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Abstract 

This paper is concerned with the development of a multi-dimensional monotone scheme to deal with erroneous oscillations in 
regions where sharp gradients exist. The strategy behind the underlying finite element analysis is the accommodation of the 
M-matrix to the Petrov-Galerkin finite element model. An irreducible diagonal-dominated coefficient matrix is rendered through 
the use of exponential weighting functions. With a priori knowledge capable of leading to a Monotone matrix, the analysis model 
is well conditioned with the monotonicity-preserving property. In order to stress the effectiveness of test functions in resolving 
oscillations, we considered two classes of the convection-diffusion problem. As seen from the computed results, we can classify 
the proposed finite element model as legitimate for the problem free of boundary layer. Also, through the use of this model, we 
can capture the solution for the problem involving a high gradient. In this study, we are interested in a cost-effective method 
which ensures monotonicity irrespective of the value of the Peclet number throughout the entire domain. To gain access to these 
desired properties, it is tempting to bring in the Legendre polynomials and the characteristic information so that by virtue of the 
inherent orthogonal property the integral can be obtained exactly by two Gaussian integration points along each spatial direction 
while maintaining stability in the M-matrix satisfaction sense. 

1. Introduction 

In many physical problems transport is a very important and sometimes even a crucial process. Thus, 
a linear elliptic partial differential equation governing a steady-state convection-diffusion process is of 
primary importance in the fields of fluid mechanics, heat transfer and semiconductor device modelling. 
With the advent of computers, large in capacity, numerical simulation of this class of engineering 
problem has gained increasing acceptance. While this benchmark problem is regarded as important in 
itself, from a numerical analysis point of view, its real importance lies in its resemblance to, among 
others, the linearized Navier-Stokes equations. Simply stated, this problem can be viewed as a 
simplification of the Navier-Stokes equations and thus subject of interest, academically as well as 
practically. 

Despite several decades of numerical experience, by now, approaches to the construction of 
advection scheme for the linear scalar transport equation still raised open. Some of them have answers 
but not yet definite. Severe restrictions on mesh or grid spacing are indispensable when the flow field 
possesses significant convective effect. An obstacle to finding a satisfactory prediction of the field 
variable is due mainly to the first derivative terms, especially for problems involving multiple 
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dimensions under conditions of high Reynolds (or Peclet) numbers. In this regard, considerable 
attention has been given to circumventing notorious difficulties arising from direction-dependent fluxes. 

Simulation quality can be judged from many aspects. What fits for the solution accuracy may not for 
the solution stability. For instance, the use of an upwind scheme enhances the stability of the discrete 
system. In situations where the Peclet number is fairly high, the quality of the simulation is 
unfortunately overshadowed by the addition of a cross-stream diffusion error. These excessive artificial 
viscosities may over-spread the solution profile and, thus, contaminate the real physics. Poor 

performance means such methods are hardly applicable to problems involving a steep gradient of the 
convective field variable. As a result, researchers have attempted to resolve the dilemma of the inability 
to gain equal success in solution accuracy and stability. A multitude of concepts have been spawned in 
the literature to alleviate the problem of accuracy deterioration, yet numerical stability is retained. In 
common, these cures easily hold in one dimension. While this idea is amenable to one-dimensional 
analysis, one quickly learns through practice that high-resolution solutions thus far obtained are not 
easily maintained in multiple dimensions. This limitation is mostly due to the lack of a physically 
plausible approach in distributing influences to the downstream side. Skew upwind [l] and streamline 
methods [2] have been devised to limit the artificial diffusion to the flow direction. While this helps to 
stabilize the calculations for smooth flows, the introduced artificial damping is too weak to wipe out the 
unwanted wiggles in areas where discontinuities or high gradients appear. As is usual in the 
development of multi-dimensional advective flux schemes, a scheme endowed with higher accuracy is 

doomed to lose the solution monotonicity property. As a result, we have felt the need for a treatise on 
this issue. 

The finite element method has been applied with good success for years to problems of solid 
mechanics and heat conduction. When applied to the field of fluid dynamics in the mid 1960s the finite 
elements method had a number of attractions. An appealing advantage is its flexibility in managing 
geometric complexity. Besides these superiorities, the finite element method is more applicable to 
differential equations involving boundary conditions of the Neumann type. These advantages make the 
methodology presented herein suitable for simulating a convection-diffusion equation. Petrov-Galer- 
kin finite element methods have been applied with good success to the advection-diffusion equation. 
Among them, the streamline upwinding version of Hughes and Brooks [3] is currently the most widely 
used upwind finite element method. Nevertheless, the quality of the SUPG solution deteriorates as 

discontinuities, a high gradient boundary layer, or an internal sharp layer are encountered. To 

surmount these spurious oscillations. Mizukami and Hughes [4] modified their original SUPG 
formulation by forcing the stiffness matrix equations to satisfy the maximum principle [5-71. This 
underlying principle plays a key role in offering a monotonic behavior of the solution variable. Instead 
of modifying the test functions. Rice and Schnipke [S] and Hill and Baskharone [9] took a different 
approach to arriving at monotonic solution profiles by evaluating the integral involving convection 

terms along the local streamline. In 1982, Ahues and Telies [5] used an exponential biased test function 
to yield an M-matrix. This prompts us to adopt their idea and design a weighting function which can 
similarly offer upstream weighting of a similar sort. In short, the proposed upwinding model is intended 
to capture high-gradient physical phenomena. 

