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We present in this paper partial differential equations which govern three-dimensional acoustic wave
propagation in fluid-elastic media. Working equations are parabolized so as to allow the analysis
to be conducted in a plane-by-plane fashion. This simplification, while permitting only outgoing
wave propagation, facilitates the analysis and cuts down on computing time and disk storage. To
couple working equations in fluid and elastic layers, we impose physically relevant conditions on
the interface. On the horizontal interface we demand continuity of the normal displacement and
normal stress. In addition, physical reasoning requires that shear stresses vanish on the interface
for the present analysis, which is formulated under the inviscid flow assumption. We approximate
spatial derivatives with respect to θ and z using the second-order accurate centered scheme. The
resulting ordinary differential equation is solved using the implicit scheme to render also second-
order prediction accuracy in r. With a numerical scheme, it is highly desirable to be able to check
its prediction against suitable test problems, preferably ones for which an exact solution is available.
In this three-dimensional study, test problems were chosen to demonstrate the applicability of the
code to the individual fluid and elastic layer. We have also verified that the code is applicable to
analysis of wave propagation in water and elastic layers, across which there is an interface.

1. Introduction

Over the past few decades, intensive research efforts have been devoted to understanding

ocean acoustic wave propagation. The rapid growth of high-speed computers and ever-

improving numerical techniques offer distinct advantages for numerical exploration into

the propagation details of acoustic waves. It is now well accepted that the computational

acoustic technique has made a significant contribution to the ocean acoustics community,1

as is evidenced by the increasing use of analysis codes developed. Most existing underwater

acoustic propagation models have been developed to provide solutions to problems involving

water layer. The ocean is, however, surrounded by land and is bounded above by air and
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186 T. W. H. Sheu et al.

below by an elastic bottom. With this in mind, we have focused our attention on the

three-dimensional elastic-fluid acoustic model. To the authors’ knowledge, this work is still

at an early development stage. Thus, it is necessary to provide a review of underwater

acoustic wave propagation models in existence.

Early work on the subject of underwater wave propagation dates back to the work of

Tappert2 and McCoy.3 Wales and McCoy4 further compared different parabolic theories for

modeling the elastic wave propagation in linearly elastic solids. In 1985, Greene presented

a well-known model, SHAPE5 (Seismic High-Angle PE), to permit numerical simulation of

a high-angle, one-way seismic wave propagation along rough and sloping interfaces. This

model was later refined by Wetton and Brooke6 who replaced the original rational lin-

ear approximation with the bilinear square root approximation. Recently, the fluid-elastic

interface problem gradually became the focal research attention aimed at gaining a better

understanding of the underwater acoustic wave propagation. Early development in this area

resorted to idealizations in order to make the problem tractable. Thomson and Mayfield7

derived a local reacting boundary condition at the fluid-elastic interface to account for wave

propagation in two adjacent layers. Papadakis8 applied the “impedance + IFD” condition

in their derivation of boundary condition to simulate an elastic bottom. Another important

contributions to the fluid-elastic interface treatment were due to Collins9,10 and Shang and

Lee.11 Hudson12 was among the very few authors who considered three-dimensional elas-

tic propagation problems. He derived working equations, written in terms of displacement

variables, but made no attempt to implement them into the numerical computation. More

recently, Nagem et al.13 and Lee and Nagem14 formulated a set of elastic parabolic equa-

tions, paving the way for the later derivation of a three-dimensional coupled fluid-elastic

model.15 In this paper, we develop a space-marching code for equations governing the wave

propagation in fluid-elastic medium. It is hoped that this newly developed computer code

provides an alternative to a simulation which has the ability to account for shear wave

propagation on the fluid-elastic interface.

The outline of this paper is as follows: in Sec. 2, the parabolized differential model gov-

erning wave propagation in an ocean environment is introduced. The formulation includes

sufficient details provided for the reader’s reference. In order to faithfully describe the prop-

agation details, it is important to couple two differential systems via interface conditions

which dictate continuity of normal displacement and normal stresses. On the interface, it is

physically rational to assume zero-shear stresses. In Sec. 3, we discretize the spatial deriva-

tives with respect to θ and z using a second-order centered scheme. In Sec. 4, we briefly

describe the space marching scheme which provides second-order accuracy in the marching

direction using the implicit scheme. Owing to the use of a marching solution algorithm, it

is possible to solve the three-dimensional problem plane-by-plane in a direction moving out-

wards from the sound source. This greatly reduces the disk storage demand and, of course,

the computing time. This is followed by the fundamental study of the difference scheme.

