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SUMMARY

In this paper we apply a finite volume method, together with a cost-effective segregated solution
algorithm, to solve for the primitive velocities and pressure in a set of incompressible Navier–Stokes
equations. The well-categorized workshop problem of lid-driven cavity flow is chosen for this exercise,
and results focus on the Reynolds number. Solutions are given for a depth-to-width aspect ratio of 1:1
and a span-to width aspect ratio of 3:1. Upon increasing the Reynolds number, the flows in the cavity
of interest were found to comprise a transition from a strongly two-dimensional character to a truly
three-dimensional flow and, subsequently, a bifurcation from a stationary flow pattern to a periodically
oscillatory state. Finally, viscous (Tollmien–Schlichting) travelling wave instability further induced
longitudinal vortices, which are essentially identical to Taylor–Görtler vortices. The objective of this
study was to extend our understanding of the time evolution of a recirculatory flow pattern against the
Reynolds number. The main goal was to distinguish the critical Reynolds number at which the presence
of a spanwise velocity makes the flow pattern become three-dimensional. Secondly, we intended to learn
how and at what Reynolds number the onset of instability is generated. © 1998 John Wiley & Sons, Ltd.
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1. INTRODUCTION

With the advent of high-speed computers, numerical simulation of flow physics has received
increasing acceptance as a practical method in research institutes and industry. A desirable
attribute of the computational fluid dynamics (CFD) technique is its flexibility when conduct-
ing parametric studies. It is in this light that we have been stimulated to explore in depth
numerically the effect of the Reynolds number on the flow physics in a lid-driven rectangular
cavity.

Research into the lid-driven cavity flow structure is an area of continuing interest and was
selected for a benchmark study in a major international workshop [1]. This classical problem
has attracted considerable attention because its flow configuration is relevant to many
industrial applications. It is its geometrical simplicity which facilitates experimental calibra-
tions or numerical implementations, thus providing benchmark data for comparison and
validation. Inside this cavity, however, the flow physics is by no means simple. Several flow
characteristics which prevail in processing industries, such as boundary layers, eddies of
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different sizes and characteristics and various instabilities, may coexist. Advancing our
understanding of the flow evolution in a cavity is thus of importance in acquiring more
physical insight into industrial flows. In the past three decades there have been substantial
developments which have extended our understanding of the evolution to unsteadiness,
instability and turbulence.

Numerical investigation of the flow physics inside a lid-driven cavity dates back to the
pioneering work of Burggraf [2], followed by quite a few two-dimensional analyses. While we
become aware of large-scale flow characteristics prevailing in the cavity through these
two-dimensional analyses, physical subtleties are still inaccessible, because realistic flows are
three-dimensional in nature. More recently, fueled by technological advances in computer
hardware, the use of three-dimensional numerical simulation as a tool for investigating
physical phenomena has been growing steadily. In a parallel development, experimental
calibrations on shear-driven cavity flow appeared in the early 1980s. A literature review on the
lid-driven cavity flow problem, experimental or numerical, remains insufficient, to the exclu-
sion of the research work of Street and his colleagues [3–12]. In fact, experimental visualiza-
tion and numerical prediction of Taylor–Görtler-like (TGL) vortices were first accomplished
at Stanford University by Koseff et al. [4] and Freitas et al. [8] respectively. The major content
of this survey will be focused mainly on the work of Koseff and Street [5–7], Freitas et al. [8]
and Freitas and Street [9]. Experimental investigation of cavity flow for Reynolds numbers
between 103 and 104 started in the early 1980s. From 1982 to 1984, Koseff and Street [3–7]
addressed values of SAR (L :B)=1, 2 and 3. They observed not only corner vortices in the
vicinity of the two vertical end-walls but also locally spreading TGL vortices. In the case
Re:3000, eight pairs of TGL vortices were observed. At Re:6000, three more pairs (i.e. a
total of 11 pairs) of TGL vortices become visible. For Reynolds numbers as high as
6000–8000, regular unsteadiness is no longer sustained and thus evolves into turbulence.
Spiralling spanwise motion has been discussed mainly inside the downstream secondary eddy
(DSE). To our knowledge, none of the previous studies has dealt with the flow physics in the
upstream secondary eddy (USE). In 1988–1989, Reynolds numbers in the range 3200–10 000
were considered by Prasad and Koseff [10], who took values of SAR=1:2, 2:3, 5:6 and 1:1
into consideration. The emphasis of their study was on investigating the influence of the
reduced SAR on the increase in end-wall viscous drag. More recently, Reynolds numbers
classified as low to medium (100–2000) were considered by Aidun et al. [13]. That paper
deserves mention because the authors made a distinction between the flow characteristics
against the Reynolds number. Prior to Re=825 the flow inside the cavity remains steady and
symmetric with respect to the half-span of the cavity. For Reynolds numbers between 825 and
925, disturbances emanating from the symmetry plane propagate periodically towards the two
end-walls. The surface separating the DSE from the primary core becomes irregular as the
Reynolds number continues to increase to 1000. A further increase in Re is responsible for the
presence of spikes inside the DSE. Beyond Re=1300 these irregular spikes finally develop into
TGL vortices. Secondary eddies at the upstream side-wall, which we believe are attributable to
the formation of TGL vortices, were not discussed. Even though the flow motion at the
downstream side-wall is more apparent, we will consider in this paper that the upstream
side-wall serves as the unstable surface.

