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Nowadays, the use of Smoothed Particle Hydrodynamics (SPH) approach in thermo-fluid application has been
starting to gain popularity. Depending on the SPH boundary condition treatment, different methods can be de-
vised to compute the total wall heat transfer rate. In this paper, for the first time, the accuracies of using the
popular dummy particle methods, i.e. (a) the Adami Approach (AA) and (b) the higher-order mirror + Moving
Least Square (MMLS) method in predicting the total wall heat transfer rate are comprehensively assessed. The
modified equation of the 1D wall heat transfer rate is formulated using Taylor’s series. For uniform particle lay-
out, MMLS is first-order accurate. Nevertheless, for an irregular particle layout, its order of accuracy drops to
~0(1), the order similar to that of the computationally simpler AA. The AA method is then used to simulate
several steady and unsteady natural convection problems involving convex and concave wall geometries. The
estimated wall heat transfer rate and the flow results agree considerably well with the available experimental
data and benchmark numerical solutions. In general, the current work shows that AA can offer a practical means

of estimating wall heat transfer rate at reasonable accuracy for problems involving complex geometry.

1. Introduction

Particle methods such as Smoothed Particle Hydrodynamics (SPH),
Moving Particle Semi-implicit [15,18,31,32,34,37,49], Dissipative Par-
ticle Dynamics [12,36] etc. have been widely used in solving complex
fluid dynamics problems nowadays. In particular, SPH is the oldest par-
ticle method initially designed to solve astrophysical problems [11,19].
SPH is then extended to solve high-speed compressible flow problems
involving shock waves [27]. Unlike the mesh-based method such as the
Finite Volume Method [29,30,33,38,39], the convection term is treated
exactly in SPH. On the simulation of free-surface flow, it is appealing
to note that the implementations of dynamic and shear-free boundary
conditions at the free surface are straightforward. The tracking of free-
surface location is not necessary at all if the weakly-compressible SPH
(WCSPH) model is used. The first attempt of using SPH in simulating
free surface problem was reported by Monaghan [26]. Following this
pioneering work, a lot of complicated free-surface problems involving
splashing, wave breaking and fragmentation of water-air interface have
been simulated [7,21,53]. In fact, the application of SPH is not limited to
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simulating convective-dominated and free-surface problems. Currently,
SPH has witnessed its application in solving complex multi-physics prob-
lems encountered in bio-medical engineering, food industry, magneto-
hydrodynamics, etc. A more complete review on the use of SPH in sim-
ulating multi-physics problems has been recently reported [2].

On the modelling of heat transfer using SPH, Cleary is one of the
pioneers that has successfully formulated the energy equation in SPH
form to model natural convection problem [4]. The method was then
extended to solve heat conduction problem in domain with temperature-
dependent thermal conductivity [5]. Chaniotis and his co-workers
[3] applied the remeshed SPH scheme in solving natural convection
problems and good accuracy has been reported. The implicit time in-
tegration approach has been used as well to solve the heat conduction
problem [41]. In order to account for natural convection problems in-
volving noticeable change of density with respect to temperature, the
non-Boussinesq SPH formulation has been proposed [45]. More recently,
both Neumann and Robin boundary conditions have been presented in
the numerical framework of SPH [9]. The use of SPH in modelling two-
phase flow involving phase change has been reported as well [8,50,52].
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Very recently, the heat transfer process in heat exchanger has been suc-
cessfully simulated using SPH [14,35].

As compared to the classical mesh-based method, accurate boundary
condition modelling using SPH is more complicated due to the trunca-
tion of SPH kernel function near the wall. In order to circumvent this
issue, the SPH modelling of wall boundary condition follows two basic
approaches. In the first approach (Approach A), only one layer of wall
particles is generated at the wall surface. This procedure could greatly
shorten the pre-processing time; however, complex numerical treatment
such as the boundary integral method [17,20,23,25] must be performed
in order to account for the incomplete near-wall kernel support area
by integrating the kernel function onto the boundary intersecting with
the kernel support. Unfortunately, it is unclear on how to extend this
method to handle arbitrarily complex wall geometry. The above issue
can be somehow addressed by applying the Lennard-Jones potential
force [28] between fluid and wall particles. Nevertheless, the magnitude
of this force must be calibrated for obtaining an accurate SPH solution.
The second approach (Approach B) involves filling the wall region with
particles so that the kernel support region of near-wall fluid particle is
fully covered with particles. These particles residing inside the wall re-
gion can be either fixed [1,22] or dynamic [6,44]. The dynamic wall
particle (or ghost particle) method involves the regeneration of wall
particles based on the local wall surface normal and tangent vectors as
well as the instantaneous positions of the near-wall fluid particles. Its
implementation is complicated when surface geometry involving sharp
corners is encountered.

