shows the appropriate choice of the time steps tabulated in Table 1 for Reynolds
numbers in the range of 506Re6 2500. We now provide evidence that within each time step

Table 1

Time increments chosen in the transient analysis

t Dt Iteration number needed

0±0.2 0.005 �1500

0.2±1 0.025 �1000

1±5 0.05 �500

5±20 0.1 �250

20±50 0.25 �200

50±500 0.5 �150

500±1000 1 �100

1000±5000 2.5 �50

5000±10000 2.5 �20

Fig. 2. Illustration of the geometry of the two-dimensional channel with a backward-facing step. The physical domain

has been non-uniformly discretized with a mesh of 145� 40 for the Reynolds number Re at 2500.
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working variables converge to their time-accurate solutions. Due to space consideration, we
only show in Fig. 3 that solutions are indeed convergent at t � 1, 10, 100 and 1000 for the
case of Re � 2500.

As is usual, we compared the present solutions with experimental solutions that are available in
the published literature. A comparison was made by plotting the streamwise velocity pro®les in
Fig. 4 for di�erent Reynolds numbers, namely Re � 100, 389 and 1000. This comparison shows a
good agreement with the data of Guerrero and Cotta [12]. As to the comparison with the ex-
perimental data, it is found a good agreement with reliable data [1] at least for Reynolds numbers
lower than 450, further con®rming the validity of the ®nite volume code presented in the previous
section. The di�erence between two sets of data computed for the case of is mainly attributed to
the omission of y-coordinate in the analysis.

Fig. 3. Error reduction plots for showing convergent solutions are indeed obtained for the case of Re � 2500: (a) from

t � 0:975 to t � 1; (b) from t � 9:9 to t � 10; (c) from t � 99:5 to t � 100; (d) from t � 999 to t � 1000.
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Among the basic ¯ow features pertinent to the investigated channel is the ¯ow separation from
the step corner. As can be seen in Fig. 5, the ¯ow is essentially a potential ¯ow in the startup
stage, at which a no-slip condition is impulsively imposed on the step plane. A sudden change in
the streamwise velocity at the upper corner of the step plane causes a vortex to form, as seen in
Fig. 5 at t � 1. This local shear-induced vortex, a�ected by the dissipative nature of the ¯uid
viscosity, convects downstream. As bounded by the step plane, the channel ¯oor and the inlet
high-momentum ¯ux, the vortex is forced to move downward in its subsequent evolution.

The points at which the ¯ow reattaches and separates are crucial to determine the recircu-
lating zone. We determine these points using the theory of topology [13], which will be discussed

Fig. 4. Comparison of the computed streamwise velocity pro®les with the experimental results of Armaly et al. [1] and

the numerical results of Guerrero and Cotta [12]: (a) Re� 100; (b) Re� 389; (c) Re� 10000.
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later. With the point of separation in the step corner and the point of reattachment on the ¯oor,
a zone of ¯ow reversal is formed immediately behind the step. Since ¯ow reversals in the pri-
mary eddy have signi®cant impact on the hydrodynamics and heat transfer rates, it is worth-
while to clarify the extent of these ¯ow reversals. We thus plot reattachment lengths x1, as scaled
with the step height S, against Reynolds numbers in Fig. 6. Clearly seen from this ®gure is that

Fig. 5. Computed streamlines during the transient development phase, between t � 0:01 � 20 for the case of Re � 2500.
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the normalized reattachment length increases linearly with the Reynolds number. For Reynolds
numbers less than 600, these normalized reattachment lengths compare favorably with experi-
mental data [1]. While discretization errors due to false di�usion are unavoidable, the di�erence
in x1 between the present numerical calculation in ®ner grids and the experimental measurement
can be explained as being caused by the three dimensionality of the ¯ow where the vortex
stretching term is signi®cant [14]. For laminar ¯ows in the range of 06Re6 450, we referred to
them as being essentially self-similar in the sense that the computed normalized reattachment
lengths lie on a single curve.

With the primary eddy being stably formed behind the step, the expansion ¯ow has a tendency
to curve toward the channel roof, thus forming a family of convex streamlines. Along the channel
roof, the bending streamlines have a tendency to form a new separation zone containing ¯ow
reversals. The rotation direction is, however, opposite to that found in the main bubble behind the
step plane. Unlike the primary eddy, this secondary separation eddy is formed due to the adverse
pressure gradient in association with the expansion ¯ow created by a sharp change in the channel
sectional area. This eddy was observed experimentally ®rst by Armaly et al. [1] and was later
con®rmed numerically by Kim and Moin [15]. According to our computation, the secondary eddy
is not steadily attached to the channel roof until the Reynolds number increases to 450. It is,
however, important to note that in the course of ¯ow development the secondary eddy does

Fig. 6. Comparison of experimental (Armaly et al. [1], with the channel width of B � 35) and numerical (present, 2D)

results for the reattachment lengths x1 and x5 and separation length x4 for Reynolds numbers no larger than Re � 2500.
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appear at a Reynolds number with a value much small than 450. In the early transient period, the
presence of such eddy is gradually dissipated by the ¯uid viscosity. The curved streamlines formed
over the channel roof provide a mechanism opposing ¯ow reattachment to the channel ¯oor and,
thus, preventing the continuous increase of the length of x1.