We began by describing in Section 2 the target problem, known as the convection-diffusion equation. 
We brought in the monotonicity-preserving property to the framework of the Petrov-Galerkin method. 
Since solution accuracy and stability have great influence on simulation quality, we carried out 
fundamental studies and discussed them in detail. In order to validate the proposed flux discretization 
scheme, we have presented the closed-form solution for the scalar transport equation defined in a 
square cavity. Attention was directed to assessing the scheme performance. 

2. Multi-dimensional flux discretization scheme 

2.1. Model equation and discretization method 

Seeking solutions for the transport equation that is of convection dominance in multiple dimensions 
has been shown to be a difficult task and has been the subject of much intensive study in the 



T.W.H. Sheu et al. I Comput. Methods Appl. Mech. Engrg. 143 (1997) 349-372 351 

computational fluid dynamics community. The main reason why this problem has received focal 
attention is its resemblance to the linearized equations of motion for an incompressible fluid flow. As a 
model problem, we consider the convection-diffusion equation in a homogeneous medium. For the 
purpose of brevity, this paper will be restricted only to a simple case having a constant diffusion 
coefficient p in a given velocity field _u = (u, u). In a simply-connected domain D, the solution to the 
following elliptic partial differential equation is sought: 

In order to close the above differential system, the boundary condition we impose takes the Dirichlet 
form. Subject to the prescribed boundary values of @, the interior finite element solutions @ are the 
result of convection and diffusion effects. The relative importance is best estimated by the maximum 
Peclet number Pe = max(Pe,, Pe,) = max((u Ax)/~, (V Ay)/p), where Ax and Ay denote mesh sizes 
along the x and y directions, respectively. 

In weighted residuals context, Galerkin-based, collocation, and least-squares methods are well known 
[lo]. Among them, one formulation has an advantage over another only in certain circumstances. In 
situations where the effect of convection dominates that of diffusion, it is imperative that one consider 
the upwinding procedures. Following the method of weighted residuals, we dictate that R = z.kX + 
u&y - ~(6~~ + dY,) be orthogonal to the weighting function. The solution sought can be seen as a 
search for the weak solution to Eq. (1). In the Petrov-Galerkin context, we demand the test space W, 
be different from the trial space Ni. By a successive substitution of 6 = C Ni( 5, q)Gi into the weighted 
residuals statement, we were led to a matrix equation in the 4-node isoparameter bilinear element 
wherein the bilinear interpolation function N, is used. Upon assemblage of all the elements, the global 
coefficient matrix is formed. What remains is the decision on the content of the test space, which is of 
pivotal importance and a rather obscure issue, before the weak solution can be obtained by using a 
direct solution solver. 

2.2. Construction of test space 

As progress has been made in the area of flux discretization, scientists have asked for simultaneous 
satisfaction of desirable properties: conservativeness, convective stability and boundedness. Upwind 
finite element models suffice to render the first two properties. The accessibility of the boundedness 
property is closely related to the coefficient matrix. On the condition that the diagonal dominance, 
which serves as a sufficient condition for arriving at bounded solutions, holds, non-physical overshoots 
or undershoots are avoided. 

Based on the above reasoning, we resort to using the Petrov-Galerkin formulation. The question 
remaining is the selection of biased polynomials which can render a monotone solution. We elaborated 
constructing such a finite element coefficient matrix. Thanks to the work of AhuCs and Telies [5], we 
take the exponential type of weighting functions into consideration since the resulting coefficient matrix 
tends to be an M-matrix. 

We attempt to find a general rule in the hope of obtaining a multi-dimensional monotone solution. 
Before turning to construction of such a test space, it is convenient to present some useful theorems and 
definitions [5-71. 

DEFINZTZON 1. A real n x n matrix 4 = (aij) is said to be irreducible diagonally dominant if 
(arr( > Cyzl laijJ for at least one i. 

j#r 

THEOREM 1. If 4 = (aij) is a real, irreducible diagonally dominant II x n matrix with aij G 0 for i Zj 

and a,, > 0 for 1 CT< n, then 4 is invertible and its inverse has no negative entries (or &-’ > 0). 