In the current work, we focused on the fixed wall particle (or dummy
particle) approach, which is essentially a variant of Approach B men-
tioned above. The dummy particle approach of Adami and his co-
workers (denoted as AA in the current paper) has been widely used in
isothermal SPH simulation due to the fact that its implementation is
simple [1]. That is, the wall surface normal vector is not required while
updating the properties of dummy particles. In fact, the AA approach
has been previously tested by a series of free-surface flow simulations
and the speed and pressure profiles at selected locations agreed quite
well with the theoretical and experimental data [47]. Nevertheless, the
accuracy of AA in estimating the wall variable such as the total force
exerted on a solid body was not assessed. Recently, Guo and his co-
workers [13] attempted to fill this gap by applying AA to estimate the
total force acting on the floating body. The total force was computed
by summing the acceleration terms of all dummy particles inside the
floating body. Although the force acting on the floating body was not
reported, the time-dependent positions of the floating body were quite
agreeable with the experimental data. For flow problem involving heat
transfer, the problem of estimating the wall variable such as the total
wall heat transfer rate is frequently encountered. For example, while fix-
ing the temperature of wall with baffle plates, the total wall heat trans-
fer rate was then computed to check for any possible heat augmentation
[24]. In fact, the method of computing wall heat transfer rate using SPH
has been previously put forward in the framework of Approach A [5],
where boundary density correction is necessary as only one layer of par-
ticles is generated at the wall. In the context of ghost particle method,
the local wall temperature gradient (or local wall heat transfer rate) can
be firstly computed [45], followed by the summation of these local heat
transfer rates on the entire wall segment to obtain the total wall heat
transfer rate. For the dummy particle approach, since the application of
AA in estimating the total wall heat transfer rate has not been reported
in open literature, it is unclear to us how this simple method would per-
form in this regard, particularly when a very complex wall boundary is
encountered. Besides that, the accuracy of AA in total wall heat transfer
rate prediction as compared to that of using other popular yet compli-
cated higher-order dummy particle method such as the Mirror + Moving
Least Square (MMLS) method [22] has not been explored so far.

In this work, we adopted AA in modelling the Dirichlet temperature
boundary condition for arbitrarily shaped geometries. By using Tay-
lor’s series, we presented first the one-dimensional modified equation
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of wall heat transfer rate formulated using SPH, followed by comparing
the accuracies of AA and other popular higher-order dummy particle
method (i.e. MMLS) in predicting the wall heat transfer rate on regular
and irregular particle layouts. The necessity of having a more compli-
cated higher-order method in computing the dummy particle temper-
ature on the irregular yet practical particle layout was then assessed.
Subsequently, we estimated the wall heat transfer rate in several steady
and unsteady natural convection problems involving convex and con-
cave corners. Finally, the numerical results were compared against the
available experimental data and benchmark numerical solutions.

2. Mathematical models

The motion of non-isothermal buoyant fluid is governed by the mass
balance (continuity) equation:

dp
&P v, 1
i pV.v (eY)
the momentum equation:

dv
P = VP +uViv—ppg(T - T,), @)
and the energy equation:

dT ko

— = —V-T. 3
s (3)

p

Here, v and g are the velocity and gravitational acceleration vec-
tors, respectively, p is the fluid density, P is the fluid pressure, T is the
fluid temperature, u is the fluid dynamic viscosity, g is the fluid ther-
mal expansion coefficient, C, is the fluid specific heat and k is the fluid
thermal conductivity. In the current work, the Boussinesq approxima-
tion was used to model the buoyancy force. An external upward buoyant
force acts on the fluid particle if its temperature is above the reference
temperature T,.

