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ON A MONOTONIC CONVECTION-
DIFFUSION SCHEME IN ADAPTIVE MESHES

C. C. Fang, Tony W. H. Sheu, and S. F. Tsai
Department of Naval Architecture and Ocean Engineering,
National Taiwan University, Taipei, Taiwan, Republic of China

In this article we apply our recently proposed upwind model to solve the two-dimensional
steady convection-diffusion equation in adaptive meshes. In an attempt fo resolve
high-gradient solutions in the flow, we construct finite-element spaces through use of
Legendre polynomials, According to the fundamental analysis conducted in this article, we
confirm that this finite-element model accommodates the monotonicity property. According
to M-mairix theory, we know within what range of Peclet numbers the Petrov-Galerkin
method can perform well in a sense that oscillatory solutions are not present in the flow.
This monotonic region is fairly restricted, however, and limits the finite-element practioner’s
choices of a fairly smail grid size. This limitation forbids application to practical flow
simulations because monotonic solutions are prohibitively expensive to compute. Circum-
vention of this shertcoming is accomplished by remeshing the domain in an adaptive way.
To alleviate the excessive memory requirement, our implementation incorporates a reverse
Cuthill-McKee (RCM) renumbering technique. Numerical results are presented in support of
the ability of the finite-element model developed herein to resolve sharp gradients in the
solution. Alse shown from these numerical exercises is that considerable savings in computer
storage and execution time are achieved in adaptive meshes through use of the RCM
element-reordering technique.

INTRODUCTION

The advective-diffusive equation is examined as a linear, steady-state model
for Navier-Stokes equations. Research into this model equation has been the
subject of fundamental importance in areas of fluid mechanics and heat transfer.
This prototype equation is also of academic significance because it is amendable to
analytic solution and thus provides a convenient test for benchmarking the advec-
tion-diffusion discretization methods so far devised. Practical as well as academic
importance explain why much attention has been devoted in the past few decades
to numerical investigation of this model problem, and why it is the focus of the
present study.

Numerical modeling of a convection-diffusion transport equation involves
prediction accuracy, numerical stability, and scheme consistency. Computational
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NOMENCLATURE
a; components of the matrix A Pt) Legendre polynomials
A matrix r element number
e f element numbering R residual
E a finite set of elements u x-component velocity
o indices for rows and columns u)c,u, u; unknown variables at different
other than those at hanging nodes nodes
i(r) eccentricity of an element r v y-component velocity
2(r) level structure rooted at # W, (i = 1-4) weighting functions
M matrix u kinematic viscosity
n dimension of the matrix A P working variable
N(E ) shape functions of a master & computed solution of ¢
element in coordinates £, n ¢ a vector that is packed with a
P permutation matrix column of working function ¢
Pe,, Pe, Peclet number in the x and y in nodes
directions, respectively D, nodal values of ¢ at node i

efficiency and ease of programming also warrant consideration for a scheme to be
termed robust. Achieving all these properties is, of course, very difficult. What fits
for solution accuracy may not for solution stability. Retaining solution stability,
without at the expense of compromising computational efficiency and prediction
accuracy, constitutes the core of the present study.

We begin by describing in Section 2 the convection-diffusion equation. This is
followed by a description of the finite-clement employed. The M-matrix theory,
which provides a basis for capturing sharp profiles in the flow, is briefly reviewed.
The main attribute of the finite-element model adopted for the convection-
diffusion equation is that use of Legendre polynomials to span finite-element
spaces facilitates numerical integration. To broaden the application scope, we add
grid adaptivity to the formulation in Section 3. For the sake of completeness,
solution accuracy, scheme stability, and computational efficiency all must be
considered together. To this end, we carry out a theoretical analysis and discuss the
consequences in greater detail. In order to validate the proposed monotonic flux
discretization scheme, we present a closed-form solution for the scalar transport
equation defined in a simple domain. Attention is directed toward assessing the
effectiveness of the h-adaptivity employed together with the reverse Cuthill-McKee
(RCM) element-reordering technique.