DEFINITION 2. A real n X n matrix 4 = (a,) with_yi, c 0 for all i #j is an M-matrix if 4 is nonsingular 
and its inverse of A has no negative entries (or A = = >O). 
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DEFZNITION 3. A real n x n matrix 2 is defined to be monotone if &4 3 0 holds for any vector 4, it - 
implies C#J 3 0. - 

THEOREM 2. If the off-diagonal entries of & are nonpositive. we are led to a monotone 4 if and only if 
g$ is an M-matrix. 

In seeking nonoscillatory solutions over a domain that is spanned by multiple dimensions, a priori 
satisfaction of the monotone matrix equation is of requisite and enables us to predict solutions of high 
quality over a wide range of flow conditions. In this paper, finite element formulation is the candidate 
for the space discretization. In the underlying Petrov-Galerkin approach, the test functions are 
exponential-weighted modifications of the basis functions N, : 

W, = N, + B; , (2) 

where 

In Eq. (3), h, and h, denote grid sizes. CX, p are adjustable constants which are set to be one herein for 
simplicity. 

We have plotted the piecewise weighting function in a square having four bilinear elements. For the 
reference node (i, j) in Fig. 1, clearly illuminated is the enhanced stability which is directly attributable 
to the biased exponential polynomial defined in Eq. (3). Without loss of generality, we consider the 
scalar problem in two dimensions. For extension to three dimensions or to a system of equations, one 
could follow the same procedures. 

2.3. Fundamental study on accuracy 

Technical issues regarding the solution stability and accuracy deserve detailed discussion in order to 
gain insight into the developed advective scheme. Given a priori knowledge of discretization errors, 
analysts may make a better judgment on the discretization methods for the problem under in- 
vestigation. In an attempt to reveal the solution accuracy, we were urged to conduct a modified 

k Weighting function 

Fig. 1. Weighting function, as defined in Eqs. (2)-(4). in a block of four bilinear elements having a common corner node (i, j). 
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equation analysis. By taking the standard procedure of Warming and Hyett [ll], we can derive the 
following modified equation for (1): 

uQ1 + uGY - /~(a~?, + @,,J = T , 

where 

(5) 

T= c,Q?x + c$xY + ~8’~~ + d,CD,,, + d&,,, + d,@xxY + 4@!)iyy 

+ e, @*XXX + %@XxxXY + %@XxxYY + fV& + es@JY,y + . . . (6) 

Owing to the use of exponential polynomials, algebraic manipulations to derive the coefficients in Eq. 

(6) are considerable. This fact precludes the functional representation for these coefficients in Eq. (6). 
We have plotted three leading coefficients logarithmically against the grid sizes in Fig. 2. The rates of 
convergence for QXXXY and aXjryYY are 0(h4) while those for QX,, , ax?,,, Gyyy, Gxxy, Qxyy, @_,. Gy,,, and 
@ xxyy are in the vicinity of 0(/z*). As to the leading error terms, GX?-, and GYY, the rates of error 
reduction take exactly the order of two. 

In a square domain of unit length, the analytic solution for the equation 

(7) 

Fig. 2. The computed rates of coefficients appearing in Eq. 

@UV,. @w,,. 
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exists and takes the following form: 

(8) 

The performance of finite element methods is usually assessed on the basis of global error measured in 
an integral form. By substituting the analytic solution into Eq. (6), we can obtain the &-norms for the 
discretization error T: 

err(@) = d( c (@c,,,,, - w 
II 1% 

where n is the total number of nodal points on the computational domain. Here, Ge,,,,, and 6 denote 
the exact solution and the computed finite element solution, respectively. 

TO gain insight into the error reduction sequences, refinement of grid spacings is required along each 
dimension. Solutions to the problem under consideration were computed from several uniform grids. 
Starting from 5 x 5. we continue to double the number of nodal points along each dimension. For 
completeness. we benchmark the scheme performance in terms of the rate of convergence defined as 

err, 

log err, 
rate = 

! _I 
log ? 

c ) 

err, and err2 are computed errors which are obtained on the basis of 11, and IZ~ total nodal points and 
tabulated in Table 1. The error norms thus obtained enable us to estimate the resulting rate of 

convergence. 
When faced with multi-dimensional transport equations. it is of importance to know the variations of 

discretization errors along and normal to the flow directions against the flow angle 0 = tan-‘(u/u). To 
accomplish this task. we further transform T in Eq. (6) from the physical coordinates (x. y) to the 
streamline coordinate s and its normal n through one-to-one mapping. Application of the chain rule 

yields 

T = C,(h, H)@,, + L(h. O)@,,, + C,(h, H)@,,,z + . . (9) 

where h is the uniform grid size. 
Similar to the derivation of coefficients in Eq. (6). to gain access to C,. C2 and C, is also 

mathematically complicated. It is. as a consequence, appropriate to represent artificial viscosities 

graphically against 0 and h. As seen in Fig. 3. we are aware that the physically correct artificial viscosity 
has been added implicitly along the streamline. This implies that the discrete system has been stabilized, 
at least, along the flow direction. Extreme values occur at the flow directions 45” and 135”. It is 
worthwhile to note that when the analysis is performed in a one-dimensional-like context (0 = o”, 9(P), 
the truncation error remains only along the streamline direction. In circumstances when the value of C2 
is locally equal to zero. the resulting scheme is by no means unconditionally stable owing to the positive 
value of C, and negative value of C,. 

