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Abstract

We consider in this paper several flow problems which are featured by

having time-varying physical domains. The flow equations under
investigation are Navier-Stokes equations for the incompressible fluid flow
and the Euler equations for the highly compressible flow. The physical
domain which varies with time adds additional complexities to the analysis
of nonlinear partial differential equations which govern the fluid flows of
the present interest. Depending on the nature of the time-varying physical
domain, we extend flow analysis codes developed on fixed grids to moving

and sliding grids so as to facilitate the analysis. As a first step in developing -

analysis codes to simulate the incompressible and compressible fluid flows
in an arbitrarily configured domain, we consider some problems amenable
to analytic solution to verify the ideas adopted and the code developed here.
This is followed by investigating some geometrically complex problems of
industrial importance.

Keywords: Navier-Stokes equations, Euler equations, moving grids, sliding
grids.
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1.Introduction

With the advent of faster computers with larger
core memories and ever-improving computational
techniques, computer simulation nowadays is playing an
increasingly prominent role in large-scale industrial

flow modelings or in configurations which are difficuit
to measure data in experiments, With this in mind, in
the last decade we have developed finite volume and
finite element codes, with success, to simulate
incompressible Navier-Stokes equations and  Euler
equations, respectively. The approaches of which full
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details can be found in [1-3] enable us to perform a
detailed examination of the flow. Current efforis are
directed toward the full use of the advantageous
attributes of the computational fluid dynamics by
extending the afore-mentioned codes formulated within
the fixed grid context to their moving counterpart.
While it is more elaborate and demanding than models
implemented on fixed grids, the numerical simulation of
flow problems on moving grids offers significant
advantages and greatly extends the application scope.

Several numerical solutions to problems with
moving boundaries have been reported. Among which,
working equations formulated on moving coordinates
and moving grids are often referred to. In the first class
of methods for computing flows in a domain with
arbitrarily moving boundaries, it is demanded that the
field equations be formulated in general moving
coordinates. The formulation of equations can be
derived under the concept of Lie derivative [4]. This
concept has been applied with success to compute flow
fields around moving bodies by Ogawa and Ishiguro {5].
In their approach the computational coordinates fixed to
the body move in space.

Another class of methods devised to achieve the
same goal is to formulate field equations on moving
grids. While the formulation on moving grids has
enjoyed generality and, thus, has wider application
scope, field equations which express physical
conservation laws are constrained by the surface
conservation law (8CL) and the volume conservation
law (VCL). SCL was first pointed out by Trulio and
Trigger [6] who dictated that cell volumes be closed by
its surface while VCL demanded that the volumetric
increment of a moving cell must be equal to the sum of

the changes along the surface that encloses the volume,

The necessity of incorporating this constraint condition
into the formulation was not recognized until it was
reiterated by Thomas and Lombard [7]. Later Demirdzic
[8] and Warsi [9] also recognized the SCL as the
fundamental constraint condition which should be
solved together with the other conservation equations.
Thomas and Lombard generalized these two laws in
their pioneer work [7]. They called it the geometric
conservation laws {GCL), establishing the conservative
relations of the surfaces and volumes of the control cells.
A flow simulation that does not satisfy the GCL, which
governs the spatial volume element under an arbitrary
mapping, produces errors and, thus, affects the solutions
in two ways [10]. The numerical violation of the SCL
leads to an erroneous representation of the convective
velocities. In the case when the GCL is not solved
simultaneously with other conservations, errors thus
produced are represented as extra sources or sinks and
are added to the physical conservation equations. Some
representative  papers are useful for the readers'
reference {11-17].

More recently, an analysis which features its

formulation on sliding grids has been proposed as
another alternative to numerical simulation of problems
with time-dependent grids [18-19]. The motivation
behind the application of grids to flow analysis comes
from the idea that has been frequently used in the area
of solid mechanics. We will exploit this idea to
problems which involve a rotating device in a restrictive
physical domain.

