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SUMMARY

Our work is an extension of the previously proposed multivariant element. We assign this re®ned element as a
compact mixed-order element in the sense that use of this element offers a much smaller bandwidth. The analysis
is implemented on quadratic hexahedral elements with a view to analysing a three-dimensional incompressible
viscous ¯ow problem using a method formulated within the mixed ®nite element context. The idea of
constructing such a stable element is to bring the marker-and-cell (MAC) grid lay-out to the ®nite element
context. This multivariant element can thus be classi®ed as a discontinuous pressure element. We have several
reasons for advocating the proposed multivariant element. The primary advantage gained is its ability to reduce
the bandwidth of the matrix equation, as compared with its univariant counterparts, so that it can be effectively
stored in a compressed row storage (CRS) format. The resulting matrix equation can be solved ef®ciently by a
multifrontal solver owing to its reduced bandwidth. The coding is, however, complicated by the appearance of
restricted degrees of freedom at mid-face nodes. Through analytic study this compact multivariant element has a
marked advantage over the multivariant element of Gupta et al. in that both bandwidth and computation time
have been drastically reduced. # 1997 by John Wiley & Sons, Ltd.
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1. INTRODUCTION

Over the last few decades there has been a growing demand for the application of computational ¯uid

dynamics (CFD) techniques to explore engineering ¯ows. Among numerous alternatives, ®nite

element methods lend themselves to mathematically rigorous analysis. With the wide availability of

high-speed computers, ®nite element computer simulation comes into play for industrial uses and

there exists a large body of ®nite element formulations that solve the primitive variable form of

incompressible Navier±Stokes ¯ows. The great advantage of the primitive velocity±pressure

formulation over other formulations for solving incompressible ¯ows is that this variable setting

resolves an ambiguity in specifying legitimate boundary conditions.1±3 Working equations
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formulated on the basis of primitive variables consist of the mixed,4,5 penalty6 and least squares7,8

®nite element methods. The mixed formulation has been widely applied to ¯ows that are of

engineering interest and is still a rapidly evolving subject.1±3 This mathematically rigorous approach

is, however, storage-intensive. In this paper our effort is devoted to solving equations in a strongly

coupled manner. No attempt will be made here to show that the merits of the mixed formulation

outweigh the drawbacks.

Numerical simulation of incompressible ¯ows encounters dif®culties arising from the pressure

instability.9,12 This instability is due mainly to the absence of pressure in the continuity equation.

Historically, two types of grid lay-outs have been applied to resolve this type of oscillatory patternÐ

staggered grids and non-staggered grids. While a collocated grid permits much simpler programming,

very often an algebraic system with too many zero diagonal terms results, grossly contaminating the

solution quality with pressure modes. Researchers in the ®nite difference community were motivated

to resolve this dif®culty by adopting staggered grids. This class of grid settings manifests itself in

storing vector quantities (or velocity components) and the scalar quality (or pressure) at different

locations.

Parallel to ®nite difference=volume development, erroneous ®nite element solutions have also been

found at times from elements that do not satisfy the inf-sup conditions. The resulting oscillatory

pressure modes are the result of using inappropriate combinations of interpolation functions for the

working velocities and pressure. According to the work of Ladyzhenskaya,13 Brezzi14 and BabusÏka,15

we now know that different basis functions should be chosen with care to interpolate velocity and

pressure in the mixed ®nite element framework. In the existing literature there exist only a few

convergent pairs. Analytical justi®cation of whether a three-dimensional ®nite element has the LBB

(Ladyzhenskaya±BabusÏka±Brezzi) condition is further complicated by the additional dimensionality.

In order to dispense with this constraint, a least squares ®nite element model, as exempli®ed by the

use of equal-order basis functions, has been successfully developed.7,18,16 Regardless of the LBB

condition, stable solutions are obtained by means of a minimization procedure. Staggered grids, in

essence, are similar to mixed-order interpolation functions; non-staggered grids, on the other hand,

resemble same-order interpolation functions. While equal-order ®nite element formulations for

computing incompressible ¯ows have gained increasing popularity, the focus of the present study is,

nevertheless, on seeking an effective pair of mixed-order interpolation functions formulated in the

three-dimensional context, so that the resulting mixed ®nite element formulation is applicable to

engineering problems of larger size.

