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with a primary eddy, downstream and upstream secondary ed
dies, and possibly meandering Taylor-Gortler longitudinal vorti
ces as the Reynolds number is sufficiently high (see Fig. 1(a)). 
Previous investigations, however, did not focus much on the 
end-wall corner vortices other than noting their existence. This 
motivated us to conduct the present study with an aim to im
prove our understanding of comer vortices present near the end 
wall of the lid-driven cavity. 

We conducted a flow simulation to study the laminar flow in a 
three-dimensional rectangular cavity. The ratio of cavity depth 
to width is 1:1, and the span to width aspect ratio (SAR) is 
3:1. The governing equations defined on staggered grids were 
solved in a transient context by using a finite volume method, 
in conjunction with a segregated solution algorithm. Of the most 
apparent manifestation of three-dimensional characteristics, we 
addressed in this study the formation of corner vortices and its 
role in aiding the transport of fluid flows in the primary eddy 
and the secondary eddies. 

1 In t roduct ion 

Recirculating flow is commonplace in many engineering 
fields. Conducting analyses to gain insight into the evolution of 
vortical flows is, thus, critical for developmental engineers. We 
considered in this study an extensively studied lid-driven flow 
in a rectangular cavity with the depth to width ratio, 1:1, and 
the span to width ratio, 3:1 (see Fig. 1). Geometric simplicity 
of this problem facilitates both experimental calibrations and 
numerical predictions. 

Experimentally, the lid-driven cavity problem was first inves
tigated by Pan and Acrivos (1967), followed by numerous 
visualization studies (Koseff and Street, 1984; Aidun et al., 
1991). These measurement data suffice to depict a salient flow 
pattern. The pioneer numerical work was due to Burggraf 
(1966), who conducted only two-dimensional analysis. With 
the advent of high-speed computers and ever-increasing large 
disk space, three-dimensional simulations (Freitas et al., 1985; 
Ku et al , 1987; Freitas and Street, 1988; Coites and Miller, 
1994) have become feasible and are a great aid in acquiring 
additional details. Notable, among others, is the numerical con
firmation of the laboratory observed corner vortices (Koseff et 
al., 1983). 

From knowledge gained from the previous studies, it is now 
a generally recognized fact that the cavity of interest is filled 
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2 Governing Equations and Numerical Procedures 
We considered in this study the following dimensionless ve

locity-pressure formulation for an incompressible Navier-
Stokes fluid flow: 

dui 

dxi 
= 0, 

dui 9 , , dp \ d Ui 
-;— + -—- (u,„Ui) = - TT- + — 7 — 
at dx„, oXi Re dx„,dx„, 

(1) 

(2) 

where i = 1 ~ 3. Hereinafter, we denote «; and/? as the velocity 
components and the modified pressure, respectively. In Eq. (2) , 
Re = {U^BIv) is referred to as the Reynolds number, where v 
stands for the kinematic viscosity, B the width of the cavity, 
and Uc the lid velocity. 

To avoid oscillatory solutions in the pressure field, the present 
analysis is formulated for staggered grids (Patankar, 1980). 
Use of grid staggering demands velocity nodes to be stored 
only at the control faces. This grid arrangement facilitates con
ducting a finite volume integration of working equations in their 
representative control volume. In modeling the equations of 
motion, a higher-order QUICK scheme of Leonard (1979) has 
been the choice for discretizating the non-linear advective 
fluxes. Among the possible solution algorithms to solve for 
primitive variables, we adopted the segregated approach, known 
as the SIMPLE (Patankar, 1980) solution algorithm. The read
ers are referred to the work of Patankar (1980) for additional 
details. 