The present paper is organized as follows. In
Section 2, working equations for incompressible
Navier-Stokes and compressible inviscid Euler
equations are presented. Section 3 concentrates on
moving grids for both flows while on sliding grids
simply for the incompressible viscous fluid flows.
Section 4 will detail methods by which finite element
and finite volume solutions can be accurately predicted.
This paper is followed by the description of the
problems which-are chosen to validate the methods
proposed here. In Section 5, results are presented
without paying too much attention on the discussion of
results. In Section 6, we make concluding remarks.

2. Mathematical equations

We consider in this paper two flows of different
characters. The first problem concerns the
incompressible Navier-Stokes equations which are
formulated on moving or on sliding grids. For
completeness, we also consider compressible Euler
equations, which govern the gas dynamics in two
dimensions and are expressed on moving grids.

2.1 Incompressible Navier-Stokes equations

For simplicity, we will restrict our attention to the
analysis of two-dimensional viscous incompressible
flow. The nature of this flow is governed by the
continuity equation and the Navier-Stokes equations
given as follow:

u +v, =0, (1
u, vuu, +vu, =—p, +p(u, +u,), )
v, tuv, +w, =—p + v, _+v,). (3)

In the above equations, we denote by p and », v the
pressure and velocity components, respectively. For
simplicity, the kinematic viscosity of the fluid is
considered uniform. Starting with the implementation of
a divergence-free initial velocity vector, we seek a
solution of (1-3) subject to proper boundary conditions.

2.2 Compressible Euler equations

Unlike the working equations given in {1-3) which
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are cast in the primitive-variable form, the equations system, the change of ¢ with time takes as the sum of
which are appropriate to describe inviscid and highly the change due to moving grids and the change due to
compressible gas dynamics are formulated in the strong the field variable itself which varies with time. The
conservation law form above physical interpretation can be mathematically

realized through the following identity equation.
U  9F 8G aU ou U

—_—t—t+—=—+A—+B—=0, @
o x ot ox o
¥ o @ =—¢ +(u,,v, ) Vb (10)
ot (X ot (x, ¥}
where
In the above equation, (&7) and (xy) denote
U= [Pa P, py, Pe]? s &) moving and fixed coordinates. Equation (10), which
formulates the core of the present analysis, introduces
F =[pu, pu® + p, puv,u(p+ pe)]r, (6) grid velocities u,, v, into the flow formulation
' conducted on a time-varying domain:
G= [pv, puv,pv’ + p,v(p+ pe)]r , ) o
u, =— (11)
0., 1, 0. Q. ot &
g} Fa - (3-1m, ~(y-1yv, (-1
- —uv, v, 1, Q. y
(Y- Lua’® —yue, ye-3(y-1(@* +24%), ~(r-Dav, Ve =] (12)
&
8 o .
Upon  substituting equation (10) for a
o. 0. 1, 0 representative field variable to the momentum equations
_u; v u 0 formulated on fixed grids, equations (2-3) cast on
B Ll > ] . . .
B (y—1u, G-y, -1 moving grids become

2 ] 2 2
(r=tva’=pe, ~(r=Di ye—s(r= D@ +20, u, +(u—uu +@-vu, =-p +p, +u,) (13)
®

v +u—u v, =y, v, =—p +u{v, +v, )  (14)

In the above equations, p is denoted as the density,

p the pressure, u, v, the velocity component along x and
y direction respectively. e is the specific total energy, y
is the specific heat ratio and a is velocity defined by
a=(u* +v*)"?. For the sake of closure, the equation of

What is remarkable is that these equations bear close
resemblance to their counterpart equations cast in fixed
grids. A direct consequence of this resemblance is that
the numerical solution of equations (13-14) requires no
state for ideal gas is considered in the present study: additional consideration other than that paid to the
discretization of equations (2-3). The most difficult task

