
Numerical prediction of eddy structure in a shear-driven cavity
T. P. Chiang, W. H. Sheu

Abstract We present in this paper a detailed numerical
study of the vortical ¯ow structure in a con®ned lid-driven
cavity which is de®ned by a depth-to-width aspect ratio of
1:1 and a span-to-width aspect ratio of 3:1. In this study we
have carefully examined the computed data that the useful
to gain an in-depth knowledge of the complex interactions
among secondary eddies, primary eddies, and spiraling
spanwise motions. Chief of conclusions drawn from this
study is to explain how the secondary eddies are intimately
coupled with the primary recirculating ¯ow. We also en-
lighten in this paper why spiraling vortices inside the
upstream secondary eddy tend to destabilize the incom-
pressible ¯ow system and aid development of laminar
instabilities.

1
Introduction
Over the last three decades, the so-called lid-driven cavity
¯ow problem has received considerable attention mainly
because of its geometric simplicity, physical abundance,
and its close relevance to some fundamental engineering
¯ows. Numerical investigation of this problem dates back
to the pioneer work of Burgraff (1966). While some fun-
damental ¯ow phenomena have become clear to us
through two-dimensional solutions, many of the subtleties
of third-dimensionality are yet to be learned. The recent
progress in numerical analyses and computer hardware
have made it possible to numerically analyze unsteady ¯ow
problems by solving their corresponding Navier-Stokes
equations with a large number of grid points within a
three-dimensional domain.

In a parallel development, a considerable number of
experimental studies on this problem have been done
since the early 1980s. Among them, Taylor-GoÈrtler-like
(TGL) vortices were experimentally observed by Koseff
et al. (1983). Later in 1985, TGL vortices were numerically
con®rmed by Freitas et al. (1985). For a comprehensive
literature review, see the research work of Street and his
colleagues (Koseff and Street 1982; Koseff et al. 1983; Rhee

et al. 1984; Koseff and Street 1984; Prasad et al. 1988;
Prasad and Koseff 1989; Freitas et al. 1985; Freitas and
Street 1988; Perng and Street 1989; Zang et al. 1993).

We review here mainly the published work of the re-
search group led by Street. Experimental investigation of
cavity ¯ows for Reynolds numbers between 1000 and
10000 started in the early 1980s. Koseff and Street (1984)
observed corner vortices in the vicinity of the two vertical
end walls and local TGL vortices over the span of the
cavity with the values of SAR (Spanwise Aspect Ratio)
(� L : B � 1; 2; 3). In the case of Re � 3000, eight pairs
of TGL vortices were observed. On increasing Re up to
6000, three more pairs (11 pairs) of TGL vortices became
visible. For Reynolds numbers as high as 6000 � 8000,
unsteadiness no longer was regularly sustained and, thus,
evolved into turbulence. Spiraling spanwise motion has
been discussed mainly inside the downstream secondary
eddy (DSE). To the best of the authors' knowledge, pre-
vious studies have never addressed the upstream second-
ary eddy (USE). In 1988±1989, Reynolds numbers falling
into the range of 3200 � 10 000 were considered by Prasad
et al. (1988) and Prasad and Koseff (1989). In their studies,
different values of SAR � 1 :2; 2 :3; 5 :6, and 1:1 were
considered with particular emphasis on study of the in-
¯uence of the reduced values of SAR on the increase of the
viscous drag. More recently, Reynolds numbers classi®ed
as low to medium �100 � 2000� were considered by Aidun
et al. (1991). Their paper classi®ed the ¯ow in terms of
Reynolds numbers.

In 1991, the GAMM-Committee sponsored a workshop
dedicated to numerical simulation of a lid-driven cavity
¯ow at Re � 3200 for SAR � 3 :1 (Deville et al. 1992) with
the aim of ascertaining the number of TGL vortex pairs
appearing in the transverse direction. Comparisons were
also made among participants on the performance of the
computer codes employed and on the CPU time per unit of
physical time. It was surprising to ®nd from the summary
of this conference is that the conclusions drawn were quite
different among the contributors. They differed not only
on the existence of the ¯ow symmetry, but also on the
number of pairs of TGL vortices. In recognition of this, we
feel that much work needs to be performed in the years
ahead. To avoid physical complications and numerical
dif®culties, we consider here a Reynolds number that is
much lower than 3200. For numerical simulations of cavity
¯ow at Reynolds numbers other than 3200, the reader may
refer to Deng et al. (1994).