Before closing this section, we present a parametric study by varying the Reynolds number,
with an aim to know at what Reynolds number the new recirculating bubbles burst. Numerical
exercises reveal that at Reynolds number 400, the separation-reattachment ¯ow pattern is not
observed near the channel roof. With an increase of Reynolds number up to Re � 450, the re-
circulating region attached to the channel roof becomes visible. At the Reynolds number
Re � 500, this eddy, as shown in Fig. 7, is clearly revealed. When the Reynolds number increases
continuously to 2100, the second separation-reattachment phenomenon at the channel ¯oor is
found. For a clear representation of eddy formation, we present computed ¯owlines for Re � 500,
1000, 1500, 2000 and 2500 in Fig. 7.

While the steady-state eddies, as shown in Fig. 7, are quite simple in their structure, the ¯ow
physics is rather complex. Physical complexities are attributable to the eddy formation and
mergence. In support of what we claimed, we adopted the theory of topology [13] to ®nd critical
points from the computed velocity ®eld. Due to space consideration, we only plot in Fig. 8 critical
points for the case of Re � 2500 at t � 80. There exist 44 critical points which fall into topological
types shown in this ®gure.

4.2. A detailed description of ¯ow evolution

The geometry of the channel that is used for this study is simple. Nevertheless, the ¯ow
structure which evolves in the wall-bounded channel is fairly complex. Our interest in this section

Fig. 7. Computed streamlines at di�erent Reynolds numbers: (a) Re � 500; (b) Re � 1000; (c) Re � 1500; (d) Re � 2000;

(e) Re � 2500.
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is to provide a complete picture of the startup ¯ow structure downstream of the step. Due to space
considerations, ¯ow complexities were shown only for the Reynolds number Re � 2500 to deepen
our insight into the expansion ¯ow structure in the channel.

For illustration purposes, we plot ¯ow lines (or instantaneous streamlines) in Figs. 5 and 9. By
de®nition, ¯ow lines are locally tangent to the computed vector ®eld. These lines, thus, help to
reveal the inherent vortical ¯ow structure. As can be seen in Fig. 5, the impulsively started ¯ow
over a step has a nominally potential ¯ow character which was experimentally con®rmed [16].
Also, this essentially elliptical ¯ow pattern can be theoretically supported by adopting the
Batheman principle [17] and its extension to viscous ¯ow [18]. According to Ecer et al. [19], ve-
locity vectors in the Navier±Stokes equations can be decomposed into a potential part, r/, ir-
rotational part, srg, and, lastly, second-order tensor dissipative attributions. Here, /; s; g are
the velocity potential, entropy and Lagrangian multiplier, respectively. In the startup stage, the
¯ow becomes rotational in regions immediately adjacent to the step corner. The ¯ow is regarded
as being nominally irrotational under these circumstances. Even subject to sudden imposition of a
no-slip condition on the channel wall, the ¯ow is essentially not a�ected by the ¯uid viscosity in
the impulsively starting stage. These theoretically plausible reasons explain why the startup ¯ow is
characterized as having a potential nature.

To study the time-varying ¯ow physics, we plot a sequence of frames of streamlines, starting
from t � 0 and terminating at the dimensionless time t � 104, for the case with Re � 2500. A
concentrated single vortex around the step corner is found from these ®gures. The shed vortex is
convected with the expansion ¯ow and moves toward the downstream channel ¯oor. While this

Fig. 8. Topological ¯ow structure at t � 80 for the case of Re � 2500.
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shed vortex is subjected to ¯uid viscosity and is, thus, dissipated, the vortical ¯ow is strengthened
by the ¯ow entrainment from the inlet ¯ow which undergoes an expansion process. Part of the
¯uid moves upstream and enters into the recirculation zone, and this increases the extent of the
primary ¯ow regime. As seen in Fig. 10, the reattachment length x1 increases monotonically with
time for the case of Re � 2500 and gradually approaches its asymptotic value at a time near
t � 2000. Here, the reattachment point is de®ned as the point which is determined from two most

Fig. 9. Computed streamlines in the time range of t � 20 � 10000 for the case of Re � 2500.
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adjacent solution points, at which the velocity component u changes sign, and is extrapolated to
the location at the channel ¯oor.