The emphasis is placed on the modified equation analysis and the stability analysis. In

Sec. 6, the second-order accurate finite-difference code is validated through analytic tests

to benchmark the scheme performance. Finally, Sec. 7 presents the conclusions.
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A Space Marching Scheme for Underwater Acoustic Wave Propagation . . . 187

2. Mathematical Model

In this section, we follow the work of Lee et al.15 to rederive the mathematical model for

numerical simulation of underwater acoustic wave propagation in three dimensions. As

is usual in underwater wave acoustic analyses, we consider here wave propagation from a

harmonic sound source. In this study, the problem is formulated in cylindrical coordinates

(r, θ, z), where r, θ, and z represent the range, azimuth, and depth variables, respectively.

Given the harmonic nature of a sound source in the ocean, it is legitimate to replace

the physically correct hyperbolic wave equation with the elliptic Helmholtz equation for

the acoustic pressure field.16 Following the parabolic approximation of Tappert,2 the three-

dimensional far-field equation can be reduced to a second-order homogeneous ordinary dif-

ferential equation for v(r) and a partial differential equation for u(r, θ, z):

∂2v

∂r2
+

1

r

∂v

∂r
+ k2

0v = 0 , (2.1)

∂2u

∂r2
+

(
1

r
+

2

v

∂v

∂r

)
∂u

∂r
+
∂2u

∂z2
+

1

r2

∂2u

∂θ2
+ k2

0[n2(r, θ, z)− 1]u = 0 . (2.2)

In the above equations, k0(≡ 2πf/c0) and n(r, θ, z)(≡ c0/c(r, θ, z)) represent the refer-

ence wavenumber and the index of refraction, respectively. We denote that c0 is the reference

sound speed, c the sound speed, and f the source frequency. Solutions to Eq. (2.1) can be

analytically represented as a combination of solutions for incoming and outgoing waves. As

our attention is focused on the outgoing wave, the closed-form solution to Eq. (2.1), thus,

can be represented by a zeroth-order Hankel function of the first kind H
(1)
0 (k0r). Upon

application of the far-field approximation (k0r � 1), the analytic solution v(r) approaches

(2/πk0r)
1
2 exp(i(k0r − (π/4))).

The derivation is followed by simplifying the range variable coefficient ((1/2)+(2/v)vr ) as

2ik0. This approximation parabolizes Eq. (2.2) and, thus, facilitates the three-dimensional

analysis in that solutions can be computed plane-by-plane marching outwards from the

sound source. Upon application of approximation |∂2u/∂r2| � |2ik0(∂u/∂r)| to Eq. (2.2),

the parabolic equation for u(r, θ, z) can be derived as follows1:

∂u

∂r
= ik0(−1 +

√
1 +X + Y )u , (2.3)

where

X = (n2 − 1) +
1

k2
0

∂2

∂z2
, (2.4)

Y =
1

k2
0r

2

∂2

∂θ2
. (2.5)

The derivation of equations is followed by considering equations which govern the prop-

agation of harmonic waves in an inhomogeneous layer beneath the ocean. The medium of
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188 T. W. H. Sheu et al.

the present interest is essentially elastic in nature. The physical properties which can repre-

sent the elastic bottom include Lame’ constants, λ and µ, and density ρ. Of the potential4

and displacement12 approaches, we adopt the potential approach since it can be used in

conjunction with the aforementioned three-dimensional scalar parabolic Eq. (2.3).

In the elastic medium, the stress tensor τ can be expressed as a function of the displace-

ment vector u and Lame’ constants17:

τ = λ(∇ · u)I + µ(∇u+ (∇u)T ) . (2.6)

For the linear elastic medium that is locally isotropic, the propagation of time-harmonic

stress wave, with a radian frequency ω, is governed by the equation

∇ · τ + ρω2u = 0 . (2.7)

Following the Helmholtz decomposition,13 it is appropriate to decompose the displacement

vector into rotational and expansion parts. This rigorous theory permits the replacement

of displacement vector u with the sum of the displacement potentials φ and ψ as follows13:

u = ∇φ+∇× ψ . (2.8)

It is noted that the vector potential ψ accommodates the divergence-free property

∇ · ψ = 0 . (2.9)

The medium under investigation is that its Lame’ constants (λ, µ) and density ρ are

allowed to vary in space but are invariant in time. With this in mind, we may express

the Lame’ parameters, density, and displacement vector as the sum of their corresponding

values, indicated by the superscript “(0)” and the much less spatially varying quantities,

indicated by the superscript “(1)”; i.e. qi = q
(0)
i +q

(1)
i , (qi = λ, µ, ρ, u). Substituting qi first

into Eqs. (2.8) and (2.9) and then into Eq. (2.7), a set of uncoupled Helmholtz equations

can be derived in cylindrical coordinates for the leading scalar potential φ(0) and the vector

potential ψ0(≡ ψ(0)
r , ψ

(0)
θ , ψ

(0)
z ).15

Upon substitution of φ = r
−1
2 A(r, θ, z)eikLr, ψθ = r

−1
2 Bθ(r, θ, z)eikT r, ψr =

r
−3
2 Br(r, θ, z)e

ikT r and ψz = r
−1
2 Bz(r, θ, z)e

ikT r into the resulting equations, equations

for unknowns A, Bz, Br and Bθ can be derived. It is noted that ψr, ψθ, ψz are not linearly

independent. Instead, they are constrained by the following divergence-free condition:

