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In this article, we present a composite scheme to solve the scalar transport equation
in a two-dimensional space. The aim of this study is to accurately resolve sharp
profiles in the flow. The theory of the M-matrix serves as the theoretical foundation
for achieving this goal. Attempts to extend the approach to resolve discontinuities
in all cases motivate the development of the composite scheme. For this study, a
conditionally monotonic Legendre polynomial finite element model is used together
with an unconditionally monotonic scheme. Computational evidence reveals that
the composite model improves stability while it maintains accuracy. The application
scope is thus greatly extended.c© 1998 Academic Press

1. INTRODUCTION

Attempts to understand the nature of the discretization scheme for Navier–Stokes equa-
tions could be considered as a first step towards a successful application of numerical me-
thods to practical flow simulations. However, Navier–Stokes equations are too complex for
researchers to conduct an in-depth fundamental analysis. As a result, the advective-diffusive
scalar equation, regarded as the simplest prototype equation capable of characterizing these
equations, is examined as a linear, steady-state model for Navier–Stokes equations in the
development of finite elements for problems in fluid dynamics. Detailed investigation of
this model equation is also preferable because it is amenable to analytic solution, thus
facilitating comparison studies conducted on discretization equations. The foregoing ex-
plains why this model equation has been extensively studied for several years.

For convection-dominated problems, use of center-based schemes such as the Galerkin
formulation may result in spurious oscillations, which in turn causes severe loss of accuracy
and stability. For this reason efforts were dedicated to suppressing these wiggles for the case
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of prevailing convection type. Besides numerical stability, solution accuracy, computational
efficiency, and case of programming are also viewed as being crucial factors in the deve-
lopment of an effective scheme. Retaining the scheme stability without sacrificing solution
accuracy motivates the present development of an advection-diffusion finite element model
in two dimensions.

In the presence of discontinuities, discretization schemes developed for solving convec-
tion-dominated problems have been mostly based on the total variation diminishing (TVD)
underlying concept [1]. While TVD schemes give good local suppression of high-frequency
oscillations near jumps, the lack of a multi-dimensional TVD constraint condition forbids
the extension to analyses involving spatial dimensions more than one. Different bounded
flux discretization schemes emerged accordingly. To the best of the authors’ knowledge,
the flux corrected transport (FCT) algorithm of Boris and Book [2], which was later gene-
ralized by Zalesak [3], is known as the first multi-dimensional high-resolution scheme so
far devised. Readers are referred to Woodward and Colella [4] who gave a thorough survey
of multi-dimensional discontinuity-capturing schemes.

We review recently developed schemes in the context of the linear scalar multi-dimen-
sional equation for pure advection and the scalar equation with advection and diffusion.
The Filter Remedy and Methodology (FRAM) of Chapman [5] and the scheme constructed
through use of flux limiters [6] have been applied to flow equations by one of the present
authors [7]. Among other schemes, the Simple High-Accuracy Resolution Program (SHARP)
[8] and Non-oscillatory Integrally Reconstructed Volume-Averaged Numerical Advection
(NIRVANA) scheme, developed by Leonardet al. [9, 10], and SMART (Sharp and Mono-
tonic Algorithm for Realistic Transport), developed by Gaskell and Lau [11], have also
gained wide popularity. More recently, the FCT algorithm has been used together with the
Taylor–Galerkin finite element framework to resolve sharp profiles [12–15]. Deconinck
et al. [16] has presented a class of truly multi-dimensional upwind schemes on unstruc-
tured cell-vertex grids. These schemes are featured by their compact stencils and are known
to produce sharp resolution of discontinuities with no overshoots. In 1988, Gale˜ao and
Carmo [17] proposed a consistent approximate upwind Petrov–Galerkin formulation for
convection-diffusion problems. Spurious oscillations can be well suppressed by means of
a discontinuity-capturing term added to the SUPG (Streamline Upwind Petrov-Galerkin)
method of Brooks and Hughes [18]. This discontinuity-capturing term also provides an
extra control over derivatives in the gradient direction.