THEORETICAL ANALYSIS

Model Equation

In this article we consider the transport equation for a passive scalar ¢ given
below:

ud, + v®, = w(P, +9,) (1)
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To simplify the analysis, a simple flow that involves constant velocities « and v is
considered. In what follows, analysis is restricted to a constant-property flow with a
prescribed value of diffusion coefficient w. The elliptic nature of the partial
differential equation (1) requires that boundary conditions be prescribed along the
entire boundary of D. .

Finite-element solutions, ®, to the convection-dominant transport equation
for ® in (1) are obtained by demanding that R = u®, + u¢i>y - u(®,, + Cf)yy) be
orthogonal to the weighting function. Solutions thus obtained are viewed as a
search for weak solutions to Eq. (1). Depending on the circumstances, one can
choose between centered and upwind schemes. Provided that the values of Pe, =
ulx/p and Pe, =vAy/u exceed 2, the weighted-residuals formulation suffers
stability problems. Upwinding techniques have proven to be the methods of choice
to alleviate this problem. Here, Ax and Ay denote the mesh sizes along the x and
y directions, respectively. To introduce the upwind effect into the formulation, we
demand that the test space, W,, be different from the trial space N, in an ad hoc
manner. The stabilization prevents the numerical oscillations. Substitution of the
presently employed four-node isoparametric bilinear basis functions, b=
Ti | N(¢&, v)®,, where £ and v are called natural coordinates, into the weighted-
residuals statement yields matrix equations for each element. This is followed by an
assemblage of finite elements, thus forming the global coefficient matrix. To close
the algebraic equations, there remains selection of test functions. Construction of a
best-suited weighting function warrants further discussion.

Finite-Element Model

In the presence of steep gradients, flow-oriented flux discretization schemes
no longer suffice for praduction of oscillation-free solutions. Attempts to suppress
over- or under-shoots in the solution have led to the development of bounding
schemes. In a domain of single dimension, monotonic solutions can be obtained by,
among other ways, accommodating the total variational diminishing (TVD) prop-
erty [1] or by applying flux limiters [2]. Extension of these filtering techniques to
multidimensional analyses, however, lacks a sound theoretical foundation. The flux
corrected transport (FCT) algorithm of Boris and Book [3], which was later
generalized by Zalesak [4], is regarded as the first truly multidimensional shock-
capturing scheme so far developed. In this article, we do not intend to justify
whether there exists one scheme that outperforms the others. Instead, our aim is to
extend the application scope so that the monotonic finite-element mode! [5] is
applicable to adaptive meshes.

Since the M-matrix theory serves as the guideline for constructing our
menotonic scheme, it is instructive to present here some useful definitions and
theorems {6-8].

Definition 1. A real n X n matrix A = (a;;) is classified as being irreducible
diagonally dominant if la;| > T7_, ;.. la,T for at least one i.

Theorem 1. Consider a matrix A = {(a, j), which is a real, irreducible diagonally
dominant n X n matrix with the properties of a;; <0 for i #j and a,;; > 0 for
1<i<n;thenA~' > 0 holds.



e

A A B

Sl = IV S

It A

354 C. C. FANG ET AL

Definition 2. A real n X n matrix A = (a;;) with a;; <0 for all i # j is called
an M-matrix if A is nonsingular A~' > 0.7

Definition 3. A real n X n matrix A is defined as monotone if A¢p > 0 holds
for any vector ¢ under the circumstances ¢ = 0. -

Theorem 2. If the off-diagonal entries of A are nonpositive, we are led to a
monotone matrix equation A if and only if a is an M-matrix.

Recognizing that matrix equation taking an M-matrix form is a key to
permitting bounded solutions, we are guided to construct weighting functions in
favor of the upwind side [5]):

W, = D,[d;o Po(£) + dpy P (O] [d o Po(m) + dy Py(m)] )
Specific to our Petrov-Galerkin finite-element analysis is the introduction of

Legendre polynomials Py(t) = 1 and P,(t) =t to the analysis. The coefficients
shown in Eq. (2) are summarized as follows [5]:

1 uh, ¢ vh_m;
D-——--~exp( ggt]exp( 1,17,)

o4 2, 2,
d 2n+1 .
“= "3 [-1 W, ()P(1) dt
2n+1 .
d, = — f_l W, () P,(1) dt

2n+1 4
e, = — [_1 W, (1) P,(t) dt

2n+1
e, = fllW,;(t)P,,(t)dt

where

uhg§
W (e)=0+ fif)exp{—ﬂ]

vh,m
W,(n) = (1 + ) exp (v 5 ]

In Eq. (), h; and k, denote grid sizes.