∂ψr
∂r

+
ψr
r

+
1

r

∂ψθ
∂θ

+
∂ψz
∂z

= 0 . (2.10)

To facilitate the analysis, the following two square root approximation operators are

invoked in the study:

√
1 +X + Y = 1 +

1

2
X − 1

8
X2 +

1

2
Y −O(X3, Y 2) , (2.11)

(
√

1 +X + Y )−1 = 1− 1

2
X +

3

8
X2 − 1

2
Y +O(X3, Y 2) . (2.12)
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A Space Marching Scheme for Underwater Acoustic Wave Propagation . . . 189

The operators shown above are defined by XL = (1/k2
L)(∂2/∂z2), YL = (1/k2

Lr
2)(∂2/∂θ2),

XT = (1/k2
T )(∂2/∂z2), LT = (1/k2

T r
2)(∂2/∂θ2) where k2

L = ρω2/(λ + 2µ), k2
T = ρω2/µ.

Substitution of Eqs. (2.11) and (2.12) into equations for A, Bz, Br and Bθ yields

∂A

∂r
= ikL

(
1

2
XL −

1

8
X2
L +

1

2
YL

)
A , (2.13)

∂Bz
∂r

= ikT

(
1

2
XT −

1

8
X2
T +

1

2
YT

)
Bz , (2.14)

∂Br
∂r

= ikT

(
1

2
XT −

1

8
X2
T +

1

2
YT

)
Br −

1

2ikT

(
1− 1

2
XT +

3

8
X2
T −

1

2
YT

)
∂Bz
∂z

, (2.15)

∂Bθ
∂r

= ikT

(
1

2
XT −

1

8
X2
T +

1

2
YT

)
Bθ −

1

2ikT

(
1− 1

2
XT +

3

8
X2
T − 1

2YT

)
2

r3

∂Br
∂θ

. (2.16)

3. Interface Conditions

The formulation remains to prescribe conditions on the interface between the elastic medium

and the fluid layer and results in a well-posed problem. For simplicity, the fluid-elastic inter-

face is assumed to be a plane. Field variables at the horizontal interface can be calculated

either from the layer above the interface or from the layer below it. We use the subscript

“1” to indicate the fluid layer and the subscript “2” to denote the elastic medium. On

physical grounds, displacement vectors are continuous across the interface of two media.

Thus, continuity of normal displacement implies that

∂φ1

∂z
=
∂φ2

∂z
+
ψθ
r

+
∂ψθ
∂r
− 1

r

∂ψr
∂θ

. (3.1)

Another interface condition is derived by considering normal stress components. Physical

reasoning dictates continuity of normal stresses between layers of different media:

−ρω2φ1 = −λk2
Lφ2 + 2µ

(
∂2φ2

∂z2
+
∂2ψθ
∂r∂z

+
1

r

∂ψθ
∂z
− 1

r

∂2ψr
∂θ∂z

)
. (3.2)

Given that the liquid above the interface is inviscid, two shear components tangential to

the horizontal interface must vanish. This gives the following interface conditions needed

to blend two adjacent layers having different material properties:

2

r

∂2φ2

∂θ∂z
+

1

r

∂2ψθ
∂r∂θ

+
1

r2

∂ψθ
∂θ
− 1

r2

∂2ψr
∂θ2

+
∂2ψr
∂z2

− ∂2ψz
∂r∂z

= 0 , (3.3)

2
∂2φ2

∂r∂z
+
∂2ψθ
∂r2

+
1

r

∂ψθ
∂r
− ψθ
r2
− ∂2ψθ

∂z2
+

1

r2

∂ψr
∂θ

+
1

r

∂2ψz
∂z∂θ

− 1

r

∂2ψr
∂r∂θ

= 0 . (3.4)

To make the mathematical model well posed for the simulation of acoustic wave propagation

in the fluid-elastic environment, it is also important to demand satisfaction of the divergence-

free equation, given in (2.10), on the interface.

J.
 C

om
p.

 A
co

us
. 1

99
9.

07
:1

85
-2

06
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 N

A
T

IO
N

A
L

 T
A

IW
A

N
 U

N
IV

E
R

SI
T

Y
 o

n 
02

/2
1/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.