Table I 
Rate of convergence for the test problem defined in Eqs. (7) and (X) wing the proposed discretized advection-diffusion scheme 

Element L,-norm Convergence rate 

5X5 3.2614 x 10 i 3.36 
10 x 10 3.173x x 10 J 3.19 

20 x 20 3.4681 x 10 - 3.2Y 

.%I x 40 3.5297 x 10 ” 
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Fig. 3. The computed coefficients of C, (i = l-3) in Eq. (9) against the grid size h and the flow angle 0. (a) C,; (b) C2; (c) C,. 

2.4. Fundamental study on monotonicity 

As the flow convection largely dominates diffusion, it is common to encounter a boundary layer like 
solution profile. In such extreme circumstance, classical upwind finite element methods often fail to 
resolve oscillatory solutions in regions where steep gradients exist. In this regard, the selection of a 
legitimate test space that is applicable to the present framework is in great need. Applying the test 
space considered in the present framework, we integrate the convection-diffusion equation by using the 
bilinear element to render the local matrix for each element. In a block of four bilinear elements, an 
algebraic equation for the grid node (i, j), as shown in Fig. 4 for example, can be formulated by 
assembling local matrices of neighboring four bilinear elements. To this end, we derive and represent 
the discrete finite element equation in a form similar to that expressed in the finite difference setting: 

Ii, a,q = 0. (10) 

The mathematical effort in deriving above coefficients a, = a,(Pe,, Pe,, h) is considerable. These 
coefficients are worth calculating because they help us to decide under what conditions the coefficient 
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Fig. -1. Description of the derivation of coefficients in Eq. (10) tar a pack of four elements with the common index (i. j) (Pomt 
5). 

matrix can be classified as irreducible diagonally dominant, as defined in Definition 1. As aided by the 
theorems given in Section 2.2, we can define the monotonic region from the signs of a,. By varying the 
values of Pe, against Pe,.. we designate the shaded area in Fig. 5 as stable since this allows us to gain 

access to the monotonic solution through the underlying concept of the M-matrix which is given in 
Section 2.2. Subject to this stability constraint condition. there is an upper limit on the allowable Peclet 
number above which the finite element solution deteriorates. Consideration will be specifically given 
later on to making compensation for this drawback. Of note is that as this analysis is reduced to one 
dimension, the discretization equation turns out to be exactly the localized adjoint method of Celia [12]. 
When joined with the accessible consistency property discussed in Section 2.3, we can expect to obtain 
the convergence solution as long as the pairwise Peclet numbers Pe, and Pe, fall in the realm of the 
stable region. 

Fig. 5. lllustratlon of the shaded monotonic region underlying the proposed upwind scheme 
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3. Refinement on monotonicity-preservation upwind model 

3.1. Unconditionally monotonic flux discretization scheme 

While monotonic finite element solutions of Eq. (1) are available as discussed in Section 2.4, the 
restriction of using Peclet numbers in a limited range precludes the extension of the proposed model to 
a wider scope of applications. In order to remove this constraint, we bring in the concept of the method 
of characteristics because the higher the Peclet numbers are, the more the differential system tends to 
be hyperbolic. For a given interior spatial point, physical reasoning suggests us not to take each stiffness 
matrix involving this point into consideration in the assemblage procedures. Instead of four elements, 
we only consider the element upstream of this point in mimicking the characteristic behavior. To 
demonstrate the feasibility of this characteristic extension, we will present the results of a benchmark 
test problem in the result section. 

3.2. Test functions spanned by Legendre polynomials 

In the weak form of the weighted residuals statement for Eq. (l), two integrals, namely 
J-n<, W,N,,, dR’ and Jne, Wj,xN, x do’, need to be evaluated in rendering the stiffness matrix equation. 
Here, (0).x denotes the part&i differentiation of (e) with respect to x and y. The inclusion of the 
exponential function makes these integrals very expensive to compute because the order of the 
corresponding polynomial integrands tends to be infinitely high, as evidenced by the following identify: 

? 3 ?1 

eY=l+y+g++-+--. . +s+..- ;-x<y<co. 

In recognizing this fact, a fundamental impediment to the utilization of exponential weighting functions 
becomes clear in the course of performing area integration. It is these integrands of infinite polynomial 
order that forbid the effective use of an exponential weighting function to obtain finite element 
solutions because the adequate number of Gaussian integration points is also conceptually infinite. 
While the proposed upwind scheme yields a monotonic solution irrespective of the Peclet number, there 
is considerable computational expense in dealing with the indispensable finite element integration. This 
is the main reason why we have to introduce Legendre polynomials to reduce the number of integration 
points needed. 