The weighting functions given in Eq. (2) allow higher-order differentiation.
The increased smoothness in the weighting function, however, leads to a marked
demand on the number of Gaussian integration points required to yield an analytic
integration. To alleviate this problem, we make use of the following orthogonal
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property:

2
f—“:'p‘_(;)Pj(t) dt = mﬁﬁ (i is dummy index) 3

Thanks to the above integral identity, the number of Gaussian integration points
needed for an analytic integration is dramatically reduced, which causes the CPU
time to decrease substantially. For this reason, we are prompted to rewrite the
bilinear shape functions N,(£,n) as functions of Legendre polynomials:

M(fﬂ?) = %[P()(f) + fipl(f)][P()(TI) + TT;'Pl(TI)] 4)

Fundamental Studies on the Finite-Element Model

Question arises as to whether the finite-element model formulated within the
Legendre polynomial finite-element spaces can yield monotonic solutions uncondi-
tionally. To answer this question, we derive the discrete finite-element equation,

ja,®, = 0, for a point at j = 5 in Figure 1, from four bilinear elements. Although
obtaining functional expressions of a; is quite involved, it is necessary to conduct
this derivation to ascertain whether the stencil falls into the M-matrix category. In
so doing, we have calculated a; (i = 1-9) against Pe, and Pe,. The shaded area in
Figure 2 is regarded as a stable domain since, by definition, matrix equations
obtained under the circumstances are classified as irreducible diagonally dominant.

Even though the test functions chosen here can yield an M-matrix equation,
this finite-element analysis is applicable only to a rather limited range of Peclet
numbers. Application of this model to larger grid sizes is thus prohibited. Acknowl-
edging this restriction, effort is dedicated to improving the structured-type Legen-
dre polynomial model. We can, of course, continuously refine the mesh until the
Peclet numbers fall within the stable region shown in Figure 2. Such refinement,
however, is accompanied by a prohibitively high computational cost, which limits
the extension of this theoretically appealing model to practical flow simulations. A
plausible remedy for this difficulty is to adopt solution adaptivity in an attempt to
reduce the local Peclet number.

3 é 9

~-——1— Bilinear element
2 i=5) 8
! 4 7

Figure 1. Tllustration of nodal points for a pack of four
bilinear elements.
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4.0

Figure 2. Stable (monotonic) region plot-
20 40  ted in terms of the Peclet numbers,
" Pe, =uldx/pand Pe, =vAy/pu.

EXTENSION TO THE UNSTRUCTURED
FINITE-ELEMENT MODEL

Solution Adaptivity

As noted earlier, monotonic solutions are quite expensive to compute at
structured grids using the Legendre polynomial finite-element model [5] given in
Section 2.2. Improvement needs to be made by reducing the computational cost
and also the disk storage demand. Our strategy is to apply the Legendre polyno-
mial finite-element model in a sufficiently refined domain in a sense that the
resulting Peclet number falls into the monotonic region. We also refine the mesh
in regions where solution gradients are considerable. This necessitates the intro-
duction of grid adaptivity to the analysis so as to monotonically capture the local
high-gradient profile in the solution. According to the M-matrix theory, the
decision about which cells need to be divided and which undivided depends mainly
on the cell Reynolds number (or Peclet number) as well as on the gradient of the
solution. As a result, our grid adaption is a dynamic grid adaption.

Referring to Figure 3, nodal points are regarded as being regular if they are
located at the corner vertices of each neighboring element [9]. Nodes other than
regular ones in the mesh are classified as irregular (or hanging nodes). Numerical
solutions at irregular nodes are not computed but are rather constrained by the
solutions at regular nodes.