3. Numerical method
3.1. Weakly compressible SPH model

In this work, as the fluid was treated as weakly compressible, the
fluid pressure P was expressed as a function of density change:

P=c(p-p,) )

Here, c is the speed of sound (10 times the maximum fluid speed
in the flow domain) and p, is the initial (reference) fluid density. The
discretized versions of Egs. (1) and (2) using SPH for fluid particle i are:

dp;
<d—tl>:pizjVj(v,-—vj)AVI-VVI-I-+25th,-, ®)
and
(D)= Ly (veev) Do,
dt m; i\ J pi+p, Y
1 5 5 2pip; Vi —v; rij
to 2 (P e e
m; = Hi+uy el I35l
- ribg(T; - T,). ©)

Here, the angled bracket (m) was introduced to denote an approxi-
mated term using SPH.V; is the volume of neighbouring particle j, i.e.
V;=m;/p; where m; is the mass of particle j. According to Sun and his
co-workers [43], the parameter § is a fixed parameter (§ = 0.1). The
displacement vector r; is defined as r; —r;. The derivative of kernel
function V;Wj; is taken with respect to the coordinates of particle i,

. dwi;
Le.V,W; = —= R

In the current work, the quintic spline kernel with
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cutoff radius of r, = 3h was used:

B-95°-62-5>+15(1-5° 0<s<l1
_ o B-1s°-62-5s) 1<s<2 o
U= pp 3= 2<5<3
0 s>3
where s=||r;||/h, D is the flow dimension and «; = 1;_0 ﬁ, 35% for

D=1, 2, 3, respectively. In the current work, the smoothing length h
was taken as the initial particle spacing d.

In order to suppress the pressure oscillation, the diffusive term D;
was added into the discretized continuity equation:

D; = Zj (Pj

r i

oy,
i)V
||rji||2

®)

3.2. Total wall heat transfer rate

In order to compute wall heat transfer rate, let us consider first the
discretized form of Eq. (3) of a local fluid particle i [5]:

Note, the above formulation incorporates the harmonic mean value
of thermal conductivity, which is introduced to solve general heat trans-
fer problem involving different materials. Multiplying both sides of
Eg. (9) by particle mass m; and combining the specific heat C, with

dT;
dt

4kik; r;

VW
> = 1 v /—‘Z”(TI —T/-),
Copi & Tkit k|

(©)]

dE;
dt

mi(%) gives the net rate of change of energy <%) [W] of particle i:
dkk; v VW,

() =2, W e - )

Ttk e

Here, E; is the total energy [J] of local fluid particle i.

Note, from Eq. (10), the list of neighbouring particle j of a fluid par-
ticle i may consist of both fluid and dummy particles. In order to recover
the total heat transfer rate (Q),, to/from the wall from Eq. (10), for all
fluid particles i, the contributions of heat transfer rates from all inter-
acting dummy particles are summed:

10

dkik; r;; - VW,
ki+k (T 1)
itk ”rij Il

<QW> = Ziefluid ZjedummyViVj (11)

Following the spirit of dummy particle method, the volume of
dummy particle can be fixed as Vj:dD. For the implementation of
Dirichlet boundary condition, there are several methods available for
estimating the dummy particle temperature T; in Eq. (11). These meth-
ods are discussed in Section 4.1.1.

4. Results and discussions

In this section, firstly, we analysed the order of accuracy of
Eq. (11) for 1D heat transfer problem. The most practical dummy par-
ticle temperature prediction scheme was then chosen to solve the more
complicated natural convection problems including those occurred in
complex flow domains with convex and concave corners. For the sake
of verification, the computed wall heat transfer rates were then com-
pared with the published numerical/experimental data and those sim-
ulated using the established commercial software, i.e. ANSYS FLUENT
that employs the Finite Volume Method (FVM). In the current work, the
SPH code was parallelized using CUDA C++ and the parallel SPH sim-
ulation was executed on a workstation (Intel Xeon 3.7 GHz 16 GB RAM
with 1x NVIDIA Quadro P4000 GPU card) at Universiti Tenaga Nasional.
On the other hand, the serial FVM simulation was performed using a lab
computer (Intel Xeon Bronze 3106 CPU 1.7 GHz 16 GB RAM) at Taylor’s
University, where the ANSYS FLUENT software license is available.
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—A— Dummy temperature: Adami approach
—>— Dummy temperature: Mirror + MLS
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Fig. 1. Estimation of dummy particle temperatures T, T; and T;. (see Egs. (17)

and (18)) using various methods described in Table 1. Wall is located at x=0.
Temperatures of fluid particles (x < 0) are expressed as T(x) = —10x? — 20x. The
particle spacing is uniform (d=0.1).