Numerical predictions of a lid-driven cavity, based on the work of the research group led by
Street, have been conducted firstly at Re=3200 by Freitas et al. [8] and Freitas and Street [9]
for SAR=3:1 and by Perng and Street [11] for SAR=1:1 and later at higher Reynolds
numbers of 7500 and 10 000 by Zang et al. [12] for SAR=1:2. In 1991 the GAMM Committee
sponsored a workshop dedicated to numerical simulation of lid-driven cavity flow at Re=3200
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for SAR=3:1 [1]. To provide some insight into the computed results, Deville et al. [1]
summarized and discussed the main features of the solutions obtained by the contributors to
this workshop. Comparison studies were conducted on the number of TGL vortex pairs
appearing in the transverse direction, on the performance of the computer codes employed and
on the CPU time per unit physical time. Surprising to find is that conclusions are quite
different among the contributors, not only on the accessibility of flow symmetry but also on
the number of pairs of TGL vortices. In recognition of this, we feel that much work needs to
be performed in the years ahead. As a result, we consider a Reynolds number much lower than
3200.

The paper is organized as follows. In Section 2 we begin by introducing the equations of
fluid motion for the incompressible case. Subsequently, the underlying finite volume discretiza-
tion method, together with the segregated solution algorithm and the multidimensional
advection scheme, is briefly described. In Section 3, as an analysis tool, we validate the
applicability of the employed computer code in simulating Navier–Stokes flows by carrying
out an analytic comparison test. In Section 4 we discuss mainly the flow structure and quantify
the spanwise variation under increasing Reynolds number. Attention is given to examining in
what Reynolds number range the flow under investigation becomes susceptible to the two-di-
mensional assumption. Also, a question we address here is how and at what Reynolds number
the steady flow pattern starts to cause three-dimensional instability.

2. MATHEMATICAL AND NUMERICAL METHOD

In the absence of body forces the working equations permitting the analysis of incompressible
and viscous fluid flows take the following form for a given Reynolds number, which is defined
as Re=rUcB/m :
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where ui(x, y, z, t) is the velocity field, p is the static pressure, r is the fluid density and m is the
dynamic viscosity. According to Figure 1, all the lengths in this paper are non-dimensionalized
with B. Time, velocity and pressure are normalized by B/Uc, Uc and rU c

2 respectively.
Although in the literature there exist several sets of working variables to choose from in a
domain V given by 05x51, 05y53, 05z51, we prefer to employ the most popular
primitive variable formulation for this class of flows, mainly because this setting possesses the
closure boundary and initial conditions [14].