1 1
=(y~Dple-=u®*-=v*). The main reason of .
p=(-Dple 2 “ 2 V) © - © is with the geometrical conservation law which has a

representing working equations in conservation law close relevance to the grid velocities shown in equations
form is that such a formulation permits the simulation of (13-14). These two equations and equation (1), which is
physical shocks and contact discontinuities in the flow invariant in moving grids, constitute the core of the
interior. analysis for simulating problems where part of the

surface bounding the flow region moves in time.
3.Flow analyses on time-dependent physical domain

3.2 Flow calculations on sliding grids
As alluded to earlier, we carry out flow analyses on

moving and sliding grids. We begin by presenting some For the description of analysis on sliding grids, we
fundamentals for the methods adopted here. consider Navier-Stokes equations cast in cylindrical

. . . coordinates (r,6,z):
3.1 Flow calcuiations on moving grids

The basis for an analysis formulated on moving 100v) 10v, _

0 (15)
erids is as follows. For a field variable in a moving grid r o r &



312 Transactions of the Aeronautical and Astronautical Society of the Republic of China, Vol.30, No.4 (1998)

v, 18

?+r—67( Yo+ (v.,v.)

J12 By Lo v ) v v B, w. B

rér ar’ r®\r M@} r r* oo o
(16)

v, 12 19

% o (ern)-'-rae(vs’va)

19, o, la[vava vy, 2vdy, vy, 1lop

et R Wt e B A LA A T

rér o roe\r o0 r e ore
17

The analysis begins with the change of

independent variables in between fixed coordinates
(r,6.z.0) and rotating coordinates
(r'=r,0=0-wt,z' =z, =t). The rotation frequency
is denoted as w, As a result of this transformation, the
- relations between velocity components v, and v, and
their comresponding velocity components read as
w,=v, and w,=v, —wf. Application of the chain rule
leads to the working equations in rotating coordinates

% 10 10 18 rpdd
o RO R U g m TR

Lo La o
R& R

(18)
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Figure 1: An illustration of two layers of grids which
slide each other.

Referring to Fig.1, two layers of grids slide to each
other. The main idea behind the analysis formulated on
sliding grids is that flux retains conservation across the
sliding boundary. With this underlying idea in mind, it
is a simple matter of extending the analysis scope to
sliding grids by rewriting v,, v, and at the grid point ‘N’
to achieve the flux conservation. The resulting velocities
are obtained as:

. er,‘l '8x|+1 +er, '5x1
v, = AX (19)
I3
v = VBN,” 'Sxm +Ve~, axj (20)
v
AX,
P, bx, +P, -bx
P',; = i X‘IX N; i (21)
P

4,Discretization methods for working equations
formulated on moving and sliding grids

Having derived the working equations on moving
and sliding pgrids, we are to solve for dependent
variables from them. Three analysis codes have been
developed from scratch in the last decade. One was
developed on the basis of finite volume method for
analyzing three-dimensional Navier-Stokes equations.
The other two are finite element codes developed for
analyzing high-speed gas dynamics in two dimensions
and for sinulating three-dimensional Navier-Stokes
equations, respectively. Due to space limitation, these
codes are not detailed here.

4.1 Petrov-Galerkin monotone finite element modet
for incompressible flow simulation

There have been quite a few methods which can be
applied with greater success to analyze MNavier-Stokes



Tony W.H. Sheu C.C. Fang S.K. Wang and Y.H. Chen: Flow Calculations on Moving and Sliding Grids 313

equations. We lay emphasis on the mixed formulation to
ensure the satisfaction of divergence free character of
the velocity vector which serves as a constraint on the
motion of incompressible fluid flow. For the sake of
presentation of the method, we will herein restrict
ourselves to the two-dimensional analysis to enlighten
the essential features embodied in the proposed method.