In the first place, we rewrite the shape and weighting functions in terms of Legendre polynomials: 

etc. 

Without a potential loss of accuracy when transforming the 
functional space, N, shown in Eq. (4) can be expressed as 

polynomial basis space to the Legendre 

Just as the shape function redefined according to Eq. (12), more mathematically 
weighting functions W, can be also analytically expressed by the following infinite series: 

(11) 

complicated 



where 

WV(T) = (1 + r7,77) ev 

2n+l .’ 
ci, I, = 3 

- I, 
W,(r)!‘,,(t) dt . 

W,W’,,W dr . 

=- W;(t)P,,(r) dt . 

W;W’,,W dt 

(13) 

(14) 

We then substitute Eqs. (12)-( 14) into the weighted residuals statement for Eq. (1). By virtue of the 
orthogonal property given by 

I 

1 I 
(i is dummy index) (15) 

I 
P,(r)!‘,(r) dt = Y& 6,, 

we can show that Legendre polynomials of higher order make no contribution to the integrals, such as 

s,,?, W,,,N,,, do” and s,,, W,N,,, dR”. The detailed proof is given in Appendix A. With the fact 

mentioned above. WC are aware that the weighting function taking the form of Eqs. (13)-(14) is 

equivalent to 

in a sense that the use of higher-order Legendre polynomials (13) or lower ones, defined in Eqs. (lb), 
yields exactly the same stiffness matrix. A clear manifestation of the equivalence between two classes of 
polynomials makes the proposed scheme more attractive because along each spatial coordinate only two 
integration points are sufficient to yield exact integration. Considerable CPU time will be saved without 
loss of accuracy. 
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4. Numerical study 

359 

A finite element model, endowed with the monotonicity property, will be validated analytically 
through several advection-diffusion problems defined in two dimensions. For completeness, problems 
both with/ without internal/ boundary layers are selected for use in the present study. 

4.1. Problem without a boundary layer 

The first example we will deal with is that of a smoothly varying transport problem, as defined in Fig. 
6. Subject to the boundary condition of the Dirichlet type, the analytic solution takes the following 
form if the velocity field is assumed to be constant, i.e. u = (1, 10.5): 

@= 
@f, 

er+ _ e’- 
ear’* sin(TX)(er+? _ e’-“) , 

where @,, = 1, S, = ML/~, 6, = vL/p, L = 1 and p = 1. 
The relative error obtained in a 15 x 15 uniformly discretized domain is 2.434 X lo-“, as measured in 

terms of the so-called &-norm. For the purpose of making a comparison, we have also plotted the 
QUICK solution of Arampatzis and Assimacopoulos [13]. Indicative from Fig. 7 which plots prediction 
errors at x = 0.5, the largest predicted error occurs in the vicinity of y = 1 where higher solution 
gradients are observed, as seen in Fig. 8. This benchmark test demonstrates the advantage over the 
QUICK scheme in predicting solutions classified as high gradient type. 

4.2. Problem with a boundary layer 

The task of capturing a sharp profile in the physical domain has long been regarded as important. The 
test problem attempted here is subject to the boundary values specified in Fig. 9. The analytic solution 
to this problem involves the boundary layer and takes the following form: 

Y 

L 

@=O 

@=a0 exp(6J2) sin(az) 

i 

14 
v=10.5 

ll=l 

a=0 

-X 
Q=O L 

Fig. 6. Illustration of the test problem in Section 4.1. 
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- PRESENT 

- QUICK [I31 

o.ooc 
0.0 0.2 0.4 0.6 0.8 1.0 

Y 
Fig. 7. A comparison of the computed solution profile at x = 0.5 for the test problem given in Section 4.1 

0.6 

0.0 0.2 0.4 0.6 0.6 1 .o 

X 

Level Q 

K 1.570 

J 1.492 

I 1.413 

l-l 1.335 

G 1.259 

F 1.179 

E 1.099 

D 1.021 

C 0.942 

0 0.994 

A 0.795 

9 0.707 

9 0.628 

7 0.550 

6 0.471 

5 0.393 

4 0.314 

3 0.238 

2 0.157 

1 0.079 

Fig. 8. Computed contour plots of 9 for the problem defined in Section 4.1. 
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1 

@= 
1-exp((y-1)X) 

1-exp(-;) 

Y 

a=0 

@=O 

. x 

Fig. 9. Illustration of the test problem defined in Section 4.2. 

Fig. 10. Computed solution of @ for the problem defined in Section 4.2. (a) u = u = 1; (b) u = u = 10; (c) u = u = 100. 



Table 2 

Computed L,-norms at diffcrcnt few conditions for the problem detincd in Section 4.2 

Element I, = 1’ = I I, = 1’ = I(1 I, = L’ = 100 

10 x 10 I.175 x IO (I 1.217 X IO ” 2.YO2 x IO ‘? 