The other class of approaches to construct oscillation-free solutions is to apply a global
positivity principle to explicit schemes [19, 20]. While the positivity principle has a sound
theoretical foundation and is easy to be implemented in existing computer codes, its scope
of application is limited to explicit schemes. Filtering techniques applicable to analyses
involving solving field variables from a simultaneous set of algebraic equations must be
devised. To avoid erroneous oscillations near jumps, refinements on test functions have
been made by Sheuet al.[21] who modified the SUPG model [18]. This modification helps
the stiffness matrix to be equipped with either the total variation diminishing property [1]
or the maximum principle [22–24]. The monotonic solution profile, thus, results. Instead of
modifying the test functions, Rice and Schnipke [20] and Hill and Baskharone [25] achieved
the same goal by evaluating the convection terms along the local streamline. Recently, Ahue
and Telias [24] used an exponential test function to construct an M-matrix. Inspired by
their idea, we have constructed a weighting function which favors the field variable at the
upstream side [26–29]. This upwind scheme and the mathematically rigorous theory of the
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M-matrix constitute the building block for capturing sharp gradients or discontinuities in
the flow.

In the following, we first describe in Section 2 the convection-diffusion model equation.
This is followed by a brief introduction to two monotonicity-preserving finite element
models. In our effort to obtain higher accuracy in the finite element model, we have made
full use of the two underlying monotonic schemes and combined them linearly to achieve
the goal without sacrificing stability. In order to validate the proposed flux discretization
scheme, we consider in Section 3 a problem with a closed-form solution in a square cavity.
In Section 4, two numerical examples are discussed, both of which have high-gradient
solutions. Attention is given to assessing the chosen weighting factorα, which characterizes
the accuracy, stability, and usefulness of the composite scheme proposed in this article. Some
conclusions are given in the last section.

2. MULTI-DIMENSIONAL FINITE ELEMENT MODELS

2.1. Model Equation

As a working equation for the development of the finite element model, we consider in
this paper the steady-state scalar equation. The model equation given below simulates the
transport of a passive field variable8 in a two-dimensional domain:

u8x + v8y = µ(8xx +8yy). (1)

For ease of illustration, we will restrict our attention to the case withu= c1, v= c2, where
ci (i = 1, 2)are constant values. This constant flow assumption avoids invoking linearization
of the equation. In what follows,µ is kept fixed in the simply connected domainD to
simplify our presentation of the proposed scheme. Since we are examining the elliptic
partial differential equation, we demand specification of8 on the entire boundary of the
physical domainD.

2.2. Finite Element Model

Our strategy for obtaining finite element solutions,8̂, to the transport Eq. (1) is to de-
mand that the residualR= u8̂x + v8̂y−µ(8̂xx+ 8̂yy) be orthogonal to the test space.
The derivation is followed by substitution of bilinear basis functions, sayNi for 8̂=∑4

i=1 Ni (ξ, η)8i , into the weighted residuals statement to yield stiffness matrices for each
element. This is followed by assemblage of elements and application of a frontal solver to
obtain finite element solutions. In the development of the finite element model, it involves
the selection of a test space to close the algebraic system. The choice of test (or weighting)
functions is crucial to the search for the weak solutions to Eq. (1) when the maximum values
of Pex = u1x

µ
andPey = v1y

µ
greatly exceed the critical value of 2.

2.2.1. Legendre polynomial finite element model.The upwind finite element model
is the method of choice to model the transport phenomena governed by Eq. (1). In our
approach, stability is enhanced through specification of spatially unequal weights so that
field variables at the upwind side are favored. To retain scheme consistency, application
of biased weighting to diffusive fluxes is also needed. Use of bilinear basis functions to
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approximate the scalar variable8 presents another difficulty in the finite element analysis
of Eq. (1). Difficulties arise from bilinear basis functions whose order is too low to render
accurate numerical integration of diffusive terms. Also, the biased part of the test function
which usually appears along with terms like∂Ni

∂x or ∂Ni
∂y causes the accuracy to deteriorate.

This suggests rational use of finite element spaces which permit infinite differentiation. It is
for this reason that Sheuet al.[27] chose Legendre polynomials to span weighting functions.
This is a desirable feature as it enhances convective stability for the model Eq. (1).

In a discretized domain with grid spacingshξ andhη, our implementation involves use
of weighting functions given by

Wi = Di [dξ0 P0(ξ)+ dξ1 P1(ξ)][dη0 P0(η)+ dη1 P1(η)]. (2)

Five coefficients are involved in the above equation which are given as

Di = 1

4
exp

(
uhξ ξi

2µ

)
exp

(
vhηηi

2µ

)
,

dξn =
2n+ 1

2

∫ 1

−1
Wξ (t)Pn(t) dt,

dηn =
2n+ 1

2

∫ 1

−1
Wη(t)Pn(t) dt,

where

Wξ (ξ) = (1+ ξi ξ) exp

(
−uhξ ξ

2µ

)
,

Wη(η) = (1+ ηi η) exp

(
−vhηη

2µ

)
.