190 T. W. H. Sheu et al.

For the sake of coupling equations defined in their respective layers, the interface condi-

tions derived above are reformulated according to the factorization described earlier for the

medium in the elastic layer. The resulting interface conditions, indicated by the superscript

“I”, are as follows:

1

r

∂BI
r

∂r
+

1

r
ikTB

I
r +

1

r

∂BI
θ

∂θ
+
∂BI

z

∂z
= 0 , (3.5)

∂uI

∂z
eik0r =

∂AI

∂z
eikLr +

(
∂BI

θ

∂r
+BI

θ ikT −
1

r2

∂BI
r

∂θ

)
eikT r , (3.6)

−ρω2uIeik0r =

(
−λk2

LA
I + 2µ

∂2AI

∂z2

)
eikLr

+ 2µ

[
∂2BI

θ

∂r∂z
+ ikT

∂BI
θ

∂z
− 1

r2

∂2BI
r

∂θ∂z

]
eikT r , (3.7)

0 =
2

r

∂2AI

∂θ∂z
eikLr +

(
− 1

r3

∂2BI
r

∂θ2
+

1

r

∂2BI
r

∂z2
+

1

r

∂2BI
θ

∂r∂θ

+
1

r
ikT

∂BI
θ

∂θ
− ∂2BI

z

∂r∂z
− ikT

∂BI
z

∂z

)
eikT r , (3.8)

0 =

(
2
∂2AI

∂r∂z
+ 2ikL

∂AI

∂z

)
eikLr +

(
−2

∂2BI
θ

∂z2
− k2

TB
I
θ +

2

r

∂2BI
z

∂θ∂z

)
eikT r . (3.9)

Following the same idea of finite difference approximation of spatial derivatives with respect

to z and θ, as considered in Ref. 15, the resulting matrix equation for field variables on the

interface is

∂

∂r
(AI , BI

z , B
I
r , B

I
θ )T = [dij ](A

I , BI
z , B

I
r , B

I
θ )T + S (3.10)

where

[dij ]=



∆zikL
∂

∂z

∆z

r
ei(kT−kL)r ∂2

∂θ∂z
0 −∆zei(kT−kL)r

(
∂2

∂z2
+
k2
T

2

)

−2

r
∆zei(kL−kT )r ∂2

∂θ∂z
ikT∆z

∂

∂z
∆z

(
1

r3

∂2

∂θ2
− 1

r

∂2

∂z2

)
−∆z

ikT

r

∂

∂θ

0 −r ∂
∂z

−ikT − ∂

∂θ

−∆zei(kL−kT )r

(
λ

2µ
k2
L

∂2

∂z2

)
0

−∆z

r2

∂2

∂θ∂z
∆zikT

∂

∂z


(3.11)
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and

[S] =



(
∂A

∂r

)
M+1,l(

∂Bz
∂r

)
M+1,l

− ∆z

r

1

2∆θ

(∂BI
θ

∂r

)
M,l+1

−
(
∂BI

θ

∂r

)
M,l−1


0

γ∆zei(k0−kT )ruM−1,l +

(
∂Bθ
∂r

)
M+1,l


. (3.12)

Interested readers should refer to Ref. 18 for additional details of the derivation of equations

given in (3.10–3.12).

Before proceeding to the numerical analysis of fluid-elastic acoustic wave propagation

equations which are coupled through interface conditions, it is instructive to summarize

here the differential system as follows:

∂U

∂r
= MU +N (3.13)

where U represents the solution vector U = (u, AI , BI
z , B

I
r , B

I
θ , A, Bz, Br, Bθ)

T . In the

above equation, N is the vector function resulting solely from the interface condition. The

coefficients in the matrix equation Mij(i = 1 ∼ 9) are detailed in Ref. 18.

4. Space Marching Solution Algorithm

The first step in solving the matrix equation (3.13) is to discretize spatial derivatives with

respect to z and θ. The inherent physical nature of these terms allows us to discretize them

using the centered scheme to render second-order accuracy in θ and z. Having discretized

equations with respect to θ and z, the finite difference solutions can then be solved from

the resulting ordinary differential equation.

The solutions to Eq. (3.13) are solved in a plane-by-plane fashion, starting from the

initial solution plane r = r0. The analysis is followed by forward marching in the direction

of an increasing value of r. Within each marching step ∆r, the solutions at the solution

plane are computed from

Un+1 − U (n+1)/2 =
∆r

2
M (n+1)/2U (n+1)/2 +

∆r

2
N (n+1)/2 , (4.1)

or

Un+1 =

(
1 +

∆r

2
M (n+1)/2

)
U (n+1)/2 +

∆r

2
Nn+1/2 . (4.2)
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192 T. W. H. Sheu et al.

Upon substitution of Mn+1/2 = (1/2)(Mn+1 + Nn), Un+1/2 = (1/2)(Un+1 + Un) and

Nn+1/2 = (1/2)(Nn+1 + Nn) into Eq. (4.1), the following equation is derived to compute

the solution vector Un+1:

Un+1 =

[
1− ∆r

4
(Mn+1 +Mn)

]−1{[
1 +

∆r

4
(Mn+1 +Mn)

]
Un +

∆r

2
(Nn +Nn+1)

}
.