We begin by introducing the equations of the ¯uid
motion for the incompressible case described in Sect. 2.
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This is followed by a brief description of the underlying
®nite volume discretization method, the solution algo-
rithm, and the multi-dimensional advective ¯ux discreti-
zation scheme. For con®dent use of the developed
computer code for the lid-driven cavity problem, valida-
tion against analytic data is presented in Sect. 3. In Sect. 4,
prior to discussing in detail the complex ¯ow evolution, we
compare solutions with other numerically available lid-
driven cavity data. Attention is given to the interaction
mechanism between secondary eddies and primary cir-
culation. Plausible reasons leading to the formation of TGL
vortices are also addressed. Closing remarks are presented
in Sect. 5.

2
Mathematical model and numerical method
We consider in this paper the ¯ow of an incompressible,
viscous ¯uid. In the absence of an applied body force, a
complete set of conservation equations is given by the
following elliptic-parabolic equations for a given Reynolds
number Re:

oui

oxi
� 0 ; �1�

oui

ot
� o

oxm
�umui� � ÿ op

oxi
� 1

Re

o2ui

oxmoxm
: �2�

In order to be closed, Eqs. (1), (2) with an initial condition
at t � 0 must be supplemented by boundary values. In the
literature, we ®nd several sets of working variables to
choose from. Of these, we prefer to employ the primitive-
variable formulation for this class of ¯ows. The rationale
behind choosing this variable setting is that closure
boundary and initial conditions are clearly de®ned
(Ladyzhenskaya 1963). More importantly, these closure
conditions are relatively easy to be implemented in the
computer code.

When faced with incompressible Navier-Stokes
Eqs. (1±2), we encounter two well-known dif®culties. The
®rst of the two deals with the numerical instability in sit-
uations when advection predominates over diffusion.
Prediction error due to oscillatory velocities and the so-
called false diffusion error grossly pollute the ¯ow physics
over the entire domain. A simple remedy for such dis-
cretization errors is to apply the third-order QUICK
(Leonard 1979) upwind scheme, formulated on the non-
uniform basis, to the nonlinear advective ¯uxes. It must be
borne in mind that discretization errors stemming from
the use of a one-to-one curvilinear coordinate transfor-
mation are considerable and cause deterioration of accu-
racy for problems involving highly stretched and distorted
meshes (Sheu and Lee 1996). In attempting to explore in
depth how the ¯ow evolves, we conduct analysis in a cavity
containing a simple set of rectangular grids.

When the velocity-pressure formulation is considered,
one has a choice of applying a grid staggering (Patankar
1980) or a collocating (Abdallah 1987) strategy to storing
these working variables. While use of both approaches to
suppress node-to-node pressure oscillations has long been
recognized in the literature, we abandon the collocating
grid approach in favor of the ®rst strategy. Regardless of

programming complications, the staggered grid approach
outweighs the nonstaggered grid in the sense that the latter
approach lacks boundary pressure for an analysis involv-
ing a Poisson-type pressure correction equation. On the
control surface of a ®nite volume cell, each primitive
variable takes over a node to itself whereas the pressure
node is surrounded by nodal velocities. This variable set-
ting permits the use of the ®nite volume integration
method to discretize each conservation equation under
these circumstances.

The second dif®culty encountered in simulating an in-
compressible ¯ow problem is that it is essential to assure
satisfaction of discrete divergence-free velocities. While
use of a mixed formulation meets this constraint condi-
tion, we encounter a much larger discrete system. The
need to avoid a much larger demand for computer storage
has prompted researchers to consider segregated ap-
proaches. In the present paper, the solution to the ®nite
volume discretization equations is obtained sequentially
for all primitive variables using the underlying SIMPLE
iterative algorithm (Patankar 1980).

3
Validation study
As a ®rst step towards numerical investigation of the
physical problem, we ®rst justify our computer code. A
validation study is often proceeded by an analytical as-
sessment of the problem. To achieve this goal and, fur-
thermore, estimate the spatial rate of convergence of the
scheme employed, we consider the following transport
equation for a scalar U in a simple domain of three di-
mensions �ÿ1 � x; y; z � 1�. Of note is that oU=ot has
been analytically speci®ed:

oU
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� Re

o
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�ujU� � o2U

oxjoxj
� S; � j � 1; 2; 3� : �3�

Here, uj; Re, and S denote the velocity components of
the velocity vector, the Reynolds number, and the source
per unit volume, respectively. The solution to Eq. (3) is
sought in a domain with the following zero-divergence
velocity ®eld (Ethier and Steinman 1994):

u � ÿa�eax sin�ay� dz� � eaz cos�ax� dy��eÿd2t ;

v � ÿa�eay sin�az� dx� � eax cos�ay� dz��eÿd2t ; �4�
w � ÿa�eaz sin�ax� dy� � eay cos�az� dx��eÿd2t ;

where a � d
2 � p

4. The analytic solution for U, thus, takes
the same form as u given in (4) if the source term S is
prescribed as follows:

