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Abstract 

A model is presented to study the interaction between an oblique shock and a fully-unseparated turbulent boundary 
layer over the nonadiabatic wall. The method of matched asymptotic expansion, valid in the double limit of free-stream 
Mach number Μ -> 1 and Reynolds number Re -» oo, is adopted to analyze the nature of nonadiabatic weak interaction. 
This study addresses the impact of heat transfer on the shock-boundary layer interaction structure. Understanding of the 
interaction structure will help to provide an adequate grid-point distribution for the numerical study of an oblique shock 
impinging on the boundary layer over a body of axisymmetric configuration. 
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: Specific heat ratio 
: Specific heat at constant pressure 
: Laminar Prandtl number 
: Laminar viscosity 
: Turbulence viscosity 
: Shock strength 
: Reynolds number 
: Shear velocity 
: Spatial coordinates 
: Stretched space variable in the x-

direction 
: Stretched variable in the y-direction 

in the external transonic flow region 
: Stretched variable in the y-direction 

of the velocity defect flow region 
: Stretched variable in the y-direction 

of the Reynolds stress layer region 
: Stretched variable in the y-direction 

of the wall layer region. 
: Boundary layer thickness 
: Velocity defect layer thickness 
: Reynolds stress sublayer thickness 
: Wall layer thickness 
: Reference length 
: Reference velocity 
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u 
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Ρ 
Τ 
λ„, λΜ, Ύ 
Subscript w 
Subscript e * 

Λ 

+ 
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Pressure 
Velocity in x-direction 
Velocity in y-direction 
Density 
Temperature (stagnation) 
Interaction coefficients 
Wall condition 
Edge of the boundary 
Critical condition 
Reynolds stress sublayer indicator 
Wall layer indicator 
Fluctuation indicator 
External transonic indicator 
Indicator of interaction 

1. Introduction 

Upon impinging on a solid surface, a shock 
wave will penetrate into the boundary layer which is 
attached to the body surface. Under such circum-
stances, both the shock strength and its inclination 
will undergo change in a complex manner. The 
reason for such changes is the fluid viscosity and 
the interaction structure between the shock and the 
developed boundary layer. The shock penetration 
will finally terminate in the subsonic region which 
is just above the body surface. Very often, such 
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shock-boundary layer interaction is observed in the 
inlet ducts and exhaust nozzles of civilian and 
military airplanes. A fundamental understanding of 
how shock waves interact with boundary layers is, 
thus, important in aircraft design. The interaction 
structure has been the subject of considerable 
interest in the past few decades. 

The principal interaction arises from the dis-
placement thickness, which causes a significant 
change in the surface pressure. Also, fluid viscosity 
may cause the already established pressure jump to 
smear in the boundary layer. This smearing of the 
pressure may persist and extend through several 
boundary layer thicknesses along the primary flow 
direction. The compression disturbances produced 
on the supersonic stream side will propagate along 
the Mach line and gradually reach the subsonic part 
of the boundary layer. Usually, the shock wave is 
very thin, on the order of a few mean free path 
thicknesses. The reduction of the kinetic energy in 
association with the gas flow passing over the shock 
will be converted into pressure force, thus com-
pressing the gas and increasing the temperature and 
entropy. Since the shock thickness is too thin to 
spread the large pressure change, the pressure 
responds to an increase ahead of the impingement 
point through the upstream influence. The estab-
lished compression family of waves will interact 
among themselves and weaken the incoming shock. 
This upstream propagation mechanism is believed 
to play an important role in the shock wave and 
turbulent boundary layer interaction structure. The 
incoming shock partly reflects and partly penetrates 
such that new disturbances are produced and 
propagate along another family of Mach lines in the 
supersonic region. 

Numerous efforts have been devoted in the past 
four decades to achieving a better understanding of 
the shock-boundary layer interaction. Much of the 
previous work has focused on the laminar and 
adiabatic cases. This study refers back to the work 
of Ackeret et al. Ill, who investigated the influences 
of the high-speed compression shock on the de-
velopment of the boundary layer. Substantial 
advances in understanding the interaction structure 
between the shock and boundary layer have been 
achieved by such mathematicians as Howarth 111 

and Tsien and Finston /3/ in the past half-century, 
and much attention has been devoted to the laminar 
and adiabatic cases. A wide variety of interaction 
models has been proposed, among which the two-
layer model of Lighthill IM and the triple deck 
model of Brilliant Stewartson 151 are often referred 
to. Theoretical investigation into the nature of the 
interaction can be mainly divided into the integral 
16,11 and the asymptotic perturbation /8-15/ 
methods. In this study we prefer the asymptotic 
perturbation approach since use of this approach 
can provide useful flow details at different length 
scales. 