(4.3)

Iteration continues to update the matrix M and vector N until the tolerance specified

a priori for convergence of Un+1 is reached. The above marching solution algorithm is

shown in Sec. 5 to provide second-order accuracy in r. Thus, the discretization scheme

chosen here provides uniform second-order accuracy in all spatial directions.

To obtain a better understanding of the matrix equation from which U is solved, we plot

in Fig. 1 the profile of the coefficient matrix. As seen in the figure this matrix is characterized

by sparsity and asymmetry. This matrix also shows a rich and complex interaction structure

between the fluid and elastic media. Clearly evident in Fig. 1 is the interface conditions

which largely increase the matrix sparseness and, thus, complicate the analysis.

Fig. 1. The matrix profile obtained from fluid-elastic differential equations at a fixed radial plane r. The
number in the figure represents the row and column of the 200× 200 matrix equation.
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5. Fundamental Study of the Discretization Scheme

Efforts to obtain a full understanding of the finite difference scheme applied to simulate

wave equations in fluid and elastic layers require detailed knowledge of the scheme feature.

As is common in fundamental study of the finite difference scheme, we conduct in fluid

and elastic media modified equation analyses of the discretized equations, from which the

accuracy order of the scheme can be obtained. Von-Neumann stability analysis is also

conducted to make sure that stable solutions can be obtained.

For the purpose of conducting fundamental study of the working equation in the fluid

layer, we write the working equation for u as follows:

∂u

∂r
= au+ buzz + cuzzzz + duθθ , (5.1)

where

a =
ik0

2
(n2 − 1)− ik0

8
(n2 − 1)2 , (5.2)

b =
i

2k0
− i(n2 − 1)

4k0
, (5.3)

c =
−i
8k3

0

, (5.4)

d =
i

2k0r2
. (5.5)

To assure the stability of the discretization scheme used in this study, we perform Taylor

series expansion of the terms shown in the finite-difference equation of (5.1) to yield

un+1
m,l =

(
1+a∆r−2∆r

b

∆z2
+6∆r

c

∆z4
−2∆r

d

∆θ2

)
unm,l+∆r

b

∆z2
(unm+1,l+u

n
m−1,l)

+ ∆r
c

∆z4
(unm+2,l−4unm+1,l−4unm−1,l+u

n
m−2,l)+∆r

d

∆θ
(unm,l+1+unm,l−1) . (5.6)

We then approximate un+k
m±f,l±g = ξn+keiP∆z(m±f)eiQ∆θ(l±g) (k = 0, 1; f = 1, 2; g = 1)

and substitute them into Eq. (5.6). After tedious mathematical effort, we can derive the

amplification factor as follows:

ξ ≡
un+1
m,l

unm,l
=

1− iA
1 + iA

, (5.7)

where A involves the wavenumber in the z-direction, P , and the wavenumber in the
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θ-direction, Q:

A =
1

2
∆r

[
k0

2
(n2 − 1)− k0

8
(n2 − 1)2

]
+

∆r

∆z2

[
1

2k0
− (n2 − 1)

4k0

]
[1− cos(P∆z)]

+
∆r

∆z4

1

8k3
0

[3 + cos(2P∆z)− 4 cos(P∆z)] +
∆r

∆θ2

1

2k0r2
[1− cos(Q∆θ)] . (5.8)

The essential feature of the amplification factor shown in Eq. (5.7) is that its magnitude is

unconditionally less than one. Thus, the discretization method employed here is considered

to be able to provide stable solutions.

The analysis is followed by deriving the modified equation for Eq. (5.1). By conducting

Taylor series expansions on every term shown in (5.6), we can derive the modified equation:

∂u

∂r
− au− buzz − cuzzzz − duθθ

=

{
∆r

(
∂u

∂r

)
− (a∆r)unm,l − b∆r

(
∂2u

∂z2

)
− c∆r

(
∂4u

∂z4

)
− d∆r

(
∂2u

∂θ2

)}

+

[
∆r2

2!

(
∂2u

∂r2

)
+

∆r3

3!

(
∂3u

∂r3

)
+

∆r4

4!

(
∂4u

∂r4

)

− b∆r (∆z)2

12

(
∂4u

∂z4

)
− d∆r

(∆θ)2

12

(
∂4u

∂θ4

)]
. (5.9)

This modified equation justifies the scheme accuracy. The scheme is clearly shown to have

the potential of producing an accuracy order of O(∆r2, ∆r∆z2, ∆r∆θ2), thereby revealing

that the present discretization scheme accommodates the consistency property. Based on

the above two fundamental studies, which assure scheme stability and consistency, the

resulting scheme can be used with confidence to obtain convergent acoustic solutions in the

water layer. The underlying theory to draw the above conclusion is based on the equivalent

theorem of Lax.20,21

Given that some insight into the details of the scheme can be obtained through the

stability and modified equation analyses, the same fundamental study was undertaken on

elastic equations in order to provide justification for the validity of the three-dimensional

elastic finite-difference model. An examination of differential equations applied to elastic

media reveals that each equation bears a close resemblance to the equation in the water.