4.1. Steady cases

4.1.1. One-dimensional heat conduction problem

For this problem, we intend to compute (Q),, at the wall (x=0) (see
Fig. 1) where the analytical solution is available. Here, all the working
variables introduced in this sub-section were treated as dimensionless.
As shown in Fig. 1, the fluid particles were distributed at x < 0 (fluid
region) and three layers of dummy particles were generated at x > 0
(wall region). In order to test the orders of accuracy of various schemes,
the non-linear fluid temperature profile was chosen: T(x) = —10x2 — 20x
where x < 0. Therefore, the wall temperature is T (x=0)=T,, =0. By
setting the thermal conductivity k to 0.75, the exact solution of the wall
heat transfer rate (Q,, = —-kADT/Dx,_ ) is 15. Here, DT/Dx,._ is the
temperature gradient at the wall (x =0) and A is the effective heat trans-
fer area. Note, for one-dimensional problem, A =1.

Before we simulate this problem numerically using SPH, let us anal-
yse Eq. (11) using Taylor’s series by expanding the fluid particle tem-
perature from that at the wall location (denoted by subscript w). In the
current work, we considered only fluid with homogeneous k. As such,
Eq. (11) can be rewritten as:

r; - VW,
(Qw> = Ziefluid Zjedummy ZkVIVJ W (T; - TJ)

By noting from Fig. 1 that the fluid particles are lying at x < 0 and as-
suming that the fluid temperatures (i.e. T;, Ty, T;~) are smoothly varying
towards the wall, we can write:

(12)

2
pr 4, DT 5
T.=T,-d,,— + 2=~ +0d 13
i w iw wa 2 Dx%v ( ) ( )
pr 45, DT
i’
T, =T, - di/wD_Xw %_2 +0(d?) (14)
pr 4, DT 5
Tin =Tw—d,~//wD—xw+TD—2+0(d ) (15)

Here, d;, indicates the distance between particle i and wall position
w. By replacing Egs. (13)—(15) into Eq. (12) and omitting those terms in-
volving two interacting particles with distance apart of above 3h (Quin-
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Table 1
Methods used to estimate 7' of a generic dummy particle k.

Engineering Analysis with Boundary Elements 111 (2020) 195-205

Method Description

Adami Approach (AA) of [1]
F= Zigga T Ay
KT e Wl )

Mirror + MLS (MMLS) of [22]

T, is estimated by simply performing weighted averaging on the neighbouring fluid particles, i.e.
. This method is computationally simple as the construction of surface normal vector is unnecessary.

The mirror image of the dummy particle of interest k is generated in the flow domain by using the corresponding surface normal

vector. Then, numerical interpolation is performed by using Moving Least Square (MLS) method to compute 7, at every time
step. Although this method is more accurate than AA, the generation of mirror images of dummy particles near convex and
concave corners is computationally challenging.

Direct

T, is equivalent to that of its mirror image that coincides exactly with the inner fluid particle. For example, by referring to Fig. 1,

Tj =T, TJ =T, and T/ =T,,. No interpolation is required; however, this method is only applicable for cases employing uniform

particle spacing.

Fixed T, is equivalent to the wall temperature T,,,.

tic spline is used here), the following equation can be obtained:

DT du DT
VV2k< ~diw e ¥ S 5T +0(d?%) —Tj>
<Qw> = d[j DW
d,-jz Drr:dij
2
Vi V2k<T —dyy g+ 52 25 4 0(d) _Tj) -
+ 5 ;5
di’j Tr= dr
Viv,2k( T, —d e DT () =T
ivj _Awa +T ( )_ J’ DW
+ > dyji
d.., Drr:d o
ij ij
(16)

Now, the temperatures of dummy particles, i.e. T; and T}, must be
somehow estimated based on the given wall temperature T,, (Dirichlet
boundary condition). In the current work, we made use of the following
extrapolation procedures:

T, =2T, - T, (17)

T, =2T, - T, (18)
where T can be predicted using the methods outlined in Table 1. Here, T
is the interpolated temperature. For example, Tj/ is the interpolated tem-
perature at specific location inside the fluid domain which is uniquely
associated with the dummy particle j’. Note, for the AA method outlined
in Fig. 1, since the dummy particle j”” (furthest away from the wall) does
not interact with any fluid particles, 7;» = 0 (or Tj»» = 2T,, - Tj» = 2T, =
0). By expressing 7 based on the local wall temperature and its gradient,
one can obtain a second-order approximation of T