2. Derivation of Working Equations 

We aim to apply the asymptotic and perturbation 
method to analysis of the interaction of an 
externally generated oblique shock with the steady 
turbulent flow over a flat plate. For this study, the 
oblique shock is assumed to be weak, so that the 
boundary layer is considered to be attached to the 
wall surface. In addition, the interaction region 
under investigation is assumed to be distant from 
the leading edge, thus avoiding the difficulty of 
dealing with the so-called Goldstein singularity. 
Both the molecular Prandtl number, Pr, and the 
compressibility parameter, (γ - l)A/£, have values 
of order one. The resulting turbulent structure is, 
consequently, not effected by the Markovin 
hypothesis /16/. 

In the present turbulent flow analysis, the scales 
of turbulence fluctuations are determined on the 
basis of experimental observations given by Kistler 
/ΠΙ. He found that the turbulent fluctuations in the 
velocity, temperature, density, and fluid viscosity 
are on the order of the friction velocity in the case of 
non-hypersonic flow (M„ < 5). The fluctuation 
pressure, then, is on the order of the square of the 
friction velocity. In this study, we neglect fluctu-
ations of transport properties, such as u' k', c'p and 
p'r, for simplicity. As far as turbulent dissipation 
and other double fluctuation terms are concerned, 
their values are negligibly small /18/. An exception 
is the turbulent heat transfer < v'T' > , which is 

Brought to you by | National Taiwan University
Authenticated | 140.112.26.15

Download Date | 2/25/14 11:24 AM



231 

approximated using the Boussinesq's eddy viscosity 
hypothesis. 

With the above assumptions, we normalize the 
resulting conservation equations. This dimension-
less procedure is desired from the application view-
point. The referred characteristic quantities involve 
L for length, ä* for velocity, ρ*5^2 / γ for 
pressure, α *2 / yR for temperature, and p* for 
density, μ* for fluid viscosity, and κτ for turbulent 
velocity. The remaining dimensional turbulence 
quantities employed here are summarized as 
follows: 

T' = T ' - a j T X , 

p' = p'al I p X , 

p' = PX2/PX2. 

Based on the premise that the turbulence is 
modeled by the eddy viscosity model, the non-
dimensional governing equations, up to an accuracy 
order of o(u2 j , are those given below: 

d d 
—(pu + u]<p'u'>)+—(pv) = 0, (1) 
dx dy 

, , , s du du 
(pu + u2

T <p'u'>) — + pv — = (2) 

1 dp , d 
——-u2—[(p<u'u'>+u<p'u'>)+ 

γ dx dx 

—(ρ < u'V > +v < p'u' > )]+ 
dy 
1 d du 

(pu +u2 < p'u'>) — +pv—= (3) 
dx dy 

1 dp , d 
--—-u;[ — (p<u'v'>+u<p'v'>)+ 

γ dy dx 

— (ρ < v'v' > +v < p'v' > )-
dy 

d d 
pu—(< p'v' > I p)~ pv—{< p'v' > I p)]+ 

dx dy 

1 d 4 dv 2 du^ d du λΐ 

+ 0(ul), 

(pu + u; < p'u' >)-f- + Pv~k~ = dT dT 
dx dy 

(4) 

u— -
du^2+Y_-\ dp 

d , 2 du 

RtPrdyL ~,r ^ dy γ dx 

u) ~~~(p < v'T > )-(χ-I)put ^ < u'v' > 

(5) 

dy ' ' r dy 

+0 (u\), 

where 

p = pT + u) <p'T' >+0{u]). 