They differ only in the physical meaning of the field variable u and, of course, the expres-

sions a, b, c, d shown in (5.1). Using the approach similar to that considered earlier, the

amplification factor for the scheme applied to the elastic layer is obtained as

|ξ| =
∣∣∣∣1− iAelastic

1 + iAelastic

∣∣∣∣ , (5.10)
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where

A =
1

2k0

∆r

∆z2
[1− cos(P∆z)] +

∆r

∆z4

1

8k3
0

[3 + cos(2P∆z) − 4 cos(P∆z)]

+
∆r

∆θ2

1

2k0r2
[1− cos(Q∆θ)] . (5.11)

To this point we can conclude from Eq. (5.10) that the proposed scheme is also uncondi-

tionally stable.

To obtain accuracy order of the scheme employed in this study, we also conduct modified

equation analysis for a representative equation in the elastic medium. While the derivation

of the modified equation is elaborate, it is worthwhile since this theoretical analysis, which

predicts an accuracy order O(∆r2, ∆r∆z2, ∆r∆θ2) enables us to know that the scheme

accommodates the consistency property for equations governing the acoustic wave prop-

agation in elastic media. By Lax’s equivalent theorem,20,21 convergent solutions can be

obtained without a doubt.

6. Numerical Results

Before any computational results can be deemed reliable enough to help us understand

better the physical phenomena, the computational model must be validated analytically.

Exact solutions to the present investigated working equations are possible in only a few

select cases with very special geometry and boundary condition. These solutions, when

they exist, are essential for the validation of numerical models proposed and computer

codes developed. In this study, we considered three analytic problems which are chosen to

demonstrate the applicability of the code to simulation of acoustic wave propagation in a

water layer, in an elastic layer, and, of course, in a water-elastic layer.

6.1. Analytic validation study in the water layer

The first problem was chosen to verify the code, which is only applicable to a water layer.

This problem was first tested by Ewing et al.22 to demonstrate the validity of their deriva-

tion. As a demonstration problem, we modified our three-dimensional code by reducing

one dimension so that the computed solutions could be compared with the exact solutions

uexact given originally in Ref. 11.

uexact =
2π

H

√
2

πr

∑
n

1√
kn
ei(ωt−knr−

π
4

)Φ1(kn) sin(ξnd) sin(ξnz) , (6.1)

where

Φ1(kn) =

−
(
ρ1

ρ2

)(
c4

β4
2

)(
ηn
ξn

)
knH√

c2
v2

1

− IQn cos(ξnH)
, (6.2)
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Qn =
ρ1

ρ2

c4

β4
2

 sin(ξnH)√
c2

v2
1

− 1

√
1− c2

α2
2

1 +

1− c2

α2
2

c2

v2
1

− 1

−

knH

√
1− c2

α2
2√

c2

v2
1

− 1

sec(ξnH)




−4


√

1− c2

β2
2√

1− c2

α2
2

+

√
1− c2

α2
2√

1− c2

β2
2

+ 2

√
1− c2

α2
2

√
1− c2

β2
2

− 2

(
2− c2

β2
2

) cos(ξnH) , (6.3)

ξn = kn

√
c2

v2
1

− 1 , (6.4)

ηn = kn

√
1− c2

α2
2

, (6.5)

kn = 2π
f

c
. (6.6)

In this study, material properties and flow conditions were chosen to be the same as those

given in Ref. 11. These values are H = 100 cm, ρ1 = 1 g/cm3, ρ2 = 1.97 g/cm3, c1 =

1507.5 m/s, α2 = 1725 m/s, v1 = 1500 m/s, f = 68.03 Hz, d = 25 m, β2 = 1530 m/s.

For additional details of this test problem, the reader is referred to the work of Shang and

Lee.11

In the rectangular physical domain, 1000 m ≤ r ≤ 1020 m, 0 ≤ z ≤ 1000 m all the calcu-

lations were performed on uniform grids of different grid resolutions. The prediction errors

computed on continuously refined grids are cast in the L2 − norm. As shown in Table 1,

which tabulates the L2 − error norms, we can computationally demonstrate the validity

of the code applied to the water layer. For completeness, we also compare the computed

and exact solutions at some selected (θ, z) locations. As is evident from Fig. 2, which plots

the ratios of two sets of data against r, the computed solutions compare favorably with the

corresponding exact solutions.