Specific to our implementation is the introduction to Legendre polynomialsP0(t) = 1 and
P1(t) = t to the weighted residuals statement. Compared to our exponential finite element
model [28], the computational efficiency is gained from the orthogonal property given as∫ +1

−1
Pi (t)Pj (t) dt = 2

2i + 1
δi, j (i is the dummy index). (3)

This is a desirable feature because a considerable amount of CPU time is saved in the
calculation of integral terms. It is fair to conclude that the embedded orthogonal property
makes the model presented here particularly appealing and motivates us to rewrite the
bilinear shape functionsNi (ξ, η) as functions of Legendre polynomialsP0 andP1. For this
study the shape functions are spanned by Legendre polynomials as

Ni (ξ, η) = 1

4
[ P0(ξ)+ ξi P1(ξ)][ P0(η)+ ηi P1(η)]. (4)

According to the maximum principle, a real irreducible diagonally dominant matrix
whose off-diagonal entries are non-positive is essential to obtain a monotonic solution
profile. This suggests further investigation into whether the Legendre polynomial finite
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element framework can truly yield an unconditionally monotonic solution. As in the finite
difference method, we derive the representative equation for each node and assemble them
into a compact form involving a nine-point stencil. The weighting coefficients are func-
tions of Peclet numbers. By varying the values ofPex and Pey , we can determine whether
or not the matrix equation is equipped with the sufficient (but not necessary) condition,
without which monotonic solutions are impossible to compute. As this fundamental study
reveals, computed solutions are, by definition, monotonic when Peclet numbers fall below
3.6 [28].

2.2.2.Finite element model of Rice and Schnipke.As said earlier in Subsection 2.2.1,
use of the Legendre polynomial finite element model to solve Eq. (1) suffers from a restrictive
stability condition. This is a drawback in the sense that monotonic solutions can be obtained
only within a limited Peclet-number range. Too tight of a monotonicity leads to expensive
solution costs because many refined grids are needed. There is therefore a strong need for
a further refinement of the scheme. To this end, our strategy for improving computational
efficiency is to extend the range of monotonic stability. In this study, we use the scheme of
Rice and Schnipke [20] to extend the scope of application.

According to Rice and Schnipke [20], in each element the value ofus8s (≡u8x + v8y) is
taken as a constant value. Following the standard finite element procedures, the elementary
matrix equation, for the case ofu > 0, v > 0, is obtained as

0 0 0 0

0 0 0 0

−FpFn
us

1s A f −(1− Fn)
us

1s A f
us

1s A f −(1− Fp)
us

1s A f

0 0 0 0

 . (5)

For the notations involved in Eq. (5), they are defined as

Af =
∫ ∫

N3(ξ, η)|J| dξ dη, (6a)

0≤ Fp ≡ max

{
min

(
F1

F2
, 1

)
, 0

}
≤ 1, (6b)

0≤ Fn ≡ max

{
min

(
F4

F3
, 1

)
, 0

}
≤ 1, (6c)

where

F1 = v(−x2+ x1)+ u(y2− y1), (6d)

F2 = v(x3− x2)− u(y3− y2), (6e)

F3 = v(x4− x3)− u(y4− y3), (6f)

F4 = v(x4+ x1)+ u(y1− y4). (6g)

As shown Fig. 1,1s represents the length

1s= ((x3− x′)2+ (y3− y′)2
)1/2

. (7)
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FIG. 1. An illustration of notations involved in the finite element model of Rice and Schnipke.