3. Asymptotic and Perturbation Study 
Analytic analysis of the working set of nonlinear 

partial differential equations to elucidate the inter-
active flow structure is hardly possible. For this 
reason, we will consider a simplified set of coupled 
equations. The approach taken here is to adopt the 
asymptotic and perturbation method. The basis is as 
follows. We first decompose the physical domain of 
interest into several domains, each of which has 
physical importance. In between two adjacent 
domains, appropriate matching conditions are pre-
scribed to blend them. The primary subdomains to 
be investigated include the transonic external flow 
region, undisturbed turbulent boundary layer and 
interaction region comprised of the velocity defect, 
blending, and the wall layers. Asymptotic 
perturbation method is, in principle, an art. The 
quality of the computed solution is drastically de-
pendent on the choice of the expansion parameter 
and of the method for perturbing the dependent 
variables. In each layer, we expand dependent 
variables as functions of legitimative perturbation 
quantities, which should be physically supported 
through well-known phenomena. As for indepen-
dent variables, they are stretched in the interaction 
region to achieve a match of solutions at the inter-
face. In the following, we will proceed with step-by-
step analysis in each layer of the physical domain. 

3.1. External transonic flow region 

Given that heat transfer prevails in regions 
confined to the thermal boundary layer, the 
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incoming dependent variables in the external region 
can be approximated as follows: 

ui = ! + * + • • • · , 

Τ : = \ - { γ - \ ) ε + · · · · , 

Ρί = 1 " — - r e + · · · · , 
γ + 2 

(6a) 

(6b) 

(6c) 

(6d) 

In this region, the conservation of energy equation 
is simplified as 

(6e) 

In the presence of compression disturbances 
resulting from the incoming shock, the strength of 
which is on the order of ε, dependent variables in 
this region can be expressed using the following 
expansions: 

u = \ + ε υ * { x , y + ) + • • • • , 

ν = + e v * U , y * ) + • • • • , 

ρ = 1 + ε ρ ΐ ( x , y + ) + · · · · , 

p = \ + s p ; u , y * ) + • • • • • 

(7a) 

(7b) 

(7c) 

(7d) 

As to independent variables, they are stretched by 

X - \ 

5e 
7 = 

(8a) 

(8b) 

By substituting equations (7),(8) into working 
equations (l)-(5), one can derive the transonic 
equation, irrotationality condition, and pressure-
velocity relation, respectively, as follows for the 
disturbances: 

γ + 1 

U + 2 ) , , , - U r ) w = 0 , 2 v ι ' Α* x" ι " y ' y 

( O v - ( O u = 0 , 

P { + + y u ; = 0 . 

(9a) 

(9b) 

(9c) 

These equations are obtained together with the 
attendant relations as 

Α = ε υ 2 δ ε , 

υ ; = ε " 2 . 

(10a) 
(10b) 

For this study, the flow is considered to be 
supersonic everywhere in the external transonic 
flow region. This permits the application of the 
method of characteristics to determine the change in 
the physical properties across the shock. All the dis-
turbances propagate along the left- and right-
running characteristics, C* and C , respectively. 
Exceptions to this are the entropy and the vorticity. 
In regions ahead of the shock, simple waves with 
straight characteristic lines having constant proper-
ties are present. As a result, the fluctuation 
velocities ufu, v,+u along the right-running charac-
teristic C can be determined according to the 
expression given below: 

| ( r + D 1 / 2 u ; ) 3 / 2 + < = / + D"2 · (Π) 

Downstream of the shock fluctuation velocities, ufd 

and v f d are, on the other hand, determined along 

the line of the left-running characteristic C* by 

I ( γ +1 ) 1 / 2 ( u ; d ) m + v * d = I ( y +1)"2 Λ , (12) 

where A(<1) is called the shock strength parameter. 
Across the oblique shock, the discontinuity 

condition is governed by the Prandtl polar equation 
given below: 

V l ä - V i a = 

r + 1 

2 
r +1 

( ß + Y , 

( ß + y - 2 u ; u ß \ 

(13) 

(14) 

where the shock angle ß+ with respect to the 
incoming flow is defined by 

(15) 

The solutions of the upstream fluctuation velocities 
u^u,v]~u and the downstream fluctuation velocities 

u f d , v*d are determined by equations (11)-(15). 
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3.2. Undisturbed turbulent boundary layer 

Turbulent flow is characterized by the existence 
of velocity defect and inner wall layers. In the 
velocity defect layer, the convective terms in the x-
momentum equation are taken to be on the order of 
the y-derivative of the Reynolds shear stresses. In 
the wall layer, the viscous and Reynolds shear 
stresses dominate other quantities and are balanced 
with each other. 