6.2. Analytic validation study in the elastic layer

To verify the applicability of the code to simulation of equations in the elastic bottom,

we considered the wave propagation in an unbounded three-dimensional elastic layer. The

problem chosen was first studied by Rayleigh23 and later considered by Lee et al.24 This

test problem is characterized by having the following exact solutions:

Aexact = − F0

4πρω2

ikLr
3/2 cos θ eikL(

√
r2+z2−r)

r2 + z2
, (6.7)
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(Br)exact =
F0

4πρω2

ikT zr
3/2 sin θ eikT (

√
r2+z2−r)

r2 + z2
, (6.8)

(Bθ)exact =
F0

4πρω2

ikT zr
1/2 cos θ eikT (

√
r2+z2−r)

r2 + z2
, (6.9)

(Bz)exact =
F0

4πρω2

ikT r
3/2 sin θ eikT (

√
r2+z2−r)

r2 + z2
, (6.10)

where KL = (ρω2/(λ + 2µ))1/2, KT = (ρω2/µ)1/2, F0 = ρ
∫∫∫

QdΩ. It is noted that Q is

a concentrated (or delta function) force per unit mass placed at the origin. In this study,

we start the computation at the range value r = 200 m and terminate the analysis at the

range value r = 210 m using a range increment ∆r = 1 m. All physical parameters needed

to compute the numerical solutions in physical domain bounded by 200 m ≤ r ≤ 210 m,

−∆θ ≤ θ ≤ ∆θ, and 0 ≤ z ≤ 5∆z are chosen the same as those given in Ref. 23. These

values are ρ = 2400 kg/m3, ω = 1000 πHz and ∆θ = 1◦.

Table 1. The computed L2–error norms for the test prob-
lem, given in Sec. 6.1, at different marching locations. The
solutions are computed on uniform grids of different sizes,
∆ = 5 m, 6.25 m, 10 m.

r ∆ = 10 m ∆ = 6.25 m ∆ = 5 m

1001 3.751150E−05 3.689550E−05 3.678120E−05

1002 7.499360E−05 7.388670E−05 7.365480E−05

1003 1.125600E−04 1.109720E−04 1.106200E−04

1004 1.501100E−04 1.481250E−04 1.476670E−04

1005 1.877480E−04 1.854140E−04 1.847770E−04

1006 2.255690E−04 2.227970E−04 2.220380E−04

1007 2.634610E−04 2.602190E−04 2.593790E−04

1008 3.014000E−04 2.977660E−04 2.968080E−04

1009 3.394720E−04 3.353980E−04 3.343700E−04

1010 3.776580E−04 3.731360E−04 3.720470E−04

1011 4.161540E−04 4.109790E−04 4.098420E−04

1012 4.551400E−04 4.488950E−04 4.477790E−04

1013 4.947700E−04 4.869240E−04 4.858110E−04

1014 5.352890E−04 5.250920E−04 5.239420E−04

1015 5.768340E−04 5.633850E−04 5.621530E−04

1016 6.195150E−04 6.017890E−04 6.003780E−04

1017 6.633880E−04 6.402870E−04 6.386780E−04

1018 7.084520E−04 6.789010E−04 6.768970E−04

1019 7.547600E−04 7.176100E−04 7.149860E−04
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Fig. 2. The computed ratios between the numerical and exact solutions against r for the problem considered
in Sec. 6.1.

Fig. 3. The computed ratios between the numerical and exact solutions for the field variable A against r for
the problem considered in Sec. 6.2.
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As shown in Figs. 3–6, our finite-difference solutions for dependent variables compare well

with the analytic solutions. With the code thus validated, we further assessed the marching

scheme through a rate of convergence test. The predicted L2–error norms computed on

continuously refined grids are tabulated in Table 2, from which the rate of convergence can

be obtained, as seen in the table.

Fig. 4. The computed ratios between the numerical and exact solutions for the field variable Br against r
for the problem considered in Sec. 6.2.

Fig. 5. The computed ratios between the numerical and exact solutions for the field variable Bθ against r
for the problem considered in Sec. 6.2.
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Fig. 6. The computed ratios between the numerical and exact solutions for the field variable Bz against r
for the problem considered in Sec. 6.2.

Table 2. The computed L2–error norms for A, Br, Bθ ,
Bz, at different locations r for the test problem given in
Sec. 6.2. These solutions are computed at different grid
sizes, ∆ = 4 m and 5 m, from which the rates of conver-
gence, log(err1/err2)/ log(∆z1/∆z2), are computed.