in what follows, we applied the method of
weighted residuals to obtain the weak statement of the
working equations, For retaining a smooth pressure
solution, choice of finite eclements warrants a
consideration. The guideline is that the element in use
must accommodate the LBB stability condition [20-21].
In the approximation of flux derivatives, the obstacle to
giving a satisfactory scheme is attributed to convective
terms which involve first derivative terms. For correctly
accounting for the real physics in multiple dimensions,
the downwind coefficients should be considered less
significant than the upwind coefficients. Furthermore,
the downwind coefficients should be negligibly small in
comparison with those at the upwind nodes in the
convective dominance case. For providing a upwinding
effect to the formulation, the test space selected for use
requires that test space be different from the basis space
to erthance the stability of the discrete system. It is also
desired to introduce the strearnline operator into the
formulation when constructing the test space. A direct
benefit is that much of the false diffusion errors can be
reduced in the simulation of multi-dimensional fluid
flow where convective effect prevails.

The soie use of upwinding treatment, however, can
not guarantee the solutions to be entirely monotonic. It
may lead to a solution of unstable nature in the vicinity
of sharp layers. Consequently, it has been a considerable
impetus towards developing a genuine multi-
dimensional monotone method for the transport
equation. As inspired by the findings of Ahue's and
Telias [22], we construct finite element stiffness matrix
which falls into an M-matrix category [23-24]. To this
end, we incorporate an exponential additive to the test
function. It leads to

A
B,(&m= H—%(é—&)} [— B;v’ (n—n,)]

- I}M )

(22)

where /, and h, are grid sizes. It is emphasized that o
and B are local parameters designed for providing a
better solution accuracy. Substitution of the above test
and basis functions to the weighted residuals statement,
it yields a system of algebraic equations. One can refer
to reference [3] for additional details.

4.2 Taylor-Galerkin finite element model with FCT
filtering capability

Finite element method has ostensible advantages of
providing geometric flexibility, application versatility,
and automatic implementation of boundary conditions
of the Neumann type. Besides these advantages, finite
element analysis has a theoretical foundation to prove
the convergence of solutions. Thus, use of the finite
element method in modeling high speed compressible
flow with possible discontinuities is on the rise in the
field of aeroacoustics and gas dynamics.

The key to solving the above hyperbolic system
given in (4-9) is to introduce the characteristic features
into the discretization of flux terms. There are many
characteristic discretization schemes to choose from.
Among them, the characteristic finite element method
{25], the discontinuous Galerkin method [26], the
discontinuity capturing SUPG method [27], and the
FCT finite element method [28-29], are often referred to.
Whether there exists one approach which outperforms
the others is not yet completely trivial to us and is
believed to be a subject of continuous investigation.

Following the essence of the Taylor Galerkin
model [30], we expand the flux terms via Taylor series
expansion and then replace the higher-order time
derivatives with the spatial derivatives. Inclusion of
these higher-order terms brings in the hyperbolic
property and, thus, enhances scheme stability and
improves also phase accuracy. Having approximated the
time derivative terms, we proceed to discretizing the
remaining differential equations which involve only
spatial derivatives by -applying the Galerkin weighted
residuals model. While stability of the discrete
hyperbolic system has been enhanced, the added
artificial viscosity causes the accuracy to deteriorate.
Very often, numerical spreading is too excessive to
allow accurate prediction of the transport phenomenon.
Thus, there is strong motivation to develop an accurate
scheme while retaining good stability in regions
containing high gradient profiles.

The monotone positivity-preserving scheme was
first investigated by Boris and Book {31] who proposed
the Flux-Corrected-Transport (FCT) solution algorithm.
This algorithm was later generalized by Zalesak [32]
and extended to multi-dimensional analyses. The idea
behind this nonlinear flux comrection method is to
combine a high-order scheme with a low-order scheme
so that the former scheme can be used in smooth regions
and the monotonic low-order scheme is in the vicinity
of discontinuities. Later, Erlebacher [33] and Parrot et al.
[34] applied the FCT technique to finite element flow
analysis. Motivated by the success of Lohner et al. [35],
the flux corrected transport technique of Boris and Book
[31] will be employed in conjunction with the Taylor-
Galerkin finite element model to solve the hyperbolic
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system. Full details of this finite element code is given
in [2].