In as much as the above velocity–pressure formulation is considered, we are faced with
choosing a strategy of either grid staggering [15] or collocation [16] to store working variables.
While node-to-node pressure oscillations can be alleviated in both grids, we favour the first
strategy regardless of programming complications. The rationale behind this choice is based on
the fact that we lack a set of indispensable closure boundary conditions for analyses involving
a Poisson-type pressure correction equation. In a staggered grid setting, each primitive variable
takes over a node to itself, whereas the pressure node is surrounded by its adjacent velocity
nodes. This permits the natural use of finite volume integration for each conservation equation
under these circumstances.
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When dealing with the primitive variable form of the incompressible Navier–Stokes
equations, we encounter two well-known technical difficulties. The first of these is the removal
of the instability problem when a problem of advection dominance is considered. To avoid
spurious velocity oscillations and a false diffusion error, which may greatly pollute the flow
physics over the entire domain, we advocate the use of the third-order QUICK [17] upwind
scheme to discretize non-linear advective fluxes in a non-uniformly discretized domain. Also,
prediction errors stemming from the use of one-to-one curvilinear co-ordinate transformation
in structured-type discretization are considerable and are hardly avoidable for problems
involving complex geometry and highly distorted meshes. We carry out the analysis in a grid
system containing rectangular grids to get rid of the potential loss of accuracy resulting from
the use of co-ordinate transformation. The transient term is approximated by using the fully
implicit differencing scheme.

The second technical difficulty is ensuring satisfaction of discrete divergence-free velocities in
an incompressible flow analysis. This constraint condition can be enforced either by using a
mixed formulation or by incorporating the incompressibility constraint through multiple-stage
equations. In the first class of methods we encounter a much larger linear system. The choice
of the pressure correction segregated algorithm in this study comes naturally, because the
algorithm can cut down on the storage demands incurred by the mixed formulation. In the
present paper the solutions to the finite volume discretization equations are obtained sequen-
tially for the primitive variables. The underlying iterative algorithm is that of SIMPLEC. The
rationale behind the algorithmic ideas may be found in Reference [15].

3. VALIDATION STUDY

Accurate numerical approximation of a physical system can by no means be assured.
Application of a computer code to simulate mathematical or engineering problems is often
preceded by analytical assessment of the employed finite volume computer code in simplified
settings.

Figure 1. Illustration of rectangular cavity investigated, together with computed pressure gradient, spanwise velocity
and end-wall effect
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Figure 2. Rate of spatial convergence for three-dimensional scalar equation

In an attempt to verify the flux discretization scheme applied in the present analysis, we
consider the analytic problem of Ethier and Steinman [18], subject to the following given
velocity ui(x, y, z, t=0), in a simple cubic cavity (−15x, y, z51):

u= −a [eax sin(ay9dz)+eaz cos(ax9dy)]e−d2t,

6= −a [eay sin(az9dx)+eax cos(ay9dz)]e−d2t, (3)

w= −a [eaz sin(ax9dy)+eay cos(az9dx)]e−d2t,

where a=d/2=p/4. To begin with, the QUICK flux discretization scheme has been verified by
solving the following scalar equation for f :
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p= −a2/2[e2ax+e2ay+e2az+2 sin(ax9dy) cos(az9dx)ea(y+z)

+2 sin(ay9dz) cos(ax9dy)ea(z+x)+2 sin(az9dx) cos(ay9dz)ea(x+y)]e−2d2t.

Here the analytic solution for f takes the same form as that of u defined in (3).
As usual, we assess here the QUICK-type upwind discretization scheme employed for

advective fluxes on the basis of nodal values computed in the uniformly discretized domain and
then sum the prediction error in an L2-norm sense. With grid spacings being continuously
refined in the case of Re=10, we can compute the rate of convergence, given a= ln(err1/err2)/
ln(h1/h2), from the solutions computed at t=0.1 and spatial grid spacings 2/2, 2/3, . . ., 2/6,
2/7. As indicated by Figure 2, which reveals both the prediction errors and the rate of
convergence, namely 2.93, we furthermore perform an analytic study, given by Equations (3)
and (5), for working Equations (1) and (2) defined at Re=1 in the same cubic cavity.
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According to the finite volume results computed at t=0–0.1 (Dt=1/160), as seen in Figure
3, the proposed scheme is also applicable to analysis of the incompressible Navier–Stokes
equations. Such good agreement with exact solutions provides credibility for the analysis code
employed here, and we have sufficient confidence to proceed with the investigation of
time-evolving vortices in a rectangular cavity due to the motion of an upper lid.

As mentioned in the Introduction, the flow of a viscous fluid in a three-dimensional cavity
driven constantly by a sliding upper plane is a prototype. Here we consider different spanwise
ratios, namely (spanwise aspect ratio) SAR=1 and 3, Reynolds numbers, namely Re=400,
1000 and 3200, for further confirmation of the applicability of the computer code being
analytically studied to simulate this problem. The simulation quality was assessed on the basis
of available mid-sectional velocity profiles along both vertical and horizontal centrelines.
According to the computed finite volume solutions and their convergence histories, as depicted
in Figures 4–6, for cavities considered and the Reynolds numbers investigated, the resulting
agreement with other numerical solutions of Ku et al. [19], Kato et al. [20], Cortes and Miller
[21], Babu and Korpela [22], Arnal et al. [23] and Kost et al. [24] is close enough.