20 x 20 Y.600 ” x 10 ‘I’ I .MO x 10 7 7x1 10 ’ x 

40 x 40 6.X33 x IO “’ 7.551 x 10 “’ 4.YS8 x 10 I” 

@(x9 Y) = 
[I-exp((.x-I$)] [I-cxp((r-l)+)J 

[ 1 -exp(T)] [ --cxp(T)] 

Numerical solutions were sought on regular grids. Given the computed Lz-norm errors in Table 2, the 
present finite element formulation has ability to get around difficulties in association with a rapid 

change of solution, illustrated in Fig. 10. among the flow. 

4.3. Skew udvection-dijfusion problem 

An even harder problem which is distinguishable from the previous two test problems in its 
accommodation of an internal layer, will be considered. This test is that of the skewed flow transport 
problem which is regarded as a worst case scenario for any upwinding method [ 141. In the square cavity 
of unit length, the cavity is divided into two subdomains by an inclined line passing through the corner 
point at (0.0) and having a slope of m = tan-’ (U/U). Throughout the whole domain, the magnitude of 

the velocity of interest is maintained as q = qm= 1. Subject to the boundary condition for the 

working variable given in Fig. 11, a shear layer of high gradient or near discontinuity is expected when 

crossing the dividing line. 
The objective of this case is to assess the merit and the deficiency of the proposed upwinding 

technique. We consider here the uniform flow, parallel to the dividing line, in a 20 X 20 uniformly 
discretized mesh, as shown in Fig. 12. Different diffusivities are considered which correspond to 

different degrees of advection dominance. With the diffusivity set to 1.67 x 10e2, the cell Peclet number 
approaches 3 and falls into the monotonic regime. Finite element solutions shown in Fig. 12 are free of 
oscillations in regions close to as well as away from the dividing line. This is an indication that 
nonphysical spatial oscillations are not exhibited under certain conditions. With increasing Peclet 
numbers or decreasing diffusivities, poor performance for F = 2 x 10m3 makes such a method hardly 
applicable to problems involving steep gradients of the convected field variable CD. There are two means 

T-1 

T=l ,/jT=O )x 

T=O 
.I 

Fig. 11. Illustration of the skew advection-diffusion problem defined in Section 4.3 
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Fig. 12. Computed solution of Q, for the case of p = 1.67 x 10 ‘, which corresponds to the Peclet number falling into the 

monotonic region. 

to avoid these wiggles. One can of course keep reducing the mesh size until the corresponding Peclet 
number falls into the category of the monotonic region in Fig. 13. There is, however, considerable 
computational expense associated with the frontal solver. This disadvantage makes practical computa- 
tions infeasible. We thus turn to adopting other alternatives by activating the characteristic functionality 
to make the discrete system monotonic. In the presence of characteristic enhancement, the monotonic 

Fig. 13. Computed solution of Cp in a 150 x 150 uniformly discretized domain. The test considered is that of @ = 2 x lo-’ which 

corresponds to Peclet numbers falling into the monotonic region. 
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Fig. 14. Computed solution of @ for the case of p = 7 x 10 ‘. (a) Characteristic version of the proposed finite element model; (b) 

characteristic-free finite element model. 

solution for the case plotted in Fig. 13 can be also obtained at a domain with a much fewer nodal 
points. Fig. 14 is a clear illustration of the importance of incorporating the characteristic information 
into the proposed upwind finite element method. With the diffusivity set equal to 10mh, the diffusion 
effects are virtually eliminated and the Peclet number approaches infinity. The case considered can be 
regarded as the conventional skew advection problem. A solution underlying the Legendre-polynomial- 
based characteristic upwind model is smoothly exhibited in Fig. 15(a). While these computed solutions 
in situations where convection significantly dominates diffusion are smoothly predicted, the quality of 
the analysis suffers from the problem of excessive numerical diffusion. In summary, the smeared 
solution shown in Fig. 15 is more or less representative of the outcome of using a method which is 
endowed with the M-matrix constraint condition. 

4.4. Advection-diffusion problem of Smith and Hutton 

The benchmark problem of Smith and Hutton [15] is of some importance, for it amounts to 
determining whether the finite element solution is sensitive to sharply varying inlet working variables. 
The test problem considered here is configured as an inflow-outflow transport problem. In the 
rectangular section, - 1 d x 5 1,O s y =S 1 as shown in Fig. 16, a divergence-free velocity is prescribed by 

U =2y(l -XL), 

u = -2X(1 -y’). 