3 Code Validation 

Prior to predicting the flow physics in the rectangular cavity, 
we conducted a validation study by solving a problem which 
is amenable to analytic Navier-Stokes solutions. In a cubical 
cavity of unit length, we carried out the analysis on a 31 X 31 
X 31 uniform grid system. Subject to the boundary velocities 
given by (M, D, W) = {\{y^ + z^), - z , y) the exact pressure 
solution takes the following form: 

/' = 5 ( / + Z )̂ + 
Re 

According to the computed errors cast in an L2-norm form for 
primitive variables, namely (0.55 X 10"*, 0.19 X 10"^ 0.13 
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Fig. 1 Problem definition and the description of the end wall effects, (a) Global flow 
structure; (b) the end wall induced pressure contours and spanwise velocity contours. 

X 10"' , 0.23 X lO""*) for (u, v, w, p) respectively, together 
with the maximum relative errors, (0.1 X 10"^, 0.11 X lO""*, 
0.12 X 1 0 " \ 0.12 X 10"^), we confirmed the validity of the 
proposed discretization method. 

Having successfully completed an analytic validation test, we 
conducted also a grid refinement test for further confirmation 
of the computer code being developed. The target problem was 
that of the lid-driven cavity problem of the present interest. 
Here, we considered Re = 1000 and spanwise aspect ratio SAR 
= 1:1 for comparison purposes. With good agreement with 
other predicted velocities u {x = 0.5, y = 0.5, z) and w {x, y 
= 0.5, z = 0.5), as shown in Fig. 2, and the success of grid 
refinement test, it is concluded that the proposed analysis tool is 
well-suited for solving incompressible Navier-Stokes equations. 

4 Results and Discussions 
In Fig. 1(a) , the configuration of the present interest is de

fined by two ratios, namely, depth to width {DIB = 1 : 1 ) and 
span to width {LIB = 3:1). In this study the mesh, with a grid 
of resolution of 34 X 91 X 34, was stretched in regions where 
the boundary layers may develop. For this study, we considered 
Re = 1500. The emphasis was placed on the formation of the 
corner vortices, as shown in Fig. \{a), in the vortical flow 
development. 

4.1 End Wall Effect. A manifestation of this three-di
mensional flow is the spanwise component generated by the 
two end walls. As shown in Fig. l ( ^ ) , the decelerating fluid 
particles adjacent to the end walls induce a negative pressure 
gradient. This, in turn, causes an inward spanwise flow motion 
inside the primary cell. Under these circumstances, a positive 
spanwise pressure gradient in the regions near the lid plane and 
the floor of the cavity is established. Mass continuity demands 
that the particles proceed toward the two end-walls. This con
ceptually amounts to placing a suction pump in the core region 

so that the fluid particles near the junctures of the floor, lid 
plane, and the upstream and downstream side walls of the cavity 
are entrained to both end-walls. It is also important to note that 
a less apparent outward-running spiral motion is visible near 
the lid plane. These spiraling particles will be finally engulfed 
into the primary core via corner vortices present near the two 
end walls. 

u velocity 
0.0 

<S Ku et.al, 1987 
X Cartes and Miller. 
+ Babu and Korpela 

— Present. Grid Al 
- - - Present, Grid Bl 
— Present, Grid B2 
-- - Present, Grid B3 

Fig. 2 Comparison studies with other numerical solutions for velocity 
profiles u(0.5, 0, 5, z) and w(x, 0.5, 0.5), together the grid convergence 
test for Re = 1000 
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Fig. 3 The velocity contours at the y = 2.0 plane at t = 24. (a)ivveloclty; 
(b) u velocity 

4.2 jc-Plane Corner Vortices. The end-wall corner vorti
ces are not necessarily present at the upper and lower comers 
of the X planes. Their presence is rather dependent on the span-
wise and the primary circulating flow motions. As indicated in 
Fig. 3 (fl), in the upper cavity fluid particles which are character
ized as possessing w > 0, as a direct result of the character of 
primary flow, can facilitate the formation of the upper corner 
vortices. On the other hand, the downward velocity w < 0 aids 
informing a lower comer vortex. According to Fig. 4 (a ) , lower 
corner vortices under no circumstances can be found in regions 
of .t < 0.5, where w > 0. As the x = 0.7 plane is approached, 
descending fluids, as shown in Fig. 4(ii), cause the upper corner 
vortex to disappear. Whether or not corner vortices at x planes 
will be finally established depends on the sign of the w velocity 
component in the primary vortex motion (see Fig. 3) . Simply 
stated, w > 0 in the upper cavity while w < 0 in the lower 
cavity allow the formation of corner vortices at every account. 