Depending on the mesh refinement strategy, the constrained relations vary.
In this article, we adopt bisecting of the element. Use of this strategy to refine the
mesh results in a hanging node located at the midpoint of a side of the coarser
mesh, Since the numerical solution in an element is approximated by the bilinear
shape function, the solution at the hanging node, say as 1C in the shaded clement
of Figure 3, is approximated by the following constraint relation:

e = %(ul + uy) (5)
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» b 4 b © Regular node
4 /// 3
4 ® Constraining node
1 ic 2
l — B Hanging node
q g i
-~ ) ~
constraining node 1 A canstraining node 2
for hanging node i for
hanging node i hanging node i
d €

Figure 3. Illustration of the hanging and constraining nodes.

Use of the above relation eliminates the degree of freedom of the nodal point 1C.
The coefficient matrix for an element, M?, and the assembled matrix, M, thus
require modification.

Madification at the element level can be made through the operator form

M¢ = PM*PT 6)

by virtue of the introduction of the permutation matrix P:

(7

OO Nl= N
O = O
O= O O
_-—0 O O

This modification complicates the coding and may cause problems in vectorizing
the code; therefore, it is not adopted in our code. Instead, we modify the mass
matrix M directly, with the aim of improving the overall computation efficiency.
Following the approach of Demkowicz et at. {10], for entries at hanging nodes, the
rows and columns of the global mass matrix corresponding to the hanging node are
eliminated and distributed to the rows and columns of the two corresponding
constraining nodes by using

My iy, = Megy, 7+ 1Mo f ®

i

M; 1oy = Mgy + 1M: 5 ®

i, i,

M, 10> = Miirin + sMi ; (10)
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The subscripts i, j denote the indices of the rows and columns of the hanging node
in the algebraic equation. As for k,(i), /() in Egs. (8)-(10), they are indices of the
rows and columns of the corresponding constraining node. Here, r, s are equal to 1
or 2 for the two constraining nodes, and 1, j are indices for rows and columns other
than those at the hanging node. With matrices thus modified, the vector b is
changed accordingly as follows:

by = by + 7b; (11)

In this way, row i and column j are eliminated. Removal of these hanging nodes
leads us to obtain the u; from Eq. (5) instead of obtaining them directly from the
algebraic equation,

Element-Reordering Algorithm

For this study, we choose the frontal method [11] for solving the resulting
sparse matrix equations. While the direct solution solvers are much more insensi-
tive to the particular property of the matrix equation than their iterative counter-
parts, they are not immune to failure. For example, the application of the frontal
method to sparse matrix equations involves large bandwidth. For larger problems,
memory limitations make reducing the profile or wavefront of the matrix equations
a necessity. In fact, this is a topic of fundamental importance in the finite-element
community. Since the frontal scheme works in an element-by-element manner,
reduction of the frontwidth has closer relevance to the element-ordering strategy
than to the node-ordering strategy.

Several element-ordering algorithms in the literature can be chosen to reduce
the envelop (or profile) of an assembled sparse matrix. Among others, the reverse
Cuthill-McKee (RCM)[12], Gibbs-Poole-Stockmeyer (GPS) [13], and Gibbs-King
(GK) [14] algorithms have gained wide popularity. These algorithms, falling into
the profile-reduction ordering category, are closely related to one another. For this
study, the ordering algorithm chosen is a variant of the original ordering algorithm
of Cuthill and McKee [12], which is the most widely used profile-reduction ordering
algorithm for the sparse symmetric matrix. Reduction of the bandwidth is accom-
plished through local minimization of the row width of the ith row and, thus, the
profile of the matrix. George and Liu [15] found that it was advantageous to
reverse the algorithmic ordering of the Cuthill-McKee. Reduction of the amount of
envelope storage and the envelope operation count results. This implies that the
RCM algorithm involves a local search of a pseudo-peripheral vertex to generate a
long-rooted level structure. For the sake of brevity, the reverse Cuthill-McKee
element-ordering algorithm will be described in the following [15].

Step 1. Find a starting element.
Step a. Choose an arbitrary element r in a finite set of elements E.