S � ÿRe
op
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2
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As is usual, we assessed the employed QUICK-type upwind
discretization scheme by examining the prediction nodal
errors. Tests on various grids were conducted to assure
that the solution converged. With grid spacings being
continuously re®ned, we could compute the rate of con-
vergence from the computed L2-error norms. According to
the errors computed at different grid spacings, namely
h � 1; 2=3; 1=2; 2=5; 1=3; 2=7, the ratio of convergence
as shown in Fig. 1 is, as expected, 3 in a least-square sense.
The test case considered and the results obtained thus far
con®rm the applicability of the QUICK scheme to multi-
dimensional analyses.

We now turn to examining whether or not linearization
procedures and the zero-divergence constraint condition
will cause the rate of convergence to deteriorate. To an-
swer, this question, we solved a Navier-Stokes problem in
the same domain as that considered in the previous
benchmark test. For this study, this involves specifying a
Dirichlet-type velocity and initial condition according to
equations given in (4). The analytic pressure takes exactly
the same form as that shown in Eq. (6). This is only true
for the case with Re � 1 (Ethier and Steinman 1994). We
carried out the computations under conditions of time
spacing Dt � 1=160 and the grid spacing considered in the
previous benchmark test. From the ®nite volume solutions
shown in Fig. 2, we are assured that the proposed scheme
is also applicable to analysis of incompressible Navier-
Stokes equations. The good agreement from two analytical
tests, as demonstrated in Figs. 1±2, provides us with strong
con®dence to proceed with investigation of the time-his-
tory of the ¯ow evolution, which is driven by a constant
upper lid, in the rectangular cavity.

4
Results and discussion

4.1
Problem description and solution validation
The problem under investigation, as con®gured in Fig. 3,
concerns the incompressible ¯uid ¯ow inside a rectangular
cavity, which is scaled by L:B:D � 3 :1 :1. The Reynolds

number chosen for this cavity is based on the lid speed, the
width of the cavity, and the kinematic viscosity of the
working ¯uid. According to Fig. 3, the cavity of present
interest is subject to a sudden upper lid motion at time
t � 0.

Recalling the ambiguity regarding whether or not the
¯ow symmetry is retained in the investigated rectangular
cavity, we have conducted numerical analysis in the whole
cavity, which is covered with non-uniform mesh with
34� 91� 34 grid resolution, to avoid such uncertainty.
Computational evidence reveals that Taylor-GoÈrtler vor-
tices emerge at a Reynolds number around 1300. This
®nding is consistent with that of Aidun, Trianta®llopoulos,
and Benson (1991). With a continuous increase of the
Reynolds number, unsteady ¯ow gradually evolves into
turbulence at Re � 6000. In recognition of these ®ndings,
we address a Reynolds number whose value is not so high
as to render a turbulent ¯ow because obstacles regarding
turbulence modeling remain on the road to a realistic
simulation. In circumstances where the Reynolds number
is much less than 1300, TGL vortices are not expected to
appear, so lower Reynolds numbers are, thus, not con-
sidered here. In attempting to explore in depth the
mechanism of laminar instability leading to the onset of
TGL vortices, we mainly consider here a moderate
Reynolds number, Re � 1500.

Prior to discussion of the computed solutions, we will
describe tests on different spanwise ratios, namely
SAR � 1; 3, and Reynolds numbers, namely 400, 1000,
3200, which were carried out to further show that our code
is applicable to the lid-driven cavity problem. A compar-
ison was made on the basis of mid-span velocity pro®les
along vertical as well as horizontal centerlines. According
to the computed ®nite volume solutions and their con-
vergence histories, as depicted in Figs. 4±6, for the cavities
considered and the Reynolds numbers investigated, the
agreement with other numerical solutions (Ku et al. 1987;
Kato et al. 1990; Cortes and Miller 1994; Babu and Korpela
1994; Arnal et al. 1992; Kost et al. 1992) is close enough. In
the remaining sections, we will focus mainly on some
topics which have been little explored.