For the sake of applying a matching condition 
along the flow direction, in between undisturbed 
and interaction regions, we stretch independent 

X — \ variables in the velocity defect layer by χ = , 
Δ 

γ 
y = —. We adopt the non-dimensional "Law of the 

wake", as proposed by Coles /19/, to take the com-
pressibility effect into consideration so as to expand 
the velocity components as follows: 

u = \ + ε + — {\ηγ-2π)+· 
κ 

(16) 

ν = δ{χ)ιιτ (x)vQl (y)+ χΑδυΤνη ( y )h , (17) 

where the shear velocity wx is defined by 

Pe 
(18) 

In equation (16), π and κ are known as wake 
parameters. Their values are taken as two different 
constants. 

As for the independent variables in the wall 
χ — I γ 

layer, they are also stretched by x = ,y = — . 
Δ δ 

This is useful for achieving the matching condition 
at the interface of the undisturbed and interaction 
regions. The "Law of the wall", proposed by Coles 
/19/, is employed for the velocity component u: 

u = u r { T J T j n { K - x I n j + 5). (19) 

The y-component velocity is obtained by performing 
a Taylor series expansion: 

κ = (y)+ xAStuTvm (/)+·•·•, 

where 

5 = »J{TJPJ12. (20) 

By examining equations (16, 19), the velocity u 
in the velocity defect layer fails to match that in the 
wall layer as y -»<». For compressible flows, this 
difficulty may be avoided by employing a velocity 
expression which holds in the region of 
δ « y « δ . The velocity profile for the compres-
sible turbulent flow over the flat plate, subject to the 
heat transfer, can be written as 

u = {{Bl +4 A2 ) l /2sin[ constant -A 
2 A2 (21) 

u„K V Tm 

where 

Α ' = γ - τ Μ · τ · 

Β = 1) 

and 

Μΐ=(\ + ε)ίΙ[\-/I ι /r 1 L A { J + 2 s ) ] . 

(22) 

(23) 

(24) 

To derive equation (3), the modified Prandtl 
mixing length theory for a variable density is used 
together with the Crocco-Busemann relation for 
both temperature and velocity. 

4. Interaction Region 

The interaction region inside the turbulent 
boundary layer consists of the velocity defect outer 
layer, Reynolds stress sublayer, and wall layer. They 
will be discussed separately in the following 
sections. 

4.1. Velocity defect layer 

To obtain a legitimate way to perturb dependent 
variables in this layer, it is instructive to depict the 
interaction effect and provide a way to match solu-
tions with those at the undisturbed outer turbulent 
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layer. The dependent variables are expressed as the 
sum of a series of undisturbed quantities and their 
interaction counterparts by 

u = 1 + ε + uTuw (y)+ xAutun ( y ) + · · · · (25a) 

{x,y)+ ^u2{x,y)+···· + 

W U . J O + ^ V U . J ' H · · · · , 

V = &/r/01 ( 7 ) + ( y ) + · · · · (25b) 

+ f Y V , U , 7 ) + Ύ > 2 ( * > 7 ) + - · . 

P = Pc+~-+\P,{x,y)+l1P2{x,y) (25c) 

p = pe + ----+^px{x,y)+l1p2{x,y)+ (25d) 

r = 7 ; + ü r f 0 1 ( 7 ) + - - + ^ U , J ) + (25e) 

In the above equations, all the independent 
X-l Y variables are stretched by x = , y = — • 

A ο 
Revealed by these equations is the interaction effect, 
which is expressed in terms of the coefficients λ], 
λ2,...,λ,(1), λ2

(Ι) and Υ,, T2... . Note that υ, » Δδ«χ 

holds in equation (25). 
Substituting the stretched independent variables 

and the dependent variables into the X-momentum 
equation (2), one can find that the Reynolds and 
shear stresses serve as higher order terms. 
Consequently, the nature of the flow in the layer is, 
in essence, inviscid. In this layer, the interaction 
parameters are related by 

γ +1 dP yt 
k , U ) = —•ha-\&y + fa)dy + f{x).<?\) 

Y fa „ 

In these equations, P](x) - y + P\+ (x,0), which 
is calculated by matching solutions between this 
layer and the external region. From the energy 
equation in its lowest order form, one can derive 

7 I + ( y - l ) i / , = 0 

since 

Τι = tf, = 0 as χ -» -co . 