T

T 2
Ty =Ty = djyn— +0(d*) (19
. DT
Ty =T, = dypup— +0d*) (20)
w
Substituting Egs. (17)-(20) into Eq. (16) gives:
2
. V[Vj2k< ~ e =Ty~ djuy =+ 0(d ))d oW
wh = d? o Drr=d,»/»
VoV 2k(To = il =T, = dj 2 +0(d?))
+ i'vj i'w D w JW Dx,, d. DW
il
dtzj " Drr d/
VV,zk(T iy B~ T,y =y o(dZ)) ow
+ 5 dyjr
dij’ Drr:dij/
@n

By grouping similar terms and rearranging them, Eq. (21) can now
be rewritten as:
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6 © 0 © 0 o o o o o o 10
-l
s L 0.1
e
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— Direct
X Mirror + MLS + 0.001
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¢ Fixed
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Fig. 2. Spatial convergence tests of various dummy particle temperature ex-
trapolation methods on uniform particle layout. Absolute error e is defined as

e= I(QW_QW>|
(0,) = —k— VV/(d +d/w> DW +2Vi’Vj(di'w+djw) DW
Dx,, d; Dr._y, dy; Dr,_y,,
ViV (dyy +dyy
+2 il «) _bw +0(d) (22)
d,-j/ Dr,:d”,

Let us consider the ideal case where the particles are uni-
formly distributed within the fluid domain (see Fig. 1). One can
easily show that the curly bracketed term in Eq. (22) is equal to

~L0as Vi= V= Ve-=Vir=d,doy + dyy =i doy + =i do + =y
DW _ -5 DW pw . _
Dryqy 122 and Drgy = Drgy, 1 20d2 Flnally, Eq. (22) becomes
DT
(Qu) =k +0@) =0, +0() (23)

w

where Q,, is the exact one-dimensional wall heat transfer rate. Consid-
ering the negative fluid temperature gradient as outlined in Fig. 1, (Q),,
would be negative, thus indicating that the fluid is undergoing heat loss
to the adjacent wall modelled by using the dummy particles.

Note, the order of accuracy of Eq. (11) is O(d) if two conditions are
met: (1) the particle layout is uniform; and (2) the order of accuracy of
T is at least O(d?) (see Egs. (19) and (20)). For the case employing uni-
form particle layout, only MMLS and “Direct” methods (see Table 1)
are able to provide the first-order approximation of wall heat trans-
fer rate as witnessed from Fig. 2. The orders of accuracy of AA and
“Fixed” approaches, however, are merely O(1). While the absolute er-
ror of AA method converges to ~ 0.1, the “Fixed” approach converges to
merely half of the exact wall heat transfer rate (i.e. (Q),, =Q,,/2=7.5,
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Fig. 3. Spatial convergence tests of (a) MMLS and (b) AA on non-uniform particle layouts for different perturbation amplitudes a. The absolute error e is defined as

€= |<Qw_Qw>|

or e=|Q,, —(Q,)| =7.5). The spatial convergence behaviour of “Fixed”
method can be explained by substituting T;=T; =T, into Eq. (16) to
obtain (Q),, = k= + O(d).

In practical SPH siurjnulation, the SPH particles are randomly scattered
within the flow field. Plus, in the context of weakly compressible SPH,
the volume of fluid particle may be varying as well. In other words,
the curly bracketed term in Eq. (22) may not be equal to —1.0, lead-
ing to O(1) accuracy of (Q),,. In order to simulate the effect of particle
non-uniformity, the initial fluid particle positions were perturbed at an
amplitude of a% of d. The fluid particle density was then recalculated
via: p; = ¥, m;W};. While the dummy particle volume was fixed as d, the
fluid particle volume V; was updated as V; =m;/p;. As shown in Fig. 3(a),
the order of accuracy of MMLS approach degrades to ~O(1) even when
the particle positions are perturbed slightly (a=0.5%). The order of ac-
curacy of AA remains at ~O(1) on non-uniform particle layout as shown
in Fig. 3(b). Owing to the facts that both MMLS and AA methods exhibit
the same order of accuracy of ~O(1) (for (Q),,) in the presence of par-
ticle non-uniformity and the AA approach is computationally simpler
than MMLS, we have decided to employ AA in our subsequent flow sim-
ulations.