The remaining sections of this paper are organized as follows. Working equations and their

associated closure conditions are given in Section 2. Section 3 provides a brief outline of the

streamline upwind ®nite element model. A compressed row storage data format and multifrontal

solution solver are also addressed in Section 3. To present an ef®cient ®nite element analysis, we

propose in Section 4 a class of multivariant ®nite elements. Attention is given to re®nement of the

previously developed Q�1 P0 element17 in the hope of reducing the bandwidth of the matrix equations.

Finally an assessment study on the compact element presented here is given to demonstrate its

advantage by means of conducting an analytic test.

2. MATHEMATICAL MODEL

Without loss of generality we deal here with the laminar ¯ow of a viscous incompressible ¯uid with

constant properties. We can classify this class of target equations according to the chosen working

variables. Examples including the velocity±pressure,18 streamfunction±vorticity,18 velocity±vorti-

city19 and vorticity±vector potential20 settings. As stated in Section 1, the velocity±pressure is an

appealing choice, since closure of this differential system is provided by legitimate boundary
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conditions.2,3,6 No arti®cial boundary condition needs to be speci®ed in the intermediate projection

steps.

In a domain, O, of three dimensions the solution is sought from the following dimensionless steady

state governing ®eld equations:

�u ? Hu� � 1

Re
H2uÿ Hp; �1�

H ? u � 0: �2�
In equation (1) the Reynolds number Re is de®ned by

Re � ruref Lref=m: �3�
We close this elliptic system by specifying the following boundary conditions on GD and GN:

u � f on GD; �4�

ÿpn� 1

Re

@u

@n
� g on GN: �5�

It is worth noting that G � @O � GD � GN. In equation (5), n stands for the unit outward normal

vector. For simplicity we only consider boundary conditions of the Dirichlet type as shown in (4).

Under incompressible circumstances, care must be taken with the velocity ®eld which demands the

divergence-free constraint condition. This subject has truly dominated the computational ¯uid

dynamics research area for more than 20 years. Besides this constraint condition, dif®culties arise

with the loss of smoothness in the pressure solutions. It should be borne in mind that primitive

pressure in the incompressible context serves as a Lagrangian multiplier1 rather than a

thermodynamic property as in the compressible counterpart where an equation of state is

indispensable. These constitute the focus of the present analysis.

3. THEORETICAL FORMULATION

Methods for discretizing the coupled equations de®ned in (1) and (2) often fall within the weighted

residual framework. Of central importance to a ®nite element programme that helps enhance the

discrete ellipticity, even under high-Reynolds-number circumstances, is ®nding an appropriate

weighting so that more information at the upwind side is introduced into the discrete formulation. In

integrating these conservation equations, we proceed in the same way as for the Petrov±Galerkin

method. This corresponds to ®nding the velocity±pressure pair �u; p� 2 V � �H1
0 �O��d � L2�O� from

the following variational statement for admissive function w 2 �H1
0 �O��d and pressure mode

q 2 L2�O�, where the superscript d stands for the space dimension number:�
O
�u ? H�u ? wdV� 1

Re

�
O
Hu: HwdOÿ

�
O

pH ? wdV � 0 8w 2 H; �6�
�
O
�H ? u�qdV � 0 8q 2 L2�O�: �7�

Here H1
0 �O� � fv 2 H1�O�jv � 0 on Gdg, where H1 is the so-called Sobolev space de®ned by

H1�O� � fv 2 L2j@v=@xi 2 L2�O�g.
Closure of this weak formulation is provided by specifying the essential boundary condition u� f

on @O. In equation (6), w is known as the test function. Discretization errors are introduced mainly

owing to the use of basis functions N(x) and M(x), leading to the approximation of variables
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uh �P uiN i and ph �P piMi. Further details of the nature of the basis functions will be given in