MONOTONIC CONVECTION-DIFFUSION SCHEME 359

Step b. Construct the level structure rooted at r:
Z(r) = {LQ("); Ll(f), caes L{(r)(r)}

where Ly(r) = {r}, L (r) = Adj(Ly(r)), and LA(r) = AdjlL,_,(r) -
L;_,(r)], (i =2,3,...). We denote here Adj(-) as an adjacent
operator of “-”.
Step c. Choose an element e such that L,,,(r) is of minimum degree.
Step d. (i) Construct the level structure rooted at e:

Zle) = {Ly(e); Ly(e),..., L, e)}

(i) If I(e) > I(r), set r as e, and go to step c. Here, I(r) is called
the eccentricity of an element r.
Step e. Take element ¢ as the root.

We then assign e, as r and proceed with the following two steps.

Step 2. Main loop: do Cuthill-McKee renumbering. For elements i =
1,2,..., N, find all the unnumbered neighbors of an element ¢;, and
number them in increasing order. Here, N is the element number.

Step 3. Reverse ordering: The resulting ordering if f,, f,,..., fy, Where

o fimewoivipi =12, N.

At this point, it is instructive to show the effectiveness gained using the RCM
reordering technique. To this end, we consider in Figure 4 the unstructured-type
mesh and plot in Figure 5 the sparse graph for the original element ordering for
the unstructured element considered. Sparseness is a feature of this graph. The
black dots ij plotted in Figure 5 indicate the finite element i that is adjacent to
element j. The apparent sparseness creates large bandwidth in the matrix equa-
tions. This in turn causes the amount of computation to become formidable using
conventional computers. Parallel to the above original element ordering, we plot in
Figure 6 the structure of the reverse Cuthill-McKee reordering of the finite-
element graph. The results clearly show that application of the RCM reordering
yields a matrix representing the same algebraic system, but with a dramatically
different frontal profile. As seen later in Section 4.2, the stored entries take up
only 2.5% of the full matrix. With this marked reduction of bandwidth and in turn
the savings in memory demand, we confirm the appropriate use of the RCM
element-ordering technique as a model of simulating fluid flows using the finite-
element methed.

NUMERICAL STUDIES

Two test cases are chosen for validation and assessment purposes. These
problems are known as the boundary-layer-type test problem, and the skew
advection-diffusion problem.
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o P P L . .
085 02 04 06 08 70 Figure 4, lllustration of A-adaptive
X meshes.

Analytic Study of a Boundary-Layer-Type Problem

The first problem is configured in Figure 7. Subject to the prescribed
boundary data of ®, the advection-diffusion equation is analytically amendable to
the following boundary-layer-type solution:

{1 —exp[(x — D(u/wIH1 — expl(y — D/}
lx,y) + [1 —exp(—u/p1 — exp(—v/u)] (42

This problem is chosen to demonstrate the potential of the h-adaptive
Legendre polynomial finite-element model to model problems involving a bound-
ary-layer-like profile. Finite-clement solutions are .sought at the adaptive mesh
shown in Figure 8 for the case of u = 2 X 107>, We plot in Figure 9 the computed
profiles at several selected planes. For comparison purposes, we also plot in this
figure other solutions computed from uniform meshes and analytic solutions.

1.0 . Y T
nl"" el L}
LML . -
&f b op v'p ap e
08 3 4 U T T
0.6 ™ " "!___
- W = 'n b R
d it 8
0.4 ] 7 9 10 i ol " m '.'
H . LI !:}ni - .
92haliafeliohs e 2113]'2_ Dok e TR
L] } I : . !-:|__ A mi‘!
10880202, 06..08 10 i s
x N
0.30 Cloga-up look of thée megh

0207 92 |13 |19 |19 |15 |18 | 21 | 22

0.10 24 |35 [38 [37[30 b1 a2 43 27 k2 |30 [40 a3 ba |45 ae
1 3l 35]s [2017[a1]2 [26}1a [38]e p2 RO e
00 0.20 0.40 0.60 0.80 1.00

0.08

Figure 5. Illustration of original adaptive mesh used and its associated
graph.
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0.3 Close-up look of the megh

T
02} 14 | 29 20 | 26 | 26 | 33 | 39 | 42

01 shali110[12]17]18 18 [10 24 |20]as |36]40 [a3 a5

0 4|2 |3|1]|7 |6 (8 |8 15]23303137414448
K 02 0.4 06 0.8 1.0

Figure 6. Illustration of the reordered adaptive mesh used and its associ-
ated graph.