4.1.2. Natural convection in square cavity

The buoyant flow in a square cavity was simulated and the re-
sults were discussed in this section. The length (L) of the square cav-
ity was set to 1.0m. The temperatures of the left and right walls
were fixed at Ty (=T, + AT /2) and T, (= T, - AT /2), where T,
is the initial fluid temperature (T, = =300K) and AT is the differen-
tial temperature (AT = =Ty - Tc). The top and bottom walls, how-
ever, were treated as adiabatic. In this case, the working fluid was air
with properties: p, = =1.2kg/m3, u = =1.846 x 107> Pa s, § = =0.0034
K1, k=0.0262W/mK and C, = =1000J/kgK. The gravitational ac-
celeration was taken as 9.81m/s acting in the negative y-direction.
Cases of two different Rayleigh numbers (Ra = =p,>C,gfATL/kp), i.e.
Ra = =10,000 and Ra = =100,000 were simulated, which correspond
to AT=1.006984x10~#K and AT = =1.006984 x 10~3 K, respectively.
According to Feng and Ponton [10], the reference speed (U,ef) can be
calculated via: U,,, = v/fgLAT. Hence, the speed of sound c was pre-
scribed as ¢ =10U,,.. As shown in Fig. 4, a rising air stream is visible
near the hot (left) wall. The hot air stream exchanges heat with the cold
(right) wall, thus loosing certain amount of thermal energy. The cold
air drops along the cold wall and regains its thermal energy from the
hot (left) wall, forming a closed flow loop within the square cavity. For
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Table 2
Comparison of averaged Nusselt number, Nu,,, predicted using dif-

ferent methods. For SPH, the Nu,,, is time-averaged from t=6000s

to t=10,000 s.
Ra 10,000 100,000
SPH (d=1/60m) 2.261 4.580
SPH (d=1/90 m) 2.249 4.591
FDM [46] 2.243 4.519
FEM [48] 2.254 4.598
DSC [48] 2.155 4.358

Ra = =100,000, however, a pair of counter-rotating vortices is visible
as shown in Fig. 4(b).

The Nusselt number (Nu) distribution (Nu = — o) along the cold
wall was computed and compared with various benchmark solutions.
Here, the temperature gradient % at the cold wall was computed using
the Moving Least Square (MLS) procedure [37]. As shown in Fig. 5, the
trend of the simulated Nu along the cold wall using SPH is quite simi-
lar to those of the Discrete Singular Convolution (DSC) method and the
Finite Element Method (FEM) [48]. For both flow cases at different Ra,
our predicted Nu values along the cold wall are in general slightly higher
than those of DSC. Nevertheless, our SPH results at Ra = =100,000 are
very close to the FEM solutions as shown in Fig. 5(b). In order to com-
pare the averaged Nu, i.e. Nu,, at the cold wall, the time evolution
of Nug,, was compared with other benchmark solutions and the results
were shown in Fig. 6 for different Ra values. Qualitatively, our simulated
Num,g is quite close to those using Finite Difference Method [46] and
FEM [48]. Table 2 shows the numerical values of Nu,,, predicted using
different methods. It is apparent that the DSC solutions for both Ra val-
ues are lower than other predictions, including those using the current
SPH method. As reported in Table 2, the predicted Nug,, values using
SPH at d=1/60m and d=1/90 m agree quantitatively well with those
of FDM and FEM.

dT L

4.1.3. Natural convection in two concentric cylinders

Next, we intend to investigate the wall heat transfer rate for natu-
ral convection occurred between two eccentric cylinders, whereby the
experimental data of temperature at various positions are available.
This problem has been recently simulated by Yang and Kong [51] us-
ing SPH as well. The radii of inner hot (T = =323.664K) and outer
cold (T, = =300K) cylinders were prescribed as R; = =D;/2=0.02m
and R, =0.052m, respectively. The fluid properties were set
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Fig. 4. Predicted velocity vectors and dimensionless temperature contours (0 < T* = (T—T;)/AT < 1) for (a) Ra = =10,000 and (b) Ra = 100,000 in the square
cavity (length L=1.0m) at t=10,000 s. The number of SPH fluid particles is 3600. Note, the SPH results are interpolated to the background Cartesian mesh for
contour line generation. The velocity vector length does not correlate with the local speed.
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Fig. 7. Steady state results for natural convection in two concentric cylinders. (a) Pressure [Pa]; (b) dimensionless temperature (T* = =(T — T;)/AT); (c) x-velocity
[m/s]; (d) y-velocity [m/s] and (e) distributions of T* along the dimensionless radial distance (r* = =(r — R;)/(R; - R;)) at different angular positions (6), i.e. 6 =0
°,30°,60°,90°, 120 ° and 150 °. N is the total number of meshes used in FVM. SPH results at t=20s are shown.