By employing the Reynolds transport theorem as
Probert indicated in [34], we have the following
expression which invokes the reference frame speed

(uxivy):

d _{2 i
= LUWa’Q - _[ = UW)d+ L{ax (e UW) +
(23)
g)-(quW)}dg

This equation enables us to derive [wau 16t d0 as
follows:

JlWa

L(UW)dQ _LU 2 an- LW{—(M U)+

Q= L—(UW)dQ LU——-—dQ.

%(H'VU )}dQ (24)

By definition, the reference frame velocity takes on the
same value as the mesh velocity, yielding

aw
=0 25
i (25)

The finite element equations on moving grids are thus
derived as

MSU" =CF" +CG" +8 (26)
where
M =[m7] 7
MY = L{N,N Leaa (ar\;, A+a—aA;LB)N}
+L Atz[aN‘[ 2N, g2
ax ax ay
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+ B4 +B dQy’
oy Ox dy
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4.3 Finite volume method for the incompressible
fluid flow

In the past decade we have developed an analysis
code for simulating incompressible Navier-Stokes
equations based on the finite volume method. To
simulate the realistic flow problems involving complex
geometry, we performed the analysis on curvilinear
coordinate system. In curvilinear coordinates, full
transformation approach which features the use of
contravariant velocities as working variables was
considered. The transformed equations bear a close
resemblance to the equations formulated on Cartesian
coordinates. As a result, flux discretization schemes so
far developed on Cartesian coordinates can be applied to
discretize the transformed equations. For solving a
large-scale problem, we have a preference for a
segregated method. Velocities and pressure are solved
iteratively though a repeated correction of the solution
built in the SIMPLE solution algorithm.

Before proceeding into the result and discussion
section, we summarize here the discretized equation in
the following form:

Gubr = @by + @0y +ay0, +ay0, +b (34)
whére

a, = D, 4(|P.|)+max(- F,,0) (35)
a, = D, AP, |)+ max(~ F, 0) (36)
a, = D, A(P,|}+ max(- F,,0) 37
a; = D, A(P, )+ max(~ F,,0) (38)
F, =(oU),ay (39)
D2 40)
R:% where  i=e,w,n,s @n
4(p])=max(o,a-0.15]°) “2)
a® =p?’—i’:‘5—y 43)
b=, AxAy+a¢S (44)
a, =a,+a, +a, +ag+dap —S,AxAy (45)
S, = 5,0, +S, | (45)

5.Results and discussion

We will present in this paper several test examples
to show the applicability of three investigated codes to
simulate flows in time-evolving physical domain,
Description of flow physics embedded in the domain is
left for future study. :

5.1 Flow in a rolling-piston-type rotary compressor

The rolling-piston-type rotary compressor has been
widely used in the air-conditioner and refrigeration for
quite some time. Numerical exploration into this
problem is of practical importance to increase the
compressor efficiency without at the cost of increasing
the noise. The physical problem under investigation is
configured in Fig.2. The main components of the rotary
compressor comprise two circular cylinders. The
smaller circle, whose axis of rotation is not configured
co-axially with the larger one, rotates tangentially with
respect to the larger circle in the sense that there exists a
seeming contact point. It is this contact peint and the
up-and-down moving vane, which locates in between
the inlet and outlet port of the compressor, divides the
flow passage into two parts. Depending on the direction
of the inner rotating disk, the suction chamber is the one
in the downstream end of the rotary circle while the
compression chamber is on the upstream counterpart.
As the design requires, the inlet port is kept open and
the working gas is issued into the suction chamber. The
outlet port is always closed except at the time when a
high-pressure medium is discharged out of the
compressor. It is worthy to note that the vane which
moves up and down is used fo prevent the gap to occur
in between two chambers. The radius of the larger circle
is with the value of 1 while the smaller one has the
radius value of 0.873. The width of the vane is taken as
0.1.
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Figure 2: (a) The schematic of rolling-piston-type
il rotary compressor; (b) pressure contours
computed at t = 0.325.