Flow entrainment gradually intensi®es the vortex and extends its vortical regime toward the
channel ¯oor, thus forming a single, elliptical recirculation eddy behind the step. According to
Fig. 9, this primary recirculating bubble is essentially stationary. The primary eddy behind the
step develops progressively, leading to convex streamlines which gradually generate an adverse
pressure gradient along the channel roof. As time advances to t > 5, the secondary eddy be-
comes clearly visible in Fig. 5. Unlike the mechanism leading to the primary eddy formation
behind the step, the secondary eddy forms due to adverse pressure created by the sudden step
expansion. For Reynolds numbers higher than 450, once the secondary eddy forms at the
channel roof, it will persist in its subsequent ¯ow evolution. The length of x5, as seen in Fig. 10,
also increases smoothly with an increase of time up to t � 4000, at which point an asymptotic
value of 46.4 is reached. It is worth noting that the time needed for x1, x3 and x4 to reach their
asymptotic values is approximately the same. As to values of x2 and x5, they slowly evolve to
their asymptotic values at a time around t � 4000. As t > 5000, the ¯ow is essentially at the
steady state.

As time advances to t � 8, as shown in Fig. 5, a new vortex with its rotating direction opposite
to that of the primary vortex forms in the region bounded by the primary eddy and the solid walls,
comprising the step plane and the channel ¯oor. As t > 11, another eddy which splits from the
primary eddy forms in the region above the corner eddy. For three eddies con®gured in this
manner, a saddle point emerges in the primary recirculating bubble. The eddy in the vicinity of the

Fig. 9. Continued.
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step corner enlarges with time and compresses the eddy at the intersection of two walls which are
perpendicular to each other. According to the solutions computed at Re � 2500, a third recir-
culating bubble forms at the bottom plane and becomes clearly visible at t � 17. This eddy has
been experimentally con®rmed and is known to cause streamwise adverse pressure gradients to
form on the channel ¯oor.

As time goes by, the roof eddy persists in the subsequent evolution and changes its pattern by
showing a new counter-rotating pair of vortices which trail behind the original secondary eddy.
Three eddies arranged in this form, as shown in Fig. 9 at t � 25, pave the way for the second
saddle formation in the channel. The middle eddy in the primary circulation bubble splits into two
eddies with rotation directions opposite to each other. Like the two other recirculating bubbles,
the third bubble formed at the channel ¯oor sheds two smaller trailing eddies at t � 30. After
another Dt � 5, the ¯ow has a tendency to detach from the upper wall due to the concave curved
¯owlines and the established adverse pressure gradient. According to the rotation direction of ®ve
small eddies in the primary bubble, three saddles are visible at t � 40. Within the primary re-
circulation zone, eddies increase in number of pairs but are more stretched. For example, there
exist seven smaller eddies in the primary bubble at t � 50. Later on, the third ¯oor recirculating
bubble can be clearly visible at t � 80. Multiple small eddies merged. Owing to the ¯uid viscosity,
such an eddy mergence regularizes the ¯ow pattern in the eddy formed immediately behind the
step shown in Fig. 8, which plots the solution at t � 80.

As Fig. 9 shows, the ¯ow for Re � 2500 gradually approaches its steady-state. Compared with
these impulsively started ¯ow patterns, the eddy structure within each recirculating bubble be-
comes increasingly simple, and the ¯ow gradually becomes steady. We selected points �x; z�, as
marked by � in Fig. 11(a), and ploted the velocity as a function of time shown in Fig. 11(b). This

Fig. 10. Time history of the reattachment lengths x1, x3, x5 and the separation lengths x2, x4 for the case of Re � 2500.
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helps us to show the existence of ¯ow steadiness at a time t > 2000. To give readers a complete
picture of the eddy shedding, it is instructive to plot in Fig. 12 the pressure distribution along the
¯oor, roof and the step of the channel, respectively. Plots shown in Fig. 12 help to con®rm the
formation of time-varying secondary eddies and their progression in the channel.

Fig. 11. Computed streamwise velocities at Re � 2500: (a) At di�erent x locations for the u�x; y; 10000�; (b) Time history

for points marked in Fig. 11(a).
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5. Concluding remarks

It is the objective of the current study to add to the existing knowledge about expansion ¯ow
structure in the channel with a backward-facing step. The computed results lead to the con-
clusion that the laminar ¯ow shows an elliptically potential nature in the very beginning of ¯ow
expansion. This is followed by increasingly important ¯ow vorticity. Laminar ¯ow with a
concentrated vorticity near the step corner separates from the step and convects with the in-
stantaneous streamlines and reattaches to the channel ¯oor. The accompanying curved
streamlines form a new separation zone containing recirculation ¯uids along the channel roof.
The adverse pressure gradient causes this roof eddy to form and will persist throughout the
entire evolution since t � 5. Afterwards, ¯owlines di�er in their opposite curvatures. An envi-
ronment leading to downstream vortex sheddings, with increasing intensity, is thus established.
Within the primary eddy as well as in each adverse pressure gradient induced recirculating
bubble, smaller eddies emerge among themselves in a way that saddle points are seen. Using the
theory of topology, the ¯ow can be sketched, providing detailed information on the ¯ow
structure by virtue of computable topologically critical points. Close examination of the com-
puted solutions reveals that the ¯ow will evolve to its steady state for all the investigated
Reynolds numbers.

Fig. 12. Computed pressure distribution along the channel ¯oor, roof and the step.
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