(32) 

(33) 

Since we consider the viscosity as the second 
order contribution to the energy equation, the inter-
action length, Δ = Re53, results. P\, a function of χ 
only, is derived from the Y-momentum equation. 
Given the above statements, one can have δ = Δ2 

since the convection term plays the role of the 
second order term in the Y-momentum equation. In 
the velocity defect layer, we have 

. ( I ) ι-r 
3 k ^ Y - 2 

+ • 1-2 χ 
Y(Y~ 2) 

um(y)P, (34) 

Yd-Y) 
(35) 

pr= YPAo. - L y i Y Wy^-T-^ruo\(y)P\' 

1 - Y r 3(1 - γ ) 

1 - 2 γ 
7^2 ü°> 

(36) 

um{y)PA, 

pr = 
Y-1 
Y - 2 

\V\,ydx 

2v3 _ 7 v +3 

\ = ε , (26) 

Ύ \ = * 3 ' 2 , (27) 

Λ'" - . (28) 

As for the leading interaction variables, they are 
given by 

U\ =~PJ Υ, (29) 

P\ = P\!Y ' . (30) 

The remaining relations derived from this analysis 
are 

A = s - m u ] = s m S e = R e 5 \ (38) 

and 

p0]=-Tm=(r-\)uor (39) 
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4.2. Reynolds stress sublayer 

In the velocity defect layer, the magnitude of the 
inertial force has the same order of magnitude as 
does that of the streamwise pressure gradient. 
However, the Reynolds and viscous stresses are 
dominant in the wall layer; hence, an intermediate 
region must be inserted to link the transport 
phenomena between the velocity defect and the wall 
layers. In this layer, inertial, pressure gradient and 
Reynolds stress terms have the same order of 
magnitude. The transverse momentum transfer is 
transported by the turbulence rather than by the 
molecular mechanism. 

In this layer, the dependent variables are 
expanded by 

u = 1 + ε + ut um(7)+ χΔιιτ uu(y)+ •··· 
Λ Λ Λ Λ Λ Λ 

+ Λ, u[ + Ä2u1 + ---- + Äl
0)

 U]
(i) + ····, 

Λ Λ Α Λ Λ 

ν = SsuT ν οι + χΑ SsuT vu(y)+ • • • • + Τ , V\ + · 

Ρ=Ρ+···· + λιΡι + ····λ]
ωΡι

ω + · 

7, = 7 ; + · · · · + /ΙιΓ, + · · · · + /1, (1)Γ, (' ) + 

(40) 

(41) 

> 

(42) 

(43) 

The independent variables are stretched by 
X-I Y χ = , y = — . For this study, the eddy visco-

Δ δ . 
sity model 

- ρ <u'v' >= ρΎ,ν,γ (44) 

is chosen as the closure of the working Reynolds 
average transport equations. The turbulent viscosity, 

Y/„ in equation (44) is expressed by Yf 

Substituting the above equation into the x-
momentum equation, one has 

S s = u T Δ , 

and 

u\ + Ρ\!γ = 0. 

(45) 

(46) 

Under these circumstances, the Reynolds stresses 
can remain, up to their lowest order, in the inter-
action equations. From the continuity equation, one 
can derive 

Ui + p, =0 

since 

U\ = ρ, = 0 as χ -» -co. 

(47) 

(48) 

The relations between the interaction parameters 
in this layer are given by 

T, = uT5s λ\ίΔ, 
Λ Λ 3 (1) , 
Μ =11τλ\, 

λ\ = ε. 

(49) 

(50) 

(51) 

From the energy equation, the interaction 
temperature 7j can be related to m, by 

(52) 

The pressure gradient along the normal 
direction, y , remains as the higher order term in 

the Y-momentum equation. The remaining 
functional relation valid in this layer is: 

(53) 
Λ Λ Υ Α Α Λ A 

V\(x) = (y+l)Uu \u0idy-rT,u. +/U), 

where 
δ 

um =a-lny+a-\n(~^)+ß0. 