4. NUMERICAL RESULTS AND DISCUSSION

In this section we describe a three-dimensional simulation of the fluid flow in a rectangular
cavity defined by L :B :D=3:1:1 (or SAR=3:1). The Reynolds number chosen for this cavity
is based on the lid speed, the width of the cavity and the kinematic viscosity of the working
fluid. At t=0 the cavity is subjected to a sudden lid motion at its roof. To avoid ambiguity
over whether or not the symmetry of the flow is a feature of the rectangular cavity investigated,
as evidenced by the papers presented at the GAMM workshop [1], this problem was simulated
in the whole cavity covered with a non-uniform grid of 34×91×34 resolution. We will
address the secondary eddies, the transition from two- to three-dimensionality and that from
a steady to an unsteady status in accordance with the increase in Reynolds number. Exploiting
the experimentally verified conclusions given in the work of Koseff and Street [5–7], we are led
to believe that the laminar flow assumption holds in the range 1BReB2000.

Figure 3. Computed rates of convergence of velocities and pressure for Navier–Stokes equations
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Figure 4. Comparison study of SAR=1:1 and Re=400: (a) mid-sectional velocities at symmetry plane y=0.5; (b)
error reduction plots for working variables

The flow inside the rectangular cavity considered here features a nearly zero spanwise
velocity and a flow symmetry at Re510. This is verified in our three-dimensional simulations,
as given in Figure 7(a), in that little distinction between the two sets of sectional profiles can
be observed. Numerical evidence confirms that the core (0.25y52.8) of the cavity is
prevailingly symmetric and the spanwise velocities are negligibly small. Upon increasing the
Reynolds number, the presence of visible spanwise velocities induced by the pressure gradient,

Figure 5. Comparison study of SAR=1:1 and Re=1000: (a) mid-sectional velocities at symmetry plane y=0.5; (b)
error reduction plots for working variables
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Figure 6. Comparison study of SAR=3:1 and Re=3200: (a) mid-sectional velocities at symmetry plane y=1.5
(t=25); (b) mid-sectional velocities at symmetry plane y=1.5 (t=50)

as shown in Figure 1, is a direct result of the two end-walls, which keep the fluid flow from
penetrating. The spanwise components show the three-dimensional-like primary character of
the fluid flow. Together with the much more dominant two-dimensional flow circulation shown
in Figure 8, the rectangular cavity is filled with helixes of different characteristics and sizes. For
clear illumination of this spiralling flow structure, it is most suitable to plot its Lagrangian
particle tracks. Taking Re=1000 for example, we plot in Figure 9 the surface of 6=0, across
which left- and right-running spiralling flows are exclusively apart. Here we focus our attention
not only on the particle in the DSE (downstream secondary eddy) (Figure 9(a)) but also on the
particle in the USE (upstream secondary eddy) (Figure 9(b)), which has been seldom explored.
While both fluid particles migrate towards the end-wall, they differ in the course of their
subsequent spiralling motion. The fluid particle designated advances towards the end-wall all
the way to the near-wall spanwise location y=2.95, as shown in Figure 9(c). According to
Figure 9(c), the USE particle is lifted upwards and is then engulfed inwards to the spiral node
Ns via cd, followed by a monotonically spiralling motion towards the symmetry plane. As for
the DSE particle considered in Figure 9(a), from ab it is sucked into the primary core.
Comparing the travelling lengths needed for USE and DSE particles to be sucked into the
primary core, the shorter length corresponds to the DSE particle. Also, this particle spirals
back and forth across the 6=0 contour surface. In the presence of the increasing spanwise
spiralling flow structure, which is an attribute of the increasing Reynolds number, the
mid-sectional velocity profiles deviate from those based on two-dimensional analyses
[22,25,26]. According to Figure 7, the peak values of the velocity profiles at the symmetry x–z
plane are smaller than those obtained on the two-dimensional basis. The decrease in velocity
is attributable to the supply of kinetic energy along the spanwise direction. In recognition of
the fact that the presence of the spanwise velocity affects the primary flow structure, we have
measured the positions of the vortex centres of the core and plotted them against the Reynolds
number in Figure 10. Comparing with the vortex centres which are computed based on the
two-dimensional solutions of Ghia et al. [26], together with Figures 7(a) and 7(b), we may
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Figure 7. Comparison of present computed velocity profiles at mid-sectional plane with other numerical solutions: (a)
Re=10; (b) Re=100; (c) Re=400; (d) Re=1000; (e) summary of results given (a)–(d)