As an initial boundary-valued problem, initial
conditions with p=1.4, p=1000, #=v=0 are prescribed to
start the calculation. The rotary piston rotates
counterclockwise with an angular speed w = =, The
results which contain itremendous data have been
presented in an animation fashion in the conference to
provide readers a clear picture of the flow evolution.

5.2 Flow in a flexible vessel

The flexible vessel whose boundary is allowed to
vary is shown schematically in Fig.3. This problem is
chosen to demonstrate the validity of the Petrov-
Galerkin finite element code formulated on moving
grids. At the initial time t= 0, the velocity at the inlet,
which is sufficiently upstream of the oscillating part of
the vessel, is fully-developed in the originally straight
vessel. As time develops, the flexible vessel of length
2 oscillates harmonicalty. At the opposite end which is
located sufficiently downstream of the flexible section
we prescribed there also a velocity profile of the zero-
gradient type. The rest of the boundary condition is that
of the no-slip type where velocity is prescribed with a
value of zero. We have also presented an animated
results in the conference. This facilitates 0s to gain
physical details of the time-evolving vortical flow due
to the oscillating motion of the flexible vessel.

5 . > I

(a)

(b)

Figure 3: (a) The schematic of the flexible vessel
containing a harmonic-moving section; (b)
the pressure contours computed at f =
0.51.

sliding boundary fixed wall

-

rotating
cylindaxr

solving on

rotating coordinates solving on

fixed coordinates

Figure 4: An illustration of the sliding grid -
configuration for the problem used to*
validate the code
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Figure 5: A comparison study of results computed
from equations formulated on moving
coordinates and sliding grids

5.3 Examples featured by having sliding grids

This paper is concluded by presenting results for
problems which are most suited to be analyzed on
sliding grids. The presentation of the results in this
category begins with a co-axial two cylinder flow. As
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Fig.4 shows, the inner cylinder rotates clockwise with a
frequency of w=1, while the outer cylinder is fixed. The
problem can be either analyzed in rotating coordinates
or in the grid system which contains two layers of grids.
One of which slides with another, in between which
theré is an interface. Results obtained by solving the
correSpondmg equations on their grids should provide
the same solutions. In the light of above discussion, we
can validate our code implemented on sliding grids. The
comparison is shown in Fig.5, from which it is clear to
see the close agreement between two sets of data.

We also present here some results of practical and
military importance using the commercially available
code, CFX, which also embodies the sliding grid
capab;hty Test problems are known as the flow
simulations in a mixing tank (Fig.6), cross-flow fan
(Fig.7), and the submarine flow with rotating propellers
(Fig.8). All these results are, as before, presented in the
animation for the illustration purpose.

(b) .
Figure r: (@) A scnemauc or cross-now 1an; (o) the
computed pressure contours

(a) {b)

Figure 6: (a) A Schematic of mixing tank with buffle
plates; (b) the computed limiting
streamlines on the tank side wall

w=I200rpm

flow out|

H

(a)

(2} (1)

Figure 8: (a) A schematic of submarine with
propellers in rotation; (b) the particle
traceriines near the propeller.

6.Concluding rémarks

This paper partly reports on three codes developed
in the past decade. These finite volume and finite
element codes have been originally developed on fixed
grids to solve for incompressible Navier-Stokes
equations in three dimensions. and compressible Euler
equations in two dimensions. The other focal point of
this study is on the extending of these codes to moving
and sliding grids. Test examples of academic as well
practical importance have been attempted to address the
usefulness of the sliding and moving grids to facilitate
the analysis.
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