Clearly revealed from Figure 9 is the usefulness of adding grid adaptivity to the
formulation. Aside from the gain in monotonicity, the solution accuracy also
improves with introduction of grid adaptivity. For completeness, calculations were
performed for cases involving roughly the same number of regular mesh points.
According to Table 1, we conclude that use of the present finite-element formula-
tion gives us the capability to capture a rapid change of solution near the boundary
of the flow.

Skew Advection-Diffusion Problem

We now consider an even more difficult problem, configured in Figure 10.
The problem considered is that of the skewed flow transport problem, which is
featured as having an internal layer and is regarded as a worst-case scenario for
any upwinding method [16]. In a square cavity of unit length, through (0,0} there is

10 S=0atys|
0.8}
<@ 0
0.6} % =
b w g
0.4} & o
02 Figure 7. Configurati d bound
1gure . Configuration an ounda
$=1atys0 g & 2

conditions of @ for the problem defined
in Section 4.1.

08502 04 06 08 1.0
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Figure 9. A three-dimensional plot of solutions obtained in a mesh plotied in
Figure 8§ for the problem defined in Section 4.1: (g} ®(0.25, y); (£) ®(0.75, v,
() @(x,025) (d) B(x,0.75).

Table 1. Computed L, error norms for the problem defined in Section 4.1

Node
Grid type number Ly error norm
Uniform grid 4,624 0.1197

h-Adaptive grid 4,593 3415 % 1072
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10
Fpidy=
08
06 ‘E
T
K
4.4 2 Fg
s £ Figare 10, Configuration, together with
’ : the computed solution on 160 X 160
s i . < mesh, for the problem defined in Section
%5 664 06 08 10

4.2,

subdomains. In the whole domain, there is a uniform flow that is parallel to the
dividing line. The magnitude of the velocity remains unchanged, with a magnitude
of 1.

According to the diffusivity considered, u = 2.0 X 1072, and the grid size
chosen, Ax = Ay = (.05, the Peclet numbers (Pe, = 2.5, Pe, = 2.5) fall into the
monotonic region shown in Figure 2. As a result, oscillation-free finite-element
solutions are observed in Figure 11 either in regions close to or in regions distant
from the dividing line. Upon increasing the Peclet numbers or decreasing the
diffusivity to u = 1077, oscillations become clearly seen in Figure 12. This example
clearly demonstrates the drawback of applying the Legendre polynomial finite-
element model to solve problems involving steep gradients. There may be two ways
to suppress such wiggles. One may continuously reduce the mesh size until the
maximum Peclet number falls into the monotonic region shown in Figure 2. This
requires considerable computing cost and therefore makes practical computations
nonfeasible. For this reason, we are motivated to refine the solution algorithm by
adding an A-refinement technique to the finite-element analysis.

Since the skew-advection problem is not amendable to analytic solution, we
take the solution computed at a 160 X 160 uniform mesh as a reference (Fig-

shown in Figure 14. As Figure 14 shows, mesh points are adaptively added in

T r— e
.“)' .,“ X /,,—W”‘

@ By

Figure 11. {(2) Computed contours of P for the problem defined in
Section 4.2 for the case p = 2.0 X 1072, (b) Computed profiles of
$lx, 0.4), Bx,0.2), and BO5, v).
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)
b
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08 EETBATEE TR e
®ory
(@) 1]

Figure 12. {a) Computed contours of & for the problem defined in
Section 4.2 for the case u = 1077, (b) Computed profiles of $(x,0.4),
©lx,0.2), and 0.5, y).