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 577–579 (1998)
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conclude that there is no distinctive variation for a Reynolds number less than 100. In the
three-dimensional analysis conducted at higher Reynolds numbers, the smaller DSE width, as
compared with that based on a two-dimensional analysis, is due to the shift of the vortex
centre moving towards the bottom wall and the upstream side.

The presence of corner eddies in the cavity is also worthy of study because of their
importance in process engineering. Corner eddies are featured by sign changes in the velocity

Figure 8. Plots of u–w streamlines, u–w mid-sectional velocity profiles, zero-spanwise-velocity contours and local
extreme values of 6 at plane y=2.5 against Reynolds number. For Re51000 the steady state solutions are plotted,

whereas for Re=1250 and 1500 the plots are at t=250 and 85 respectively

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 577–579 (1998)
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Figure 9. Illustration of curved zero-spanwise-velocity contours in region 1.55y53 and spiralling particle motions
starting from USE at (0.1, 1.55, 0.01) and from DSE at (0.9, 1.55, 0.01): (a) perspective view from downstream side;

(b) perspective view from upstream side; (c) planar view of spiralling motion at y=2.95

of the flow at the geometric corner. Across the corner eddy the flow is characterized by flow
reversals and pressure variations. It is thus worthwhile to examine the influence of the
Reynolds number on the upstream and downstream eddies. With this objective in mind, we
plot in Figure 11 the eddy sizes at the symmetry plane. Clearly visible from Figure 11 is the
trend that the change in eddy size against the Reynolds number follows a curve which is
similar to that given by the two-dimensional data of Ghia et al. [26]. Regardless of the presence
of three-dimensionality, there is also little variation in values except for the DSE width. The
main reason for the much smaller value of the DSE width, as compared with that of its
two-dimensional counterparts, can be explained graphically as follows by Figure 12. Along the
downstream side-wall the lid-driven downward flow is split into two streams, providing the
subsequent USE and DSE spiralling particle motions. As seen in Figure 12(a), spiralling
motions of different classes are bisected by the dividing line. For the sake of clarity we denote
hereinafter the separation line (or surface) as the border line (or surface) of the primary core
and the secondary eddies. Examination of Figure 11 reveals that for Reynolds numbers in the
range 200BReB400 there exists a change in slope. This is particularly apparent at Re=300
in the curve of the DSE height. It is fair to say that as the Reynolds number increases beyond
300, the flow structure inside the rectangular cavity starts to show new physics. In support of
what we mean by new emerging flow physics, we provide the following evidence graphically.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 577–579 (1998)
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Figure 10. Plot of vortex centres, together with those of Ghia et al. [26], at symmetry plane y=1.5 against Reynolds
number

On the contour surface of the zero spanwise velocity we begin to observe a free shear roller in
Figure 13 as the Reynolds number surpasses 300. According to Figure 8, inside the zero
contour of the spanwise velocity the maximum velocity of the spiralling particle motion starts
to decrease when Re\300 and is accompanied by an enlarged size inner to 6=0. The decrease
in velocity is a direct result of the normal resistance force at the symmetry plane exerted by the
two approaching left- and right-running spiral motions. It is also important to point out that,
as seen in Figure 12(b), the separation line may detach from the upstream side-wall. The
critical Reynolds number leading to such detachment is Re=300. On increasing the Reynolds

Figure 11. Plot of eddy sizes, together with those of Ghia et al. [26], at symmetry plane y=1.5 against Reynolds
number. The sizes of the eddies are defined in Figure 12