to: p, =1.096kg/m3, u = =2.0x105Pas, § = =0.003 K~ 1,
k=0.02816 W/mK and C, = =1006.3 J/kgK. In this case, the Rayleigh
number (Ra = =p,2C,gfATD;3/k) is 97,600, where AT = =Ty — T¢.
The artificial sound speed ¢ was set to 1.69 m/s.

Figs. 7(a)-(d) shows the SPH results obtained at t=20s using
115,840 fluid particles (d=0.25mm). The angular position 6 shown in
Fig. 3(a) is measured from the vertical line passing through the centre
of the cylinder. Thanks to the density diffusion term in the continu-
ity equation [22], a smooth pressure field can be attained as shown in
Fig. 7(a). The formation of thermal plume above the inner hot cylinder
is apparent as shown in Fig. 7(b) and the flow underneath the inner
cylinder is mostly isothermal. As shown in Figs. 7(c) and (d), the hot
air reaches the top of the flow domain and split into two flow streams.
These flow streams travel along the outer curved walls and mix with the
hot air streams in the vicinity of the inner cylinder. Following this, two
primary flow circulations are formed on both sides of the inner cylinder.

The SPH solutions were then compared against the experimental data
[16] and other benchmark numerical solutions obtained using the Finite
Volume Method (FVM) and the hybrid Lagrangian-Eulerian UMPPM
method [37]. As reported in Fig. 7(e), the grid-independent FVM and
UMPPM solutions are almost identical. However, these mesh-based so-
lutions do not coincide with those successively refined SPH solutions.
The difference is more discernible at § = =60 °, 90 °, 120 °. This is ex-
pected, as the SPH operators used in the current work are not exactly
numerically consistent. The case simulated by using the finest resolution

201

in SPH consists of 115,840 fluid particles (d = 0.25 mm), and it is noticed
that the results are marginally different from those obtained using the
larger particle resolution of d=0.50mm. Interestingly, for § = =90 °,
120 ° and 150 °, our SPH solutions employing successively finer particle
resolution come closer to the experimental data as compared to those
FVM and UMPPM solutions.

Next, we intend to examine the accuracy of AA method in esti-
mating the wall heat transfer rate. Fig. 8(a) shows the time evolution
of wall heat transfer rates at both inner and outer cylindrical walls.
Both plots plateau at almost the same level at t > 15s, signifying
that the steady-state condition is achieved. The steady-state outer wall
heat transfer rates were compared against the fine-grid FVM solution
(Q ~ 12.91 W) as shown in Fig. 8(b). It is noticed that our SPH solutions
with d=0.50mm and 0.25mm are almost identical (Q ~ 12.54W) at
steady-state condition (see Table 3). This wall heat transfer rate value
predicted using SPH is somewhat smaller than that using the fine-grid
FVM by ~2.8%. This particular issue of numerical inaccuracy might be
attributed to the irregular particle layout within the shear-dominated re-
gion [40], which is lying adjacent to the circular wall where heat trans-
fer is taking place.

4.2. Unsteady cases

The test cases reported in this section are different from most of the
natural convection test cases outlined in open literature that consider
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Fig. 8. Time evolution of wall heat transfer rate (Q). (a) |Q| at inner and outer cylindrical walls predicted using Adami Approach (AA) where d= 0.5 mm. (b) Effect
of particle resolutions on SPH results using AA. The predicted Q using FVM is 12.911 W. N is the total number of meshes used in FVM.
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Fig. 9. Unsteady natural convection in circular, equilateral triangular and star cavities. Coordinates of corner points A-F (in mm) in the star cavity are A (31, 62),
B (23.746, 38.13), C (0, 38.13), D (19.282, 23.746), E (11.904, 0), F (31, 14.88).

Table 3

Steady-state outer wall heat transfer rate predicted using differ-
ent numerical schemes. Ny, is the number of meshes (FVM) and
Ngpy is the number of fluid particles (SPH).