Section 4. Substituting the ®nite element test and basis functions into the above constrained

variational statement, the matrix equations rendered take the following form, where the biased

weighting functions are applied solely to the non-linear terms:

Al � b; �8�
where

A �
�

�Oh

Cij 0 0 ÿMj@N i=@X1

0 Cij 0 ÿMj@N i=@X2

0 0 Cij ÿMj@N i=@X3

Mi@Nj=@X1 Mi@Nj=@X2 Mi@N j=@X3 0

8>>>><>>>>:

9>>>>=>>>>;d �Oh; �9�

l � fV j
1;V

j
2;V

j
3;PjgT; �10�

Cij � �Ni � �Pi��Nl ~V l
k�
@Nj

@Xk

� 1

Re

@Ni

@Xk

@Nj

@Xk

; �11�

�Pi � t�N l ~V l
k�
@N i

@Xk

; �12�

b � ÿ
�
Gh

out

Ni

pnx ÿ �1=Re�@u=@n
pny ÿ �1=Re�@v=@n
pnz ÿ �1=Re�@w=@n

0

8>>>><>>>>:

9>>>>=>>>>;dGh: �13�

In equations (11) and (12), ~V l
k stands for the constant nodal velocity computed at the centre. The

intrinsic time scale t shown in equation (12) is left for later discussion.

3.1. Streamline upwind Petrov±Galerkin ®nite element model

For problems with high Peclet numbers it is advised to add more arti®cial diffusion along a

preferable ¯ow direction for stabilizing the differential system. The enhanced stability gained is

attributable to the diagonally dominant stiffness matrix. This goal is much more easily accomplished

in the one-dimensional case. In no case has a genuine multidimensional high-resolution scheme for

transport equations have developed. This implies that the derivation of a truly multidimensional t is

analytically intractable. Research scientists thus turned to using the operator-splitting technique

where a one-dimensional scheme is performed in each co-ordinate direction. However, this may give

unsatisfactory results, particularly for ¯ows with strong deformation. As usual, we demand in this

paper that t be analytically speci®ed21,22 along each co-ordinate direction, which involves grid sizes

hx; hZ and hz respectively:

t � �a
jV j2 ; �14�
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where

�a � �axVxhx � aZVZhZ � azVzhz�=2; jV j2 � VjVj;

ax � f �gx�; aZ � f �gZ�; az � f �gz�;
gx � VxhxRe=2; gZ � VZhZRe=2; gz � VzhzRe=2;

Vx � êx ? V ; VZ � êZ ? V ; Vz � êz ? V ;

f �g� � 1
2

coth�g=2� ÿ 1=g:

�15�

3.2. Compressed row storage data structure and unsymmetric multifrontal LU solution solver

What distinguishes the ®nite element formulation from the implicit ®nite difference=volume

formulation is the pro®le of the corresponding matrix equations. In contrast with the conventional

®nite difference=volume methods which feature banded matrix equations, ®nite element matrix

equations are characterized as having a high degree of sparseness and a large bandwidth. This feature

has added to the complexity of the storage scheme for the matrix when conducting a ®nite element

analysis. Given that the matrix±vector product is a primary expense in a ®nite element computation, it

is thus of importance to devise a storage scheme that naturally ®ts the problem under investigation. In

an effort to extend the application of ®nite element analyses to large-scale ¯ow problems, sparse

matrix storage formats have been the subject of many research endeavours.

There exists a wealth of methodologies for storing the sparsely distributed ®nite element matrices.