Corner eddies are believed to be the result of a mutual adjust
ment of the shear and the pressure forces to the no-slip condition 
applied at the two end walls. These stress-induced vortices cause 
a rotational flow (see Fig. 5) . Vortices of this kind are prone 
to depart from the two end walls and aid the nearby particles 
being engulfed into the primary flow. Also notable is that the 
centroids of corner vortices are not necessarily close to the 
corner. Once the upper comer vortex forms, it is situated at the 
corner. In contrast, the center of the lower corner vortex is 
comparatively distant away from the intersection of the floor 
and the two end walls. This phenomenon is shown at the x = 
0.8 plane in Fig. 6. To provide us with useful guidance for 
examining whether or not these corner vortices will form, we 
have plotted contour lines of w = 0 and D = 0 in Figs. 4 -6 . 
So long as a line of w = 0 intersects the line of u = 0, corner 
vortices are expected to form. 
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Fig. 4 
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Fig. 5 Development of corner vortices at the x = 0.6 plane at t = 4, 6, 
8, 10, 12, and 24 

4.3 z-Plane Corner Vortices. In the z-plane, flow pat
terns in Fig. 7 bear strong resemblance to those computed at 
the X planes. Like the streamwise location of x plotted in Fig. 
3(a) for which w = 0, the location of z that demands « = 0 in 
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Fig. 6 Flow structures at the x = 0.8 plane at t = 2, 3, 4, and 6 
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Fig. 7 Flow structure at two z planes at t = 24. (a) atz = 0.4 plane; (b) 
at z = 0.6 plane 

Fig. 3(fc) plays an essential role in judging whether the up
stream corner vortex can be formed at the z planes. In Fig. 
3(^) , zero contour profiles of M = 0 closely resemble those of 
w = 0 in Fig. 3(a) , except in the region fairly near the lid 
plane where w = 0 and u= 1. In view of the degree of physical 
complications, flow patterns at different z planes are regarded 
as much simpler than those at x planes. Unlike the upper and 
lower comer vortices at the x planes, the downstream comer 
vortices are hardly visible at the z planes. Except at the lid plane 
where M = 1, the value of « is less than zero in regions close 
Xa X = 1. Such a negative velocity gives rise to a strongly 
rotational downstream corner eddy in regions fairly close to z 
= 1. 

4.4 The Role of Corner Vortices. As Fig. 1 (a) reveals, 
there exist comer vortices in the cavity. The formation of such 
comer vortices constitutes the global transport stracture in that 
fluid particles near the two end walls are engulfed into the 
primary core with the aid of comer vortices. Comer vortices, 
as a consequence, aid the exchange of fluid flows in the cavity. 
Conceptually, this amounts to placing a suction pump near the 
end wall, to which the nearby particles are attracted. In support 
of this statement, we plotted in Fig. 8 the particle tracers. Parti
cles are clearly sucked into the attracting spiral saddle point via 
the corner vortices. 

saddle point and then spiral towards the symmetry plane in the 
primary core. 
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5 Conclusions 
In the present analysis, we considered the incompressible 

fluid flow inside the investigated 3:1:1 cavity. Of three dimen
sional spiraling features, we have addressed under what condi
tions corner vortices will form. Through this study, it is con
cluded that the presence of corner vortices in the vicinity of 
two end-walls aids flow transport. Fluid particles coming across 
comer vortices will be lifted up and then drawn in the spiral-
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In this paper, six technologies have been used to implant N* 
into 0Crl3Ni9Ti SS, which is a kind of general turbine material 
in China, and their comparative experiments have been done 
to get a much better technology of modification of cavitation 
damage. The results show that the ability of cavitation resis
tance for 0Crl3Ni9Ti SS by N'^ ion implantation can reach 
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