Figure 13. Computed solutions of ¢ for
the case, with a grid resolution of 160 X
160, defined in Section 4.2

Figure 14, Dynamic A-adaptive grids em-
ployed (with 1,288 elements, 1.422 nodes,
RERAAS and 154 slave podes) for the problem
04,08 08 10 gofined in Section 4.2.

regions where solution gradients of @ are larger. Grids being adaptively meshed
match well with the computed gradients V& shown in Figure 15, which plots the
contour values of V& from the 160 X 160 solutions shown in Figure 13. Revealed
by Figure 16 is that monotonic solutions are adaptively computable for the case of
u# = 1077, but with much fewer elements. This clearly demonstrates the algorith-
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50.0

Vo]
0.0

Figure 15, Computed gradients of @,
|V, from a grid resolution of 160 X 160
for the case defined in Section 4.2.

mic superiority of using the adaptive monotonic scheme as a way of resolving
internal sharp layers.

By virtue of this test problem we will show the ability of the RCM e¢lement-
reordering technique to improve the computational performance in the reduction
of frontal width and CPU time (user as well as system time). In the first place, it is
instructive to give readers an idea of the advantages gained in reducing the matrix
bandwidth through use of the RCM reordering technique. To this end, we compare
the structure of the reordered graph with the sparse graph structure of the original
finite-element graph in Figure 17. This figure clearly shows that the RCM ordering
algorithm reduces the envelope size and thus the bandwidth of the matrix. We
summarize the aforementioned comparison items in Table 2 for an analysis
using /without using the RCM reordering procedure. According to Table 2, which
shows that both the CPU time and frontal width have been considerably reduced,
we are benefiting greatly from the grid adaptivity and element renumbering.

1.0

0.8)

08

04

02r

- Y
xory

(@ &

Figure 16. () Finite-element solutions of & for the problem defined
in Section 4.2. Contours for solutions computed in the adaptive mesh.
(b) Computed profiles of ®(x,0.4), ¥(x,0.2), and $0.5, y).
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f . S N
1 w '\'\“;\_
i, \, -
:" : ‘: . ‘\t‘{
| : ) NN
i ‘\'i \\'\ \\.
(a) b)

Figure 17, Graphs of the matrix equations: {a) graph of the original
adaptive mesh. (b) graph of the reordered adaptive mesh.

It is now fair to conclude that we have extended our recently developed
monotonic finite-element method, spanned by Legendre polynomials, with success
to unstructured finite-element grids. It is believed that this adaptive finite-element
model is more applicable to large-scale flow simulations.

CONCLUDING REMARKS

For this study, Legendre polynomials have been used to span finite-element
basis and test spaces. There are several reasons for using Legendre polynomials,
foremost of which is that this finite-element model can conditionally yield a
monotone stiffness matrix. Second, with the inherent orthogonal property, much
fewer Gaussian integration points are needed to render the exact integration. For a
better understanding of this discretization scheme, a fundamental study of the
discretization scheme has been conducted that provides insight into the estimation
of monotonicity in the finite-element solution. We have used the discrete maxi-
mum principle as our guide in deciding whether or not the discretization scheme
accommodates the monotone property. Through this study, we have learned that, if
Peclet numbers exceed the critical Peclet number, then the discrete system can by

Table 2. Comparison of CPU time and required frontal width for a problem
involving 5,370 adaptive nodes

With element
renumbering

Without element
renumbering

Frontal width 125 5,046
User CPU time 1,308.98 2,426.49
System CPU time 10.62 25.55
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no means be classified as an M-matrix; thus, monotonic solutions cannot be
rendered. The motivation behind seeking an adaptive technique is that while
monotonic solutions can be obtained in a continuously refined domain, the
computational expense will be prohibitively high due to a severe restriction
imposed on the grid size. Guided by the underlying discrete-maximum principle, we
are able to determine which grid warrants further refinement so as to reduce the
local Peclet number. Introduction of a h-adaptive capability to our upwind finite-
element code makes analyses of convection-dominated and locally graded problems
possible without loss of monotonicity near steep gradients. In an attempt to further
improve the computational performance, we have incorporated the reversed
Cuthill-McKee element-reordering technique into the finite-element analysis. This
causes the frontal bandwidth to decrease dramatically. As a result, memory
demand as well as computer time are also greatly reduced. Computational exer-
cises reveal that the Legendre polynomial weighted-residuals formulation, supple-
mented with a k-adaptivity capability and RCM element-renumbering technique,
gives solutions that are more accurate than solutions computed at uniform meshes.
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