Fig. 1. The rate of the spatial convergence test for a three-
dimensional scalar equation

Fig. 2. The computed rates of convergence for velocities and
pressure for the Navier-Stokes equations de®ned in a cubic
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4.2
Global flow structure
To provide readers with a clear picture of the ¯ow struc-
ture in the cavity of interest, we present in Fig. 3 a global
view of the ¯ow at t � 85. In y planes that are suf®ciently
distant from the two end walls, say at the y � 1 spanwise
plane, the ¯ow pattern resembles that computed on a two-
dimensional basis which comprises a primary eddy and
two much smaller secondary eddies, namely the down-

stream secondary eddy (DSE) and the upstream secondary
eddy (USE). The two-dimensional-like streamlines plotted
in Fig. 3 differ from truly two-dimensional ones in that the
streamlines are open (not close together), so they permit
the presence of spanwise velocity component. No Moffatt
vortex is found unless the Reynolds number approaches
3000. Due to the stagnant nature of the ¯ow in regions
fairly close to the two end walls, in the direction away from
the two end walls there exists a negative pressure gradient

Fig. 3. An illustration of the ¯ow structure in the investigated rectangular cavity

Fig. 4a,b. Comparison study for SAR � 1 :1 and Re � 400. a mid-sectional velocities at the symmetry plane y � 0:5; b error reduction
for working variables
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in the primary core, as seen in Fig. 7, which, in turn, re-
sults in a spanwise velocity moving towards the symmetry
plane. Taking into consideration a control volume con-
taining either one of the two end walls as part of its control
surface, conservation of mass suggests the presence of the
spanwise velocity with a sign which is opposite to that
found in the core of the ¯ow. This implies that ¯uid par-
ticles adjacent to the two side walls, the lid plane, and the
¯oor of the cavity move towards the two end walls. To
show that there is a sign switching of the spanwise velocity
in the ¯ow, we plot the zero contour of the spanwise ve-
locity component v in Fig. 7. Collecting lines of this sort at
the x planes results in the three-dimensional contour

surfaces of v � 0 in Fig. 8. This spanwise motion, together
with an apparent circulation ¯ow pattern at the spanwise
plane, constitutes a helical vortex structure. With this
spanwise velocity, which is typical of lid-driven cavity ¯ow
motion, the ¯ow pattern at the x-plane takes the form
shown in Fig. 3. Due to space considerations, we have not
plotted velocity vectors at longitudinal planes other than
the x � 0:525 plane. As to the ¯ow structure at the z plane,
it is virtually the same as that found at the x plane. In-
terested readers are referred to our previous work (Chiang
et al. 1996).

As Fig. 3 reveals, there is an apparent pair of so-called
corner vortices. The formation of corner vortices

Fig. 5a,b. Comparison study for SAR � 1 :1 and Re � 1000. a mid-sectional velocities at the symmetry plane y � 0:5; b error
reduction for working variables

Fig. 6a,b. Comparison study for SAR � 3 :1 and Re � 3200. a mid-sectional velocities at the symmetry plane y � 1:5; �t � 25�;
b mid-sectional velocities at the symmetry plane y � 1:5; �t � 50�
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constitutes the global transport mechanism in that ¯uid
particles near the wall region are engulfed into the primary
core with the aid of corner vortices. Corner eddies, as a
consequence, aid the spanwise exchange of ¯uid particles
in the cavity. This conceptually amounts to placing a
suction pump on the end wall, to which the nearby par-
ticles are attracted. In support of our conjecture, we plot in
Fig. 3 the limiting streamlines at a y-plane which is fairly
close to the end wall, say at y � 2:99. Notably, there is
indeed an attracting spiral-saddle point at the y � 2:99
plane, which is exactly where the suction pump is located.

Our computed solutions reveal that the ¯ow ®eld due to
the lid motion asymptotically approaches a full developed
state at a time around t � 25. Subsequent to this time,
particle motions, inside the tube of v � 0 contour surface
shown in Fig. 8, from the two ends meet at the symmetry
plane. This opposite spiraling motion causes the contour
surface of v � 0 to distort and the size to enlarge. On
increase of time, to respond this variation Tolluniem-
Schlichting wave emerges from the symmetry plane and
propagates towards the two end walls. This phenomenon is
particularly apparent at the upstream side of the cavity.
Finally, Taylor GoÈrtler like vortices burst at time t � 85.
The main objective of the rest of the discussion will be
directed towards answering why, where, and how Taylor
GoÈrtler vortices emerge.