It is worth noting that u satisfies 

u,x — C(y u'y) · , (54) 
•y 

and 

u { - oo) = 0. (55) 

As for the non-interaction dependent variables, 
p01, Γ01, they are expressed as functions of w01: 
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Po, = - Γ ο ι = ( r - i ) ü o i . (56) 

The functional forms for the second lowest 
interaction dependent variables are 

; ι 
u]"Xx) = (y + \)uu \{-\um)dy-Yü (57) 

ο <Y>r ο 
y 

+ \ f { x ) t y < d y , 
0 

Λ ( 1 ) Λ ( 1 ) Λ Λ 

Τ1 ={\-γ)υ\ -{γ-\)ιΐ\ΐΐα\, 
Λ ( 1 ) Λ Λ Λ Λ CD 
ρ, =γυ+(2γ2-2γ-\)u\ua\-u\ , 
Λ ( 1 ) Λ Λ Λ Λ ( 1 ) 

Λ = γu+(y2-2y)u\ u0l-yu\ . 

(58) 

(59) 

(60) 

4.3. Wall layer 

As the wall is approached, the Reynolds shear 
stresses decrease. As a result, the viscous shear 
stress becomes dominant over other terms. The 
momentum transfer is mainly due to the molecular 
rather than the turbulent means. By performing ex-
pansion of the dependent variables, one can obtain 

u = uru0l(y)+xAuTun(y)+···· 

(x,/)+····, 

/ = S,urvm (y)+ χΔδ}ιιτνη (y)+ · · · 

+ r , F , ( ° U J ) + , 

p = Poo (y)+*APu ( / ) + · · · · 
• Til)" (1) / „. 

+Λ p U , / ) + · · · · , 

T = f00(y)+xAuTf]](y)+···· 
+Z]fm(x,y)+-·. 

(61) 

(62) 

(63) 

(64) 

(65) 

In the above, the independent variables are 
X-1 Υ stretched by x = ,y = —. The interaction 

Δ δ( 

parameters in the above equations are obtained as 

ReS,uT =0(\), 

Ύ\ = δΧ / Δ, 

δδ, - Re"1. 

(66) 

(67) 

(68) 

The dependent interaction variables are 
expressed in functional forms as follows, where the 
constants are determined by matching conditions in 
the wall layer with those in the Reynolds sublayer: 

r ( l ) 

_C1> 

(69) 

= J(exp(- j^L)dy + Fl(x)y + F2(x), 
0 0 MM 

J 
= - f (( Poo^0 ).y - Poo"/," )/ "01 dx , (70) 

Ö,U)
 - — 

A Pw 0 
y 

/?U) = Υ \x ((P, + P,) Uu.y )jdx + l } ( y ) , (72) 

7?° = ( ^ - r 0 0 p 1 ) / p 0 0 . (73) 

In the above equations, v/7 '1 is determined 

from the equation given below: 

"oi.r 

From the relation δδ, = 0(Re"') and δ = 0(Re'2/5), 
one can obtain 

=ö(Re" 3 ' 5 ) (75) 

From the relations Re5,«x = 0(1), Δ = Reö3, δ = 
0(Re"2/5) and δ* = «t, Δ, one can derive δ* = 0(Re" 
3 / 5 · 

)· 

5. Concluding Remarks 

We have presented a mathematical model used 
to explore in detail the heat transfer and the inter-
action flow structure between an oblique shock 
wave and the turbulence boundary layer over the 
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axisymmetric configuration. Asymptotic and per-
turbation analysis has formed the basis for models 
of shock-flow interaction in turbulent regions 
comprising triple layers. 

Asymptotic and perturbation analysis has been 
conducted in the transonic external layer, velocity 
defect layer, and wall layer in the downstream and 
upstream undisturbed regions, and in the velocity 
defect layer, Reynolds sublayer, and the wall layer 
in the interaction region. In this study, different 
length scales in the boundary layer have been 
obtained and are compared with those obtained 
under adiabatic conditions. We summarize their 
length scales in the following table: 
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