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 577–579 (1998)
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Figure 12. Illustration of interaction of different eddies and definition of eddy sizes for Re=1000 at (a) symmetry
plane y=1.5 and (b) y=2.25 plane

number further, the value of the USE width continues to increase at a much faster pace. At
Re:1000 the value of the USE width approaches that of the DSE width. Afterwards the flow
pattern shows unsteadiness, leading to a waving flow structure and finally the presence of
Taylor–Görtler-like vortices. This implies that beyond the critical Reynolds number Re=1000
the steady state assumption no longer holds. In circumstances where the Reynolds number
exceeds this critical value, the shape of the contour line of 6=0, as shown in Figure 8,
approaches that of the nearby streamlines. This alignment retards the transport processes
cutting across the 6=0 surface. As a result, the flow system under investigation becomes
destabilized, as viewed from the distorted contour surface of 6=0 in Figure 8 at Re=1500.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 577–579 (1998)
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For the sake of completeness we summarize in Figure 14 the eddy sizes against the Reynolds
number. For Reynolds numbers in the range 100BReB1200 the plots shown in Figure 14 do
not vary with time in our study. This implies that the sizes of the USE and DSE can be
regarded as being steady for Reynolds numbers below 1200. Close examination of the eddy
sizes shown in Figure 14 reveals that the rate of increase in the size of the DSE decreases when

Figure 13. Variation of x–plane (x=0.525) flow structures and zero-spanwise-velocity contours against Reynolds
number

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 577–579 (1998)
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Figure 13 (Continued)

Re\300, as opposed to the trend for the size of the USE. As expected, the eddy sizes plotted
in Figure 14 approach asymptotically different values in the direction towards the symmetry
plane, no matter which Reynolds number is investigated. These constants correspond to the
eddy sizes computed based on two-dimensional calculations. Also clearly seen in Figure 14 is
a sharp decrease in the DSE width and USE height, together with a sharp increase in the DSE
height and USE width, in regions near the end-wall, as viewed along the direction towards the
end-wall. Such an appreciable variation is due to the presence of the upstream side-wall at

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 577–579 (1998)
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which the separation surface detaches, denoted by ‘E’ in Figure 14. In the region defined by
1.5ByB2.5, both the height and width of the DSE remains fairly constant. In contrast with
the size of the downstream secondary eddy, there exists clear waviness, with regard to the USE
height in particular, as the Reynolds number surpasses 300. This kind of wavy profile is
attributable to the detachment (Figure 12(b)) of the separation surface on the upstream side,
as depicted by ‘a ’ in Figure 14 or Figure 15. In response to this detachment, the width
increases while the height of the USE decreases, no matter what Reynolds number is under
investigation.

In an attempt to clarify at what Reynolds number the lid-driven cavity system starts to show
unsteady transport processes, we have plotted the eddy sizes for both secondary eddies against
the span in a half-cavity. From careful examination of these plots in Figure 16, which
correspond to t=80–280, for Reynolds numbers larger than 1200, we regard the flow system
at Re=1250 as being unsteady. This figure clearly shows that the DSE is much more stable
than its USE counterpart, in that the eddy sizes do not vary with time. To illuminate the
unsteady aspect of the upstream secondary eddy, close-up plots of the region within the broken
line in Figure 16(a) are shown at three time intervals, namely 805 t5120, 1605 t5200, and
2405 t5280, in Figures 16(b)–16(d) respectively. From these time-varying plots for both the
width and height of the USE, we realize that these wavy profiles tend to move towards the

Figure 14. Eddy size variation against span for Reynolds numbers 1005Re51200 in half-cavity 1.55y53. ‘E’ and
‘a ’ represent regions where the separation surfaces plotted in Figure 15 detach from the upstream surface near the

end-wall and other spanwise locations (Figure 12(b)) respectively
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Figure 15. Illustration of surfaces which separate primary core from secondary eddies in quarter-cavity defined by
05z50.5, 1.55y53: (a) Re=100; (b) Re=200; (c) Re=300; (d) Re=400; (e) Re=500; (f) Re=750; (g)

Re=1000. The definitions ‘E’ and ‘a ’ are given in Figure 14

end-wall. The time period is estimated to be 40 and the amplitudes of these heights and widths
seem to increase mildly.