4.3
Secondary eddies
Examining the literature, it seems that studies on the lid-
driven cavity problem have mostly concentrated on the
primary core and the downstream secondary eddy. Very
few or none of them have been devoted to study of the
upstream secondary eddy. Consequently, our attention is
now directed towards the upstream secondary eddy. Recall
that ¯uid particles spiraling towards the end wall tend
to be pulled into the primary core by the corner vortex.
These engulfed ¯uid particles through the singular point
(or attracting spiral saddle point) spiral quickly and
monotonically towards the symmetry plane. This provides

a means of destabilizing the ¯ow in the cavity. With this in
mind, we will attempt to show that the upstream second-
ary eddy is less stable, as compared to its downstream
secondary eddy.

To support our viewpoint, we have marked the particles
which were originally located at the USE and DSE and
traced their Lagrangian-particle paths in Fig. 9. For illus-
tration purposes, the projections of these particle paths
onto the xÿ y plane are also given in Fig. 9. Once particles
within the secondary eddies spiral towards the end wall,
they are engulfed into the primary core through the corner
vortices. This is followed by a spiraling particle motion,
which is characterized by quick and monotonic migration
towards the symmetry plane, in the upstream secondary
eddy. On the other hand, particles from the downstream
secondary eddy spiral back-and-forth towards the sym-
metry plane. In view of the difference in the nature of the
spiraling particles which migrate towards the symmetry
plane, we can see clearly that the ¯ow in the upstream side
wall is more unstable. As compared with the location
where the particle in the secondary eddy is engulfed into
the primary core, we can clearly see that particles in the
USE are drawn into the interior of the cavity, as seen in
Fig. 9b. Particle paths for the DSE ¯uid particles are, on
the other hand, seen in the vicinity of the v � 0 contour
surface shown in Fig. 9a. Another interesting ®nding
which needs to be addressed is that the nearer the engulfed
particle approaches the end wall, the higher the possibility
is that a ¯uid particle can be drawn in the primary core
through the attracting spiral node. Con®rmation of this
®nding is best illustrated in Fig. 9c. It is this back-and-
forth spiraling motion for the particle seeded in the
downstream secondary eddy which aids ¯ow stability.

Now, we will show how a spiraling particle seeded in the
USE is engulfed into the core differs from a particle in the
DSE. To begin with, it is worthwhile to present evidence
that at a spanwise plane which is suf®ciently distant from
the end wall, say at the plane y � 2:8 shown in Fig. 10a, the
streamline pattern is akin to that computed from the two-
dimensional analysis. Three lines labeled ``a'', ``b'', and ``c''

Fig. 7. The end wall induced
pressure gradient, spanwise
velocity, and the limiting
streamlines
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in Fig. 10a are useful to reveal how particles proceed to-
wards the secondary eddies and the primary core. It is
interesting to point out that, within the primary core,
particles inside/outside of the v � 0 contour lines spiral
outwards in their migration to the symmetry/end wall,

respectively. As the end wall is approached, the down-
stream secondary eddy at the y � 2:9 spanwise plane, as
shown in Fig. 10b, breaks. The spiraling particle motion
within the primary core starts to spiral inwards. This paves
the way for the particles inside the DSE to be engulfed into

Fig. 8a,b. Three-dimensional v � 0 isosurfaces in a half-span cavity 1:5 � y � 3 plotted at several selected times t � 25; 45; 65; 85.
a viewing from the upstream side; b viewing from the downstream side
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the primary core. The plane at y � 2:9 is still too far
away from the end wall for the ¯uid particles to be en-
gulfed into the primary core. At the spanwise plane which
increasingly approaches the end wall, the upstream sec-
ondary eddy at the spanwise plane y � 2:925 shown in
Fig. 10c also breaks. Particles inside the upstream sec-
ondary eddy begin to be sucked into the primary core.

Particles at spanwise planes which are fairly close to the
end wall, for example at the two planes shown in Figs. 10c
and d, are characterized as having a tendency to be entirely
engulfed into the attracting spiral-saddle. According to the
computed solutions, we can see that the particle inside the
downstream secondary eddy is engulfed into the primary
core before that in the upstream secondary eddy is.

Fig. 9a±c. Illustration of spiraling particles at t � 25. a spiraling particle in the DSE; b spiraling particle in the USE; c comparison
of particle paths for particles, originally inside secondary eddies, which have been engulfed into the primary core via the corner vortex
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According to Fig. 10d, particles in the downstream sec-
ondary eddy are engulfed into the v � 0 contour line
through the line labeled by aÿbÿ while particles inside the
upstream secondary eddy are attracted into the spiral-
saddle node via the other part of v � 0 contour line, namely
a�b�. Recall that particles inside the upstream secondary
eddy can be drawn in the primary core only at a spanwise
plane which is fairly close to the end wall. Once the up-
stream secondary eddy is broken, particles inside this eddy
are mostly engulfed into the primary core via the spiral-
saddle. These particles will migrate quickly and monoton-

ically towards the symmetry plane in regions adjacent to
the vortical core line, which is the collection of spiral-saddle
points computed at different spanwise planes. Bearing in
mind that the engulfed particles from the upstream sec-
ondary eddy tend to destabilize the ¯ow, under normal
conditions, universal law has a tendency to keep the ¯ow
system in its most stable status. This suggests that the
supply of particles to the upstream secondary eddy is
prohibited so as to keep the ¯ow system stable. In the di-
rection from y � 1:8 (see Fig. 11a) to y � 2:1 (see Fig. 11b),
the entry to the upstream secondary eddy is prohibited so