Along the inlet of the test section, namely -1 c x c 0, y = 0, the working variable @ is prescribed a 
priori as follows: 

@(-1 ix < 0, y = 0) = 1 + tanh((2r + 1)lO) 

On the remaining boundaries x = - 1, y = 1 and x = 1, working variables are specified by @ = 1 - 
tanh(lO). The reason behind this specification is the fact that the compatible constraint condition 
demand transport field variables be little affected by the given velocity vector and diffusivity. On the 
outflow boundary, 0 6 x < 1, y = 0, 0 is coupled with the inner solution by specifying a zero gradient of 
@ herein. This outflow boundary condition corresponds to allowing @ to float. 
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Fig. 15. Finite element solutions of @ and their distributions at x = 4, I, 5, +. (a) Characteristic version implemented at 20 X 20 

in the case of p = lo-‘; (b) characteristic-free version implemented at 20 x 20 in the case of p = 2 x lo-); (c) characteristic-free 

version implemented at 150 x 150 in the case of p = 2 X 10m3. 



-’ Inlet condltlon a 
@=l +tanh((2x+?)lO) 

Float outlet 

Fig. 16. Description of the test problem defined in Section 4.4 

In a fixed grid having spacings ilu = by = 0. I, the use of different values of p yields different 
maximum Peclet numbers. Here, we consider I_L = 10 -‘, 2 X 10b3, lo-’ and 10-l or max(Pe) = (.2 X 
10”) 100,20,2). As evidenced by the computed solutions in Figs. 17 and 18, we can clearly demonstrate 
the effectiveness of the introduced characteristic weighting. Also of note is that oscillation-free solutions 
can be also rendered by using characteristic-free upwind model in a much refined grid shown in Fig. 19. 

We summarize the effects of different Peclet numbers and grid resolutions for the cases considered in 

Fig. 17. Computed solution of cb for problem detined in Section 4.4 using characteristic-free finite element model. (a) Pe= 2; (b) 
Pe = 20; (c) Pe = 100; (d) Pe = 1 X lo’. 
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(4 - 04 - 

Fig. 18. Computed solution of Q, for problem defined in Section 4.4 using the characteristic version of the proposed finite element 
model. (a) Pe = 2; (b) Pe = 20; (c) Pe = 100; (d) Pe = 2 x 10’. 

this calculation by the computed finite element solutions at the outlet boundary in Fig. 20. Before 
closing this section, we would like to demonstrate the effectiveness of the proposed Legendre test space 
in Fig. 21. Apart from the commonly shared disk space, the use of Legendre polynomial can save three 
times of the disk space. We also plot CPU times against problem size in Fig. 21 to clarify the amount of 
extra CPU cost in dealing with 64 Gaussian integration points when using exponential weighting 
function; while only 4 integration points using the proposed Legendre polynomials. 

5. Conclusions 

(2) 

To stabilize the differential system under consideration, we have focused on developing a finite 
element method that is endowed with the upwinding property and an oscillation suppressant 
capability to suppress erroneous oscillations in the vicinity of high gradient. Thanks to the 
underlying M-matrix which is regarded as a means of resolving overshoots or undershoots, we 
can judiciously determine the degree of upwind-weighting a priori. We have endeavored to 
conduct basic studies, with the focus on numerical accuracy and stability. Through the modified 
equation analysis, considerable insight into the behavior of consistency property has been 
obtained. Most importantly, the employed monotonicity property is applicable to multiple 
dimensions. This finite element model has been rectified by solving analytic problems having 
different characters. 
Subject to limitations on the Peclet number, there is an upper bound on the allowable grid size, 
above which a monotonic solution is not accessible. The extension of the proposed upwinding 
model to the larger application range is made by taking the increasingly important characteristic 
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Fig. 10. Computed solution of @ in a 200 x 100 uniform discretized domain for the test problem, given in Section 4.4, using the 

characteristic-free finite element model. 

information into consideration. This serves as a cure for problems involving high Peclet numbers. 
To accomplish this. we have only considered element matrices upstream of the spatial point of 
interest. Inclusion of characteristic modification has effectively improved the monotonicity of the 
discrete solution, as seen from a clear manifestation of the predicted sharp profiles in the 
illustrative examples. 

0.0 0.2 0.4 0.6 0.8 1.0 

(4 X 

2.0 
- mml20X10p.10’ 
- mah20x10p-10’ 
- nmhzoX10ph10' 

- mmh20x10p.10' 

- mh2mX1cQp~10' 

1.5 

0.0 

0.0 

(b) 

0.2 0.4 0.6 0.8 1.0 

X 

Fig. 20. The computed finite element solutions at the outlet boundary 0 GX s 1, y = 0. (a) Characteristic version; (b) 

characteristic-free version. 
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Fig. 21. Comparison of disk space and CPU time for the proposed upwind finite element model using the Legendre and 
exponential weighting function. 

(3) Having obtained a high degree of robustness in the scheme stability, the finite element model 
proposed herein can serve as the numerical technique of choice for solving transport equations. 
A fundamental impediment to the direct application of this method in modelling engineering 
problems of practical relevance lies in its indispensable numerical integrations at the element 
level. To make the proposed scheme more applicable to large-size problems, we must rewrite the 
basis and test functions in terms of Legendre polynomials. The inherent orthogonal property, 
namely JTrr Pi(t) dt = 2/(2i + l)S,, enables us to carry out the integral exactly using only two 
Gaussian integration points along each spatial direction. Also of note is that the utilization of 
Legendre polynomials enables the proposed scheme to be more amenable to fundamental 
studies, without loss a bit of monotonic behavior. 