A

r ∆ = 5 m ∆ = 4 m Rate

201 5.862480E−10 4.600200E−10 1.086620E+00

202 1.141590E−09 9.171250E−10 9.811330E−01

203 1.669270E−09 1.373780E−09 8.730720E−01

204 2.174080E−09 1.832210E−09 7.666930E−01

205 2.662100E−09 2.294220E−09 6.664880E−01

206 3.140360E−09 2.760990E−09 5.769740E−01

207 3.616320E−09 3.232980E−09 5.021550E−01

208 4.097370E−09 3.709890E−09 4.451980E−01

209 4.590250E−09 4.190560E−09 4.082580E−01

210 5.100580E−09 4.673060E−09 3.923040E−01
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Table 2. (Continued )

Br

r ∆ = 5 m ∆ = 4 m Rate

201 3.948080E−08 2.772370E−08 1.584300E+00

202 7.966860E−08 5.404860E−08 1.738750E+00

203 1.198260E−07 7.942560E−08 1.842850E+00

204 1.591010E−07 1.045540E−07 1.881460E+00

205 1.966180E−07 1.302190E−07 1.846550E+00

206 2.315650E−07 1.570910E−07 1.738950E+00

207 2.632670E−07 1.855460E−07 1.567900E+00

208 2.912380E−07 2.155640E−07 1.348380E+00

209 3.152150E−07 2.467200E−07 1.097950E+00

210 3.351650E−07 2.782460E−07 8.340700E−01

Bθ

r ∆ = 5 m ∆ = 4 m Rate

201 2.816990E−09 1.946550E−09 1.656380E+00

202 5.440910E−09 3.695900E−09 1.733060E+00

203 8.094050E−09 5.403780E−09 1.810630E+00

204 1.068260E−08 7.098820E−09 1.831500E+00

205 1.314160E−08 8.825800E−09 1.784070E+00

206 1.541670E−08 1.062220E−08 1.669350E+00

207 1.746500E−08 1.250630E−08 1.496640E+00

208 1.925750E−08 1.447130E−08 1.280490E+00

209 2.078060E−08 1.648570E−08 1.037570E+00

210 2.203570E−08 1.849780E−08 7.843020E−01

Bz

r ∆ = 5 m ∆ = 4 m Rate

201 4.342530E−10 2.945270E−10 1.739940E+00

202 8.713870E−10 5.846590E−10 1.788340E+00

203 1.304710E−09 8.753340E−10 1.788670E+00

204 1.726590E−09 1.172220E−09 1.735430E+00

205 2.129200E−09 1.480290E−09 1.629030E+00

206 2.505310E−09 1.802470E−09 1.475530E+00

207 2.848830E−09 2.138730E−09 1.284810E+00

208 3.155340E−09 2.485720E−09 1.068970E+00

209 3.422330E−09 2.837040E−09 8.405370E−01

210 3.649310E−09 3.183850E−09 6.114760E−01
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6.3. Analytic validation study in the fluid-elastic layer

Having verified the code in both water and elastic layers, we can proceed to verify the code

developed for modeling the fluid-elastic equations used together with the physically sound

interface conditions. To the best of our knowledge, a closed-form solution to this coupled

system of equations is still lacking. Therefore, we assign a priori an explicit source vector

f
9×1

to (3.13) to make the resulting equation amenable to exact solutions given by

φ(r, z, θ) = r2z6θ3 + ir2z6θ3 , (6.11)

where φ stands for r, AI , BI
z , BI

r , BI
θ , A, Bz, Br and Bθ.

As is usual in grid-independent tests, we carried out analyses on uniform grids of different

resolutions. The solutions are computed on continuously refined grids and their prediction

errors are cast in L2–error norms. For completeness, we also plot field variables at θ = 5◦

and z = 50 m against r. As shown in Figs. 7–11, the computed solutions were in good

agreement when compared to the analytic data. This test validates the computer code

developed on the personal computer (PetuiumΠ) to predict fluid-elastic wave propagation

in three dimensions.

Fig. 7. The computed ratios between the numerical and exact solutions for the field variable u against r for
the problem considered in Sec. 6.3.

7. Concluding Remarks

We have presented a finite difference scheme to solve a parabolized set of fluid-elastic equa-

tions. These three-dimensional equations are subject to physically relevant interface condi-

tions. On the horizontal interface, we demand continuity of the normal displacement and
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Fig. 8. The computed ratios between the numerical and exact solutions for the field variable A against r for
the problem considered in Sec. 6.3.

Fig. 9. The computed ratios between the numerical and exact solutions for the field variable Br against r
for the problem considered in Sec. 6.3.
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Fig. 10. The computed ratios between the numerical and exact solutions for the field variable Bθ against r
for the problem considered in Sec. 6.3.

Fig. 11. The computed ratios between the numerical and exact solutions for the field variable Bz against r
for the problem considered in Sec. 6.3.
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the normal stress. In addition, physical reasoning requires that the shear stresses vanish

on the interface for the present analysis which is formulated under the inviscid flow as-

sumption. We discretize spatial derivatives with respect to θ and z using the second-order

centered scheme. The resulting ordinary differential equation in r has been solved using the

implicit Crank-Nicolson marching scheme to render second-order prediction accuracy in r.

The proposed differential system formulated within the potential framework has been ana-

lytically verified. Three analytic test problems were chosen to demonstrate the applicability

of the code to the individual fluid and elastic layer. We have also provided computational

evidences to show that the code is applicable to analysis of wave propagation in water and

elastic layers, in between which there is an interface.
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