Fig. 10a±d. Description of spiraling processes at planes near the end wall by streamline plots at t � 25. a y � 2:8 plane; b y � 2:9
plane; c y � 2:925 plane; d y � 2:95 plane
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as to yield a more stable ¯ow condition. This is followed by
the break of the upstream secondary eddy at a plane
� y � 2:2� (see Fig. 11c) which is not closer enough to the
end wall. This series of changes just mentioned is best de-
scribed by the so-called separation lines plotted in Fig. 11.

4.4
Particle exchange among eddies
Prior to discussing the time history of the spanwise
transport phenomena, it is instructive to plot streamlines
at each y plane so that the structure of the particle motion

Fig. 11a±c. Computed
streamlines at t � 25 which
illustrate how ¯uid ¯ows ex-
change between the primary
eddy and DSE/USE. a at y � 1:8
plane; b at y � 2:1 plane; c at
y � 2:2 plane
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can be clearly illustrated. As shown in Fig. 11a, we de®ne
several lines of different physical relevance for descriptive
purposes. The line, which is farthest away from the two
bottom corners, represents the separation line, above
which the ¯ow domain is referred to as the primary core
region. The line between the separation line and the
downstream side wall is referred to as the dividing line,
which divides two streams entering into downstream and
upstream secondary eddies. Fluid particles con®ned to the
regions of plotted helixes proceed spirally to the end wall.

Due to space considerations, we will describe the
transport phenomena at the spanwise y-planes based
mainly on the ®nite volume solutions computed at t � 25.
In a half domain, 1:5 � y � 3, Fig. 12 shows several pos-
sibilities for particles to exchange between the downstream
side and its upstream counterpart. In the range of
1:5 < y < 2:1, ¯uid particles near the upper downstream
side wall can enter into upstream and downstream sec-
ondary eddies. As the y � 2:1 plane is approached, entry
into the USE is prohibited. In between 2:1 � y � 2:55,
¯uids coming from the upper half of the cavity enter en-
tirely into the DSE and then proceed to the end wall in a
spiraling manner. In this spanwise range, which has a
length of 0.45, ¯uid particles below the separation surface
as well as at the downstream side have no chance of
communicating with particles at the upstream side. At
spanwise planes in between y � 2:55 and y � 2:85, the
transfer processes repeat. As the end wall is further ap-
proached, a remarkable change is observed. Fluid ¯ows
inside the downstream secondary eddy can be directly
sucked into the core from the zero spanwise velocity
contour lines of aÿbÿ shown in Fig. 10d. As to ¯uid par-
ticles in the upstream secondary eddy, they are lifted up
and are then entrained into the primary core from
a�b�. For completeness, we have plotted v � 0 contour
lines, separation lines, dividing lines, and DSE/USE hook-
like lines at different spanwise locations and different
times, t � 25 and 85, in Figs. 12±13, respectively.

Once entry into the upstream side is prohibited, ¯uid
¯ow inside the upstream secondary eddy is forcibly sucked
into the primary core. This accompanies with the de-
tachment of the separation line from the upstream side
wall. The upstream secondary eddy breaks at this moment.
In the vicinity of the two end walls, Fig. 13 shows that ¯uid
particles inside the secondary eddy but outside of the
contour line of v � 0 are all drawn into the core.

As the end wall is approached, the con®guration of the
separation line and, thus, its curvature undergoes a
change. Since the separation line which bounds the pri-
mary core is analogous to the concave wall over which
there is a laminar ¯ow, the change in the curvature of the
separation line results in variation of exerted centrifugal
force. As the separation line is detached from the upstream
side wall, the resulting curvature is suf®ciently appreciable
to cause force imbalance between the viscous and centri-
fugal forces. Taylor-GoÈrtler-like vortices are the direct
result of this force imbalance due to the appreciable
variation in the centrifugal force. We will discuss the
formation of TGL vortices in more detail later.