3. DEVELOPMENT OF A HIGH-RESOLUTION COMPOSITE SCHEME

As a first step towards better understanding of the finite element models presented in the
previous section, we considered a problem that admits an analytic solution. The problem, as
configured in Fig. 2, is subject to analytically prescribed boundary data. The exact solution

FIG. 2. An illustrative example used in the fundamental study of finite element models.
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for the advection-diffusion Eq. (1) thus takes the boundary-layer form

8(x, y) = sin(πy) exp(r2x) exp[(v/2)(y− ys)]{1− exp[(r1− r2)(x − 1)]}
[1− exp(r2− r1)] sin(πys)

, (8)

whereh is the grid size and

u = µ

4h
cotθ,

v = µ

4h
,

θ = tan−1

(
v

u

)
,

ys = 1− 1

π
tan−1

(
2π

v

)
,

r1 = 1

2

[
u+

√
u2+ v2+ 4π2

]
,

r2 = 1

2

[
u−

√
u2+ v2+ 4π2

]
.

In this case, Peclet numbers are functions ofθ :

Pex =
1

4
cotθ,

Pey =
1

4
.

Computations were conducted in a unit square with continuous refinement of grids,
resulting in uniform grids with resolutions of 11×11, 21×21, 31×31, 41×41, and 51×51.
For this study, three different values ofθ (15◦, 2◦, 1◦)were considered. Clearly revealed by
the computedL2-error norms, as shown in Tables 1 and 2, is that the Legendre polynomial
finite element model is the method of choice for problems with lower Peclet numbers while
for cases with higher Peclet numbers, it is preferable to use the characteristic Galerkin finite
element model. Revealed also by this study is that oscillatory solutions are never found in
the characteristic finite element model. The Legendre polynomial finite element model, on
the other hand, outperforms the characteristic model in view of the improving prediction
accuracy. These tests support the idea of blending the two techniques together in the hope

TABLE 1

ComputedL2-Error Norms for the Problem

Defined in Section 3 Using the Legendre Poly-

nomial Finite Element Model

Grid θ = 15◦ (Pex = 0.933)

11× 11 2.125× 10−3

21× 21 1.660× 10−3

31× 31 8.979× 10−4

41× 41 4.763× 10−4

51× 51 3.040× 10−4
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TABLE 2

ComputedL2-Error Norms at Different Values of θ for the Problem, Defined

in Section 3, Using the Characteristic Galerkin Finite Element Model

Grid θ = 15◦ (Pex = 0.933) θ = 2◦ (Pex = 7.159) θ = 1◦ (Pex = 14.322)

11× 11 1.368× 10−1 1.420× 10−1 9.212× 10−2

21× 21 1.541× 10−1 9.768× 10−2 5.905× 10−2

31× 31 1.414× 10−1 8.614× 10−2 5.331× 10−2

41× 41 1.267× 10−1 8.165× 10−2 5.147× 10−2

51× 51 1.133× 10−1 7.843× 10−2 4.990× 10−2

of extending the range of application while still minimizing the oscillations and, in turn,
the prediction errors. In this way, we suggest

A = (1− α)A|Legendre-polynomial+ αA|characteristic Galerkin. (9)

In still remains to determine the weighting coefficientα in Eq. (9). Our strategy to specify
the value ofα is that each 4× 4 stiffness matrix is maintained as an M-matrix. In eachi -row
of the matrix equation,αi is chosen in a way that the matrix equation is of the M-matrix
type. The assembled finite element matrix equation is, thus, classified as an M-matrix.
The justification for using our composite scheme is clearly seen in Fig. 3 which plots
the computed finite element solutions. There exist oscillations near the jump when using
the Legendre polynomial finite element model. As Table 3 shows, the composite method
presented here outperforms the model of Rice and Schnipke in the sense that the accuracy is
improved while stability is still well maintained. Also shown from Fig. 3 is that the method
presented in this article improves the stability while it maintains the accuracy, as compared
with solutions computed using the Legendre polynomial finite element model.

4. NUMERICAL RESULTS

4.1. Skew Advection-Diffusion Problem

The first problem considered in this section is known as the skew flow transport problem
which is regarded as a worst case scenario for assessing upwinding methods. This problem
is configured in Fig. 4. What is most apparent in this figure is that there is a tilted line
which passes through a corner point at (0, 0), resulting in a line with a slope ofm= v/u.