With a view to extending the scope of applications involving an inde®nite and unsymmetric

coef®cient matrix, this paper adopts the compressed row-and-column storage (CRS) format23 to store

the matrix coef®cients. This matrix storage format is regarded as the most general one, regardless of

the structure of the matrix, to store the presently encountered matrices. Owing to space

considerations, the reader is referred to an earlier survey of sparse matrix storage formats.23

As equation (9) indicates, this mixed ®nite element formulation offers neither a symmetric nor a

positive de®nite stiffness matrix. Moreover, the presence of as many diagonal zeros further weakens

the pro®le of the stiffness matrix in that the matrix tends to be singular. Under these circumstances

the analysis is hardly amenable to accurate solution using a direct solution solver, to say nothing of

being amenable to iterative solvers. The present investigation has been motivated by the need to

provide a better distribution of coef®cients in the ®nite element matrix by applying a preconditioning

procedure in such a way that the conditioning number of matrix is reduced and a more clustered

eigenvalue spectrum about one results. Accurate solutions are thus obtained from a direct solution

solver based on the Gaussian elimination method.

In the course of conducting a conventional sparse matrix factorization, very often we encounter a

problem involving irregular memory access patterns, which are known to cause the performance on

typical parallel±vector and cache-based RISC architectures to deteriorate. Several classes of

preconditioners have been constructed for use in the literature. The unsymmetric multifrontal LU

algorithm of Davis and Duff24,25 has been proved to be an effective preconditioner to avoid the

problem of indirect addressing and is thus chosen for use in the present paper. The idea behind this

solution algorithm is to associate a ®ll level with each entry in the coef®cient matrix. These ®ll levels

are updated in a prescribed manner as the LU factorization proceeds and a contribution block is

formed. Entries in the rows and columns of contribution blocks with levels beyond the level of

tolerance are dropped at each step of the factorization. The advantage gained in this algorithm comes

naturally as a result of its repetitive structure in the matrix by factorizing more than one pivot in each

frontal matrix. This makes feasible the use of a higher-level dense matrix kernel in the innermost

loops.
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4. MULTIVARIANT BASIS SPACE

Finite elements which are applicable to three-dimensional simulations are usually categorized as

tetrahedral and hexahedral elements. Whether one class of elements is favoured over the other

depends on the target problem under consideration. We will restrict our attention to hexahedral

elements for the time being. Although there exist several guides for better selection of trial ®nite

element spaces for p and u, possibly the most important one is to make the resulting algebraic

equation as compact as possible while retaining stability. Some discussion is warranted and reasoning

is given below in support of choosing the multivariant element as the basis of the present ®nite

element simulation.

For reasons of consistency the polynomial order for the pressure unknowns appears to be one order

lower than that for the velocities. As already pointed out, equal-order interpolations for primitive

variables tend to yield an erroneous pressure distribution for ®nite element analyses underlying

models other than the least squares ®nite element method. There exist two types of pressure

approximations in the literature. They are known as the continuous and discontinuous pressure

elements and differ in their way of storing the pressure variable. In the continuous context, trilinear

interpolation is employed by lodging the pressure degrees of freedom at eight vertices of each

element. In contrast, in the discontinuous setting the pressure node is logically placed on the element

centroid. Given this means of storing pressure unknowns, velocity nodal points can be chosen

accordingly. The present article presents a new class of mixed-order interpolation functions for

working variables which helps us to obtain a compact and stable matrix equation.

The philosophy behind the construction of mixed-order interpolation functions for simulation of

incompressible ¯ows is borrowed from the idea of the pioneering work of Harlow and Welch.26 The

key to the success of the staggered grid, known as the marker-and-cell (MAC) grid lay-out,26 where

the pressure p is stored at the cell centre of the hexahedron, is to avoid even±odd pressure modes.

Owing to the presence of @p=@xi in the xi-momentum equation, it is plausible to place ui at a location

which is distant from the pressure node with a half-grid length along the xi spatial direction. Grid

staggering of this sort can be generalized to three dimensions and has been demonstrated as an

effective means for solving incompressible ¯ow problems. While the use of MAC staggered grids

complicates the programming, as compared with the non-staggered counterparts, by adding to the

complexity of the data structure, this grid lay-out nevertheless enables us to conduct ®nite volume

discretization.