4.5
Eddy structure and formation of TGL vortices
Near the downstream side wall, particles located at a
spatial location with a larger value of z may enter into the
upstream or downstream secondary eddies (see Fig. 11a).
Particles inside the upstream secondary eddy may be
drawn upward and, thus, pulled out of this secondary eddy
(see Fig. 11c). To provide a clear picture which con®rms
this statement, it is instructive to integrate separation
lines, plotted in Figs. 12±13, at different y-planes for the
time in the range of t � 25 � 85. The resulting three-di-
mensional curved interfaces exclusively separate the pri-
mary core from the secondary eddies. Due to space
considerations, we only plot them at some representative
times in Figs. 14a±17a. These include a time when the
primary ¯ow has reached a well developed state �t � 25�,
and subsequent times �t � 45; 65�, and the time when TGL
vortices emerge �t � 85�.

To explore in depth the transport phenomena in the full
cavity, it is important to shed light on the mechanism
leading to the exchange of ¯ow between primary and
secondary eddies. Figure 14±17 depict different views of
separation surfaces, which reveal how the curvature of the
primary ¯ow motion changes. As seen in Figs. 14±17, the
change in the radius of the curvature along the spanwise
direction has a great in¯uence on the onset of laminar
instabilities. Such instability is closely associated with the
centrifugal force. Clearly visible on the separation surface
are several localized troughs, across which force balance
can adjust itself. As these ®gures show, the separation
surface at the upstream side is much more irregular than is
that at the downstream side. In crossing over a narrow
trough, the primary ¯ow at the upstream side de®nitely
experiences a larger change of the centrifugal force, as
compared with that on the downstream side. We interpret
this marked variation of the curvature on the separation
surface as being the main cause leading to the subsequent
emergence of TGL vortices.

To support our claim that the ¯ow near the upstream
side wall is more unstable than its downstream counter-
parts, we will present evidence from different viewpoints.
In view of the fact that the separation surface detaches
locally from the upstream side wall, as indicated by ``a'' in
Fig. 14, ``a'' and ``b'' in Fig. 15, ``A'', ``ab'' and ``c'' in
Fig. 16, and ``B'', ``A'', ``abc'' in Fig. 17, ¯uid particles in-
side the upstream secondary eddy no longer spiral towards
the two end walls. These particles are rather locally pulled
out of the upstream secondary eddy and entrained directly
into the primary core. The physics explaining how ¯uid
particles inside the upstream secondary eddy communi-
cate with those in the primary core are clearly demon-
strated by the particle tracer plots in Figs. 14b±17b. For
the sake of completeness, we summarize in Fig. 18 the
starting and terminating spanwise locations of the sepa-
ration surface, which detaches from the upstream side
wall. It is important to note that the wrinkles, as found in
Figs. 14±17, along the spanwise direction correspond to
the varied sizes of the USE and DSE plotted in Fig. 19, and
to the v � 0 contours plotted in Fig. 8.
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On the upstream side wall, we designate in Fig. 18 the
dotted region as the disturbance region. Thanks to the
formation of this upstream disturbance region, the re-
sulting upstream detachment allows ¯uid particles to be
locally entrained to the primary ¯ow motion. This aids
¯ow stability in that fewer ¯uid particles will be sucked
into the primary core from regions near the end wall and
then spiral monotonically towards the symmetry plane.
Besides the end-wall detached separation surfaces and the
region marked by ``E'', as shown in Figs. 14±17, there ex-
ists only one detachment region ``a'' at time t � 25, fol-
lowed by an additional detachment region ``b'' in between
``a'' and ``E'' at time t � 45. Subsequent to t � 45, de-
tachment cells ``a'' and ``b'' merge together and induce a
smaller detachment cell, ``c'', in between ``ab'' and ``E''. At
a later time t � 65, a new detachment cell ``A'' emerges in

front of ``ab''. This paves the way for the formation of TGL
vortices, as depicted in Fig. 20, at time t � 85.