FVM SPH (at t=205)

d(mm)  Npyy Q [W] d(mm)  Ngpy Q[W]
1.670 2166 13.408 1.670 2606 13.376
0.830 8588 13.028  1.000 7223 12.563
0.400 37,760 12.932  0.500 28,968 12.535
0.200 150,080 12911  0.250 115,840  12.538

buoyancy-driven flow in two differentially heated walls. Here, the hot
fluid of initial temperature T, was encapsulated within an enclosure
and the wall temperature was fixed at a lower temperature T. Both the
buoyancy force acting on the fluid particles and the wall heat transfer
rate would decrease as time progresses. Finally, the fluid temperature
would be equivalent to the enclosure wall temperature at steady-state
condition. In this study, we are interested to study the accuracy of Adami
Approach (AA) in predicting the transient wall heat transfer rate.

4.2.1. Circular cavity

One of the few studies that investigates the transient natural
convection inside a circular cavity has been reported by Stewart
and his co-workers [42]. The circular geometry is shown in Fig. 9,
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Stewart et al. (1974)
- - -FVM (d = 0.62 mm)

5 —— FVM (d=0.31 mm)
A SPH (d=1.23 mm)
X SPH (d=0.31 mm)
O SPH (d=0.21 mm)
4

Nu/Gro2s
w

Fig. 10. The decay of wall heat transfer rate at the circular wall.

where the diameter is 62mm (R=31mm). The following fluid prop-
erties were considered in our SPH simulation: p, = =1.2 kg m™3,
n=1.7964x10"°Pas, § =0.003156 K~ !, C, = =1004 J kg~! K~! and
k=0.02522 W m~! K~1. Both T, and T were prescribed as 316.826 K
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Fig. 11. Time evolution of wall heat transfer rate for triangular cavity. (a) Grid independence test for FVM (ANSYS FLUENT); (b) comparison of FVM and SPH.
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Fig. 12. Time evolution of wall heat transfer rate for star cavity. (a) Grid independence test for FVM (ANSYS FLUENT); (b) comparison of FVM and SPH.

and 296.55K, respectively. In this case, the Grashof number is defined
as Gr=gp(T, - TC)R3/v2: =8.35x 104, where g=9.81 m s~! and v is
the kinematic viscosity of the fluid. The speed of sound ¢ was set as
2.0ms .

The time evolutions of wall Nusselt number (Nu) predicted using
various particle resolutions have been compared with those of Stew-
art et al. [42] and FVM and the results are shown in Fig. 10. Here,
Nu=2Rh/k where h. is the convection coefficient which can be com-
puted from the wall heat transfer rate: h=|(Q),,|/[(T, — T¢c)2zR]. The
x-axis (dimensionless time) in Fig. 10 can be obtained by normalizing
the physical time t [s] with the reference time t, = \/R/[gB(T, — To)].
As observed from Fig. 10, it is appealing to note that the SPH solutions
are almost similar to the grid-independent FVM solution as the parti-
cle resolution increases. For FVM, we have used the second-order im-
plicit backward time-stepping scheme by setting the time step size At
to 0.002s. In fact, we have found that both wall heat transfer rates pre-
dicted using FVM at At = 0.001 s and At = 0.002 s are almost similar. In
general, the decaying trend of the wall heat transfer rate is well captured
using the SPH method. Meanwhile, the explicit windward-difference
solution [42] deviates from the FVM and SPH solutions as time
progresses.

4.2.2. Complex cavities

The ability of Adami Approach (AA) in predicting the transient wall
heat transfer rate at complex cavity wall has been tested as well. Here,
we are particularly interested to observe how AA behaves when this
method is applied to compute the heat transfer rate at walls involving
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sharp corners. As such, a similar transient natural convection study per-
formed earlier has been conducted for a triangular cavity that contains
3 concave corners and a star cavity that contains 5 concave and 5 con-
vex corners. The numerical settings such as fluid properties, initial hot
fluid temperature T,, wall temperature T, speed of sound c and gravita-
tional acceleration g are similar to those reported for the case of circular
cavity. Both geometries of triangular and star cavities can be found in
Fig. 9.

Since the benchmark solution is unavailable, we have performed
similar simulation using ANSYS FLUENT and the predicted wall heat
transfer rates for triangular and star cavities are shown in Figs. 11(a)
and 12(a), respectively. Both FVM results obtained using d=0.31 mm
and d=0.62 mm are almost overlapping. We have found similar obser-
vation as well for our