Appendix A 

Following the weak formulation, the weighted residuals statement for Eq. (1) takes the following 
form: 

I R [WW?, + u@,~> + I-W,,@,, + W,,@.,>l dfl = 0. (A.1) 

There exist two kinds of integrals, namely Jn Wp, d0 and J,, lVzp, da, where X denotes the global _ 
coordinates x and y. 

Transforming the global coordinates (x, y) to the local coordinates (5, n), these integrals can be 
rewritten as follows: 

I 

11 

II 
W@,, dR = 

II -1 -I 
WC?&,, + %,~.,)1J1 d5 dn 9 

I 

1 1 

R 
W@,, d0 = 

II -I -1 WC?&., + ?,rl.,)~JI d5 dn 3 

I 

11 

R 
W,$jx dR = 

SI -1 -1 
(Y,S,~ + W,,n.,)(%~ + QI,,)~J~ d5 dr) 2 

I 

I 1 

R 
W,,@,4, d0 = 

SI -1 -1 (W&,, + W,Y,)(%~., + ~J,.JIJI d5 dv 7 

where J = &x, y) / a( 5, q) and (J( = det(J). 

64.2) 

(A.3) 

(A.4) 

(A.51 
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The number of Gaussian integration points needed to carry out above integrations depends on the 
polynomial order of the integrand. For example. the order of integrand in s,, W,,@., dR = 

s!, _I-!, (W,5,, + WJ,,)(@,&.~ + ?,J.,)/JI dt dn is determined by W,(, W.,,, %, @.,, 5.,, n.,, and IJl. 
where W is the weighting function, and @ is interpolated by the bilinear shape function. 

The coefficient matrix, J. of the geometric transformation is generally a function of 5,~. J could be a 

constant matrix only, if the affine transformation exists between local coordinates, (5, n), and global 
coordinates. (x, y). This implies that if the element shape is not too much distorted, J turns out to be a 
constant matrix. As a consequence, the polynomial orders of the integrand in Eqs. (A.2)-(A.5) are 
only dependent on W. @ and the coordinate derivatives of Wand 0. The integrals need to be calculated 
are shown as following, 

J’-‘, S’, W4,, d.$ dn . (A.6) 

W%, d5 dv . (A.7) 

I 1 

II W,,@,, dt drl . (A.8) 
~I -I 

where W and 4 are replaced by the nodal weighting function, Wj( 5,~) = exp[-(uhC) /2~( 5 -. 

SJI expH%J&(~ - rl,W,K 4, and by the nodal shape function, N,( 5,~) = f( 1 + [,[)( 1 + q,~), 

respectively. 
The infinite polynomial order of W causes the order of integrand in Eq. (A.6)-(A. 10) to be infinitely 

large. This fact demands the use of infinite number of Gaussian integration points to properly calculate 
the values of these integrals. This difficulty can be improved by transferring Wand @ to the orthogonal 
Legendre polynomial bases, Z-‘,(t), where f,(r) = (1/2’i!)(d’/dt’)(t’ - l)j and I!, P,(t)P,(t) dt = 2/(2i + 

1 )a,, 
Firstly. we transfer the shape and weighting functions to the orthogonal polynomial bases, as shown 

in the following, 

and 

(A.ll) 

(A. 12) 
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where 

Di=iexp 2 (95) e*p(!Q) ) 

W,(5)=(1+45)exp 

2n+l ’ 
4 =--y- n i -1 ~&F’nW dt 7 

2n-tl ’ 
d% = --y- I -I wJ@>fx~) dt ? 

2n+1 ’ 
e,,z = ___ 2 I -1 

W;(tV’,,(t) dt , 

2n+l ’ 
e =- 

VP, 2 I -1 
W;(t)Ut) dt , 

(A. 13) 

Substituting these shape and weighting functions in the context of the orthogonal Legendre 
polynomial bases into Eqs. (A.6)-(A.lO), we can dispense with the higher-order polynomials by virtue 
of orthogonal property. For example, 

WY,,, d5 dq 

- is (d [P,,(t) + 5jP1(5)1[f’“(T) + ~ljP,(~)l} d5 dV ’ (A.14) 

With the fact mentioned above, we can use the following equivalent weighting functions to yield 

Y = D;P,,,M8 + d$,WIK,oM~) + d,,f’h)l 7 (A.15) 

Y, = Qk&,(S) + e,,~IWl~d,,,M~) + 4J(41 y (A.16) 

Y,, = Di[d,,lP,,(S) + d,,fY5Nk,,,Pdd + e,,P,Wl 1 (A.17) 
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