Grids thus constructed in this study can be thought of as a modi®cation of ®nite volume staggered

grids. Following the terminology of Gupta et al.,17 we label this class of elements as multivariant

®nite elements. The distinct nature of multivariant ®nite elements is that assignment of different

degrees of freedom at velocity nodes is allowed. We can also refer to this class of elements as

discontinuous pressure elements. The name comes naturally, since a single storage point for the

pressure solution suf®ces to de®ne this class of elements. Piecewise constant pressure is thus

experienced when straddling from one element to another.

4.1. Q�1 P0 element (or 14=1 element)

For ease of describing the Q�1 P0 element, we focus attention on cubic ®nite elements. This class of

elements is characterized as having ®nite element edges which are parallel to the Cartesian co-

ordinates. Our strategy in constructing shape functions as de®ned in the proposed multivariant

elements is typical of ®nite element analysis. The resulting shape functions are those of the so-called

Q�1 P0 element.17 As Figure 1 indicates, we divide the nodal points into two main groups as follows:
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corner nodes

N i � 1
8
�1� �x��1� �Z��1� �z��2��x� �Z� �zÿ 1� ÿ �x�Zÿ �Z�zÿ �z�x� �16a�

and mid-face nodes

Ni � 1
2
�1� �x� �Z� �z��1ÿ x2 � �x2��1ÿ Z2 � �Z2��1ÿ z2 � �z2�; �16b�

where

�x � xxi; �Z � ZZi;
�z � zzi �17�

and xi; Zi and zi are the normalized co-ordinates of the ith node. This element has been studied and

the reader is referred to Reference 21 for an assessment study.

4.2. Constraint Q�1 P0 element (or 14=1c element)

Nodal points encountered in this element are active nodes and deactive nodes. Active nodes

contain face centre nodes for storing velocities and one cubic centre node for storing pressure.

Deactive nodes contain eight corner nodes for velocities. In the present element setting, active nodes

play a main role, because the transport ¯ux aligned with @p=@xi is more important than those aligned

with the other directions.

Deactive nodes are constrained in a sense that velocities on these nodes are interpolated by nodal

values of active velocities. For example, the u-component at a corner node is interpolated by its

neighbouring values of u, involving four face centre active nodes (u). A manifestation of this newly

developed element, as shown in Figure 2, is that the unknowns are placed only on face centre nodes

(one degree of freedom (DOF) for velocity) and cubic centre nodes (one DOF for pressure). The

bandwidth, as a result, is smaller than that of the 14=1 element,17 as shown in Table I.

There is an a priori need for the matrix data structure when the nodes are constrained. For elements

de®ned in the present setting, one corner node is expanded=interpolated to four face centre nodes,

which may no longer be contained in one element. We use the compressed row storage22 (CRS)

format to store the unsymmetric and inde®nite matrix coef®cients.

Bearing in mind that a large-scale linear system of algebraic equations can be ef®ciently solved if

the zero elements of the stiffness matrix are not stored, the CRS format23 puts the subsequent non-

zero components in the matrix rows in contiguous memory locations. In the course of row-wise

marching, a real vector is needed to store the values of the non-zero elements of the matrix. Another

two integer vectors are chosen, where one is designed for storing the column indices of the elements

in the above-mentioned real vector and the other is for the row indices. In this way the storage savings

Figure 1. Primitive variables stored in a 14=1 element
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can be signi®cant. For a stiffness matrix of size m6m we need only 2N � m� 1 storage points,

where N is the number of non-zero components in the matrix under consideration. While this storage

format is applicable to an unsymmetric matrix, inherent in it is the need for all indirect addressing

step for every single-scalar operation in the matrix±vector product, which worsens the performance of

the solution solver.

5. COMPUTED RESULTS

To demonstrate the integrity of the proposed discontinuous pressure element, we have of necessity

chosen a problem which is amenable to closed-form solution. The reasons for this are twofold.