Recall that the contour surface of v � 0, as shown in
Fig. 8, will be distorted in the course of ¯ow evolution.
Across this surface there is a change in the spanwise ve-
locity direction, resulting in vortex formation. As seen in
Fig. 20, this vortex is formed at a location near the v � 0
contour surface which is suf®ciently distant from the ¯oor
of the cavity. Since this vortex is irrelevant to the ¯uid
viscosity, we refer to this vortex as a free-shear vortex. To
ensure the existence of the free-shear vortex, the pressure
®eld is established. This will increasingly in¯uence the
spiraling ¯uid ¯ow in the sense that the boundary layer
¯ow moving towards the end wall will separate from the
¯oor of the cavity. A wall-shear vortex is thus formed in
response to the compression of the free-shear vortex to the

Fig. 14. A plot showing that at t � 25 the separation surface may detach from the upstream side wall and the end wall (a). Fluid
particles inside USE may enter into the primary core (b)

Fig. 15. A plot showing that at t � 45 the separation surface may detach from the upstream side wall and the end wall (a). Fluid
particles inside USE may enter into the primary core (b)
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¯oor of the cavity. Vortices of two different kinds gradu-
ally approach each other and form so-called Taylor GoÈrtler
like vortices at t � 85, as seen in Fig. 3. Due to space
considerations, the subsequent transport of at most ®ve
pairs of TGL vortices is not described in this paper. In-
terested readers may refer to (Chiang et al. 1996) for ad-
ditional details.

5
Concluding remarks
While the geometry of the cavity examined here is ex-
traordinarily simple, the ¯ow physics in the cavity are
nevertheless rich. The physical complexity is attributable
to the eddies which are characterized as possessing

Fig. 16. A plot showing that at t � 65 the separation surface may detach from the upstream side wall and the end wall (a). Fluid
particles inside USE may enter into the primary core (b)

Fig. 17. A plot showing that at t � 85 the separation surface may detach from the upstream side wall and the end wall (a). Fluid
particles inside USE may enter into the primary core (b)

Fig. 18. Description of the time history of the size of the
detached upstream separation surface measured in y
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different sizes and characteristics. Also, how interaction
proceeds among the eddies is crucial to the development
into laminar instabilities. In the entire ¯ow evolution, the
transport mechanism is rooted largely in the spiraling
nature of the ¯ow motion established inside the secondary
eddies and, of course, in the primary core. According to
the ®nite volume solutions obtained, we conclude this
paper with some important ®ndings from this numerical
simulation.

The three-dimensional lid-driven cavity ¯ow is mani-
fested by the presence of a spanwise velocity component
which arises due to the presence of two vertical end walls.
Accompanying the spanwise motion, the ¯ow exhibiting
the dominant recirculation ¯ow pattern is prone to spiral.
We interpret the presence of USE particles, which are
engulfed from regions fairly near the two end walls into
the primary core and then spiral monotonically towards
the symmetry plane, as being the main cause leading to the
¯ow instability because the two ¯ow streams moving in
opposite directions tend to collide with each other at the
symmetry plane. This instability causes the surface sepa-
rating the primary core and the upstream secondary eddy
to detach from the upstream side wall. It is this distorted

detachment which disrupts the well-balanced force be-
tween the centrifugal and pressure-gradient forces estab-
lished inside the primary recirculating cell. This paves the
way for the onset of Taylor-GoÈrtler vortices.

Prior to describing the appearance of TGL vortices, we
have studied in detail how eddies of different sizes and
attributes are intimately coupled. This permits a system-
atic approach to understanding the complex interaction
among spiraling eddies. As the end wall is approached,
particles in the downstream secondary eddy begin to be
engulfed into the primary core. This is followed by suction
of particles in the upstream secondary eddy, which is
closer to the end wall, into the primary core through the
spiral-saddle point. The separation surface plotted in this
paper furthermore helps to show that ¯uid ¯ows present in
the narrow wavy trough of the separation surface have a
higher propensity to develop into TGL vortices. There
exists a higher possibility that instabilities will result at
spatial locations where the width of the upstream sec-
ondary eddy becomes appreciably larger than the width of
the downstream secondary eddy. Computational experi-
ence from this study reveals that the size of the upstream
secondary eddy, the con®guration of the v � 0 contour

Fig. 19a±d. Illustration of the width and height of secondary eddies (de®ned in Fig. 11) and the contour lines of zero spanwise
velocity at the x � 0:525 and z � 0:525 planes. a t � 25; b t � 45; c t � 65; d t � 85
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surface, and the separation surface are closely related. The
spatial location where the USE has marked variation in
size is consistent with the most disrupted v � 0 contour
surface. It is exactly at this spatial location where the
separation surface detaches from the upstream side wall.
In the vicinity of the distorted v � 0 contour surface, the
sign-switching spanwise velocity induces a free-shear
vortex. The pressure ®eld established to support the ex-
istence of this vortex further affects the boundary layer of
the outward-running spiraling ¯ow in the sense that a
wall-shear vortex is formed near the ¯oor of the cavity.
This pair of well-established vortices, referred to as Tay-
lor-GoÈrtler vortices, bursts from the spatial location which
has the local maximum kinetic energy.
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