TABLE 3

ComputedL2-Error Norms at Different Values of θ for the Problem, Defined

in Section 3, Using the Composite Finite Element Model

Grid θ = 15◦ (Pex = 0.933) θ = 2◦ (Pex = 7.159) θ = 1◦ (Pex = 14.322)

11× 11 2.125× 10−3 7.522× 10−2 5.800× 10−2

21× 21 1.660× 10−3 5.132× 10−2 3.977× 10−2

31× 31 8.976× 10−4 4.694× 10−2 3.703× 10−2

41× 41 4.757× 10−4 4.507× 10−2 3.589× 10−2

51× 51 3.036× 10−4 4.332× 10−2 3.465× 10−2



           

DEVELOPMENT OF A HIGH-RESOLUTION SCHEME 9

FIG. 3. Computed solutions of8(x, y= 0.7) in a grid with the resolution of 21× 21. (a) Solutions were
computed for the case ofθ = 1◦; (b) solutions were computed for the case ofθ = 2◦; (c) solutions were computed
for the case ofθ = 15◦.

Inside the unit square cavity they-component velocity is invariant with a fixed value of
v = 1. According to the boundary data prescribed in Fig. 4, there is a marked change of the
solution across the dividing line.

The aim of investigating this case is to show the effectiveness of applying the proposed
composite monotonic scheme to resolve high-gradient solutions in the flow. Tests were
carried out in a unit square covered with grids of different resolutions, and for fluids with
different diffusivities. As Fig. 5 shows, solution profiles8(x, y= 0.5) were well captured
without showing oscillatory behavior.
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FIG. 3—Continued

FIG. 4. An illustration of the skew advection-diffusion test problem considered in Subsection 4.1.

FIG. 5. Plot of8 at y = 0.5 for grids with different resolutions and for fluids with different diffusivities using
the composite finite element model.
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TABLE 4

ComputedL2-Error Norms Using Different Schemes for the Problem Considered

in Subsection 4.2

Grid Composite Rate of convergence Char. Galerkin Rate of convergence

11× 11 3.385 8.973
21× 21 5.585× 10−1 2.60 4.328 1.05
31× 31 1.289× 10−1 3.62 2.801 1.07
41× 41 3.418× 10−2 4.61 2.083 1.03
51× 51 9.902× 10−3 5.55 1.679 0.96

4.2. A Variable Advection-Diffusion Problem

We close this section with the test case involving variable advective velocities. Such an
effort is worthwhile to justify the applicability of this composite model to simulate realistic
flow problems. For this study, the velocity components under investigation are given by

u = −2λν tanh[λ(x − x0)], (10a)

v = a1 tan(a2y). (10b)

Given these variable velocities, the exact solution to Eq. (1) takes the form exactly the same
asu shown in Eq. (10a). The case considered was that ofx0= 1, λ= 100,a1= 50,a2= 1.5.
Depending on the assigned value ofν (=1 for the present case), the analytic solution of8

can show different degrees of internal gradients. In the test, we constructed element matrix
equations from two different models and summed them according to the weighting factorα

plotted in Fig. 6. As Figs. 7, 8 and Table 4 show, we can clearly see the advantage of using
a composite scheme in stability as well as in accuracy.

5. CONCLUDING REMARKS

We have presented in this paper a composite scheme for solving the scalar advection-
diffusion equation in two dimensions. For this study, two classes of monotonic finite element
schemes were selected for use as contributing schemes. The discrete maximum principle
served as the underlying guideline for judging whether or not solution monotonicity could
be achieved. The first model employs the Legendre polynomial to span the finite element
space. This model is application infeasible because this scheme is classified as monotonic
only when the Peclet number falls below 3.6. The other approach considered here is due
to Rice and Schnipke. Chief among the reasons for this choice is that this scheme has the
M-matrix property in all ranges of Peclet numbers. A potential drawback of this scheme
is that this approach is less accurate in the case of lower Peclet numbers. In the light of
the above observations we take the model of Rice and Schnipke as an cure for the stability
improvement using the Legendre polynomial model. The key to constructing this scheme is
to properly select the weighting factor. Some insight into the selection ofα has been gained
by performing a fundamental study in an attempt to maintain higher solution accuracy but
not at the loss of scheme stability.
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FIG. 6. A contour map ofα, as defined in (9), for the problem defined in Subsection 4.2. (a) Distribution for
the first row of each element; (b) distribution for the second row of each element; (c) distribution for the third row
of each element; (d) distribution for the fourth row of each element.
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FIG. 6—Continued



     

FIG. 7. Computed solutions of8(x, y= 0.5) using different finite element models. (a) Solutions were com-
puted at 11× 11 grids; (b) solutions were computed at 21× 21 grids.

FIG. 8. Rates of convergence for the problem considered in Subsection 4.2.
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