In Figure 15, regions denoted by ‘a ’ become visible at Re=400. The presence of such
upstream detachment implies the onset of flow unsteadiness. This flow detachment has a close

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 577–579 (1998)
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Figure 15 (Continued)

relevance to the formation of TGL vortices. For the sake of completeness we also assign ‘a ’
in Figure 14. We have tracked the velocity variations at a point, namely (0.056, 2.25, 0.315),
falling within this region for a Reynolds number in the vicinity of 1200. For Reynolds numbers

Figure 16. Variation of eddy size against y in half-cavity 1.55y53 for Re=1250: (a) distribution of eddy sizes in
time interval 805 t5280; (b)–(d) close-ups of (a) in region 1.95y52.6—(b) 805 t5120; (c) 1605 t5200; (d)

2405 t5280

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 577–579 (1998)
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Figure 17. Plots of relative velocity fluctuations at (0.056, 2.25, 0.315) against time for 1005 t5200: (a) (u−um)/um;
(b) (6−6m)/6m; (c) (w−wm)/wm. The subscript ‘m’ denotes the mean quantities based on the values computed at

1005 t5200

of 1000, 1100, 1200 and 1250 we plot in Figure 17 the relative velocity fluctuation against time.
As expected, the magnitudes of the fluctuations increase the Reynolds number. For Re=1000
and 1100 the fluctuation in the velocity can be regarded as invariant with time. At a higher
Reynolds number, Re=1200, the relative magnitudes of the velocity components start to
fluctuate with a period of 40. In the wavy profiles the amplitude decays with time for a
Reynolds number of 1200, while it grows for a higher Reynolds number of 1250. This
increased amplitude paves the way for the onset of flow instability. Also shown in this figure
is that the extreme values of u and w coincide roughly with the inflection point of the spanwise
velocity component. This velocity setting is akin to the velocity distribution of TGL vortices.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 577–579 (1998)



T.P. CHIANG ET AL.576

Increasing continuously the Reynolds number to 1300, TGL vortices burst in the already
unsteady flow system, as shown in Figure 18, at time t\150. The onset of TGL vortices is due
mainly to the increased energy of the disturbances and has been experimentally verified by the
work of Aidun et al. [13]. We have examined the values of the velocity component w at

Figure 18. Illustration of time-varying TGL vortices at x=0.525 plane for Re=1300: (a) first mode, with periodicity
50; (b) second mode, with periodicity 72. The full lines denote the velocity components u, 6 and w, computed at

z=0.04, against 05y53
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Figure 18 (Continued)

(0.525, 1.5, 0.04) and plot them against time in Figure 19, from which we realize that there
exist two fundamental modes of fluctuations. In the beginning the period of fluctuation is 50
(Figure 18(a)), which is similar to that found in the case of Re=1250, and this is followed by
a transitional period. At times beyond 550 the periodicity takes another value, namely 72
(Figure 18(b)), which is the same as that for Re=1500 [27].
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Figure 19. Time history of w-velocity (1505 t5650) at reference point (0.525, 1.5, 0.04) for Re=1300

5. CONCLUDING REMARKS

In this paper we have applied a QUICK-type advection scheme and a finite volume method to
explore in depth the change in the flow physics with the Reynolds number in a lid-driven
rectangular cavity. The formulation uses primitive variables on the staggered grid. To
accurately simulate the inherent physics, it is best to carry out a laminar flow analysis in flow
domains covered with rectangular and non-uniform grids. The algebraic equations are thus
exempt from the necessity of dealing with metric tensors and turbulence modelling. The
predicted physics can be less contaminated by numerical errors, and solutions can be acquired
that can well mimic the realistic flow physics. Based on the Reynolds numbers investigated and
the prediction solutions obtained, some important findings are summarized in the following
paragraph.

Inside the lid-driven cavity the corner eddies adjacent to the bottom plane become well
established at Re=50. The corner eddies near the lid plane are hardly visible until the
Reynolds number reaches 100. It is at this Reynolds number that the tube-type zero spanwise
velocity forms. For Reynolds numbers larger than 300 the surface separating the primary core
and the DSE/USE starts to detach from the upstream side-wall. In the course of flow evolution
the fluid flow can reach its own steady state in cases where the Reynolds number takes on
values which are smaller than 1000. Beyond this critical Reynolds number the flow field
continues to be destabilized by the increasing alignment between the contour line of 6=0 and
the streamline. This destabilizing mechanism leads to a wavy surface of the spanwise velocity
contour 6=0 on the upstream side. As long as the Reynolds number is less than 1200, the sizes
of both the USE and DSE remain steady. At Re=1250 the size of the USE starts to show a
wavy phenomenon. Upon increasing the Reynolds number to 1300, the TGL vortices burst.
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