Firstly, attention can be simply given to validating the computer code which solves a problem

containing the divergence-free constraint condition. Secondly, the order of the solution accuracy and

that of the rate of convergence are available and, as a result, greater insight is gained into the

multivariant element proposed here. On the entire surface of a cubic cavity of length one we specify

nodal velocities according to the expressions

u � 1
2
�y2 � z2�; v � ÿz; w � y: �18�

With Dirichlet-type boundary conditions speci®ed, the pressure takes the form

p � 1
2
�y2 � z2� � �2=Re�x: �19�

In this paper we measure the disparity between the computed and analytic solutions by means of

the computed L2 error norm. Four uniform grids are involved so that the rates of convergence can be

estimated. From the computed error norms and the corresponding rates of convergence given in Table

II we can con®rm that the computed ®nite element solutions are in good agreement with the analytic

solutions. It is important to know that it is only the biased weighting on the convective terms that

causes the rate of convergence to deteriorate. The CPU time for the present computations was

measured on the basis of a C90 computer.

Figure 2. Primitive variables stored in a constraint 14=1c element

Table I. Comparison of number of unknowns and bandwidth
between 14=1 and new constraint 14=1c in n6n6n discretizations,

where n is number of elements per side in cubic domain

14=1 14=1c

No. of unknowns 7n3 ÿ 12n2 � 9nÿ 4 4n3 ÿ 3n2

Bandwidth 12n2 � 24n� 12 8n2 � 10n� 5
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As stated earlier in Section 4, generating a data structure for constraint multivariant elements

(14=1c) can be a tedious and time-consuming task. However, we still prefer this class of elements,

because the computing time, as shown in Table III, can be dramatically reduced as compared with

14=1 elements. From Table II little variation among the solutions can be observed regardless of the

elements adopted.

6. CONCLUDING REMARKS

This study concerns three-dimensional numerical modelling of the steady incompressible Navier±

Stokes equations. Attention has been directed to examining whether or not the checkerboard pressure

mode possibly present in incompressible Navier±Stokes ¯ows can be suppressed. Motivated by the

great advantage of staggered grids over other collocated grids, our work has extended the application

of staggered grids to the ®nite element community. Construction of the multivariant element has been

the focus of this study. In this regard we assign only indispensable velocity nodal points for a ®xed

pressure node. Following the idea of MAC staggered grids, only one degree of freedom suf®ces at

each face of the control volume. A new compact element has been proposed to reduce the number of

unknowns and the bandwidth so as to reduce the computing time for solving linear algebraic

equations. For this method to be competitive with other methods, we store the sparse coef®cient

matrix in a compressed storage format. This facilitates the use of a multifrontal solution solver.

By means of the equations considered and the test problem analysed, the rationale behind the use

of compact multivariant element has been validated. For the sake of comparison and assessment,

another class of elements, 14=1, has also been considered. Despite the comparatively laborious

programming effort, we prefer using this new constraint element mainly because of its ability to

signi®cantly reduce computing time and computer resource without too much loss of prediction

accuracy.

Table II. Comparison between 14=1 element and new constraint 14=1c element: L2 error norms and rates of
convergence

No. of elements 26262 46464 86868 16616616

L2 u 2�5671361072 1�1578961072 5�4984561073 Ða

p 4�0339461072 2�2403961072 1�2098461073 Ð
14=1 Cob u 1�1487 1�0744 Ð

p 0�8484 0�8889 Ð
L2 u 2�8503761072 1�4504961072 7�0608161073 3�4528761073

p 5�4727661072 4�1947261072 2�4421961072 1�2935861072

14=1c Co u 0�9746 1�0386 1�0320
p 0�3837 0�7804 0�9168

a Memory too large to ®t into accessible computer.
b Co, rate of convergence.

Table III. Comparison between 14=1 element and new constraint 14=1c element:
CPU times (seconds) of multifrontal solver

No. of elements 26262 46464 86868 16616616

14=1 0�030 0�805 63�361 Ð
14=1c 0�018 0�386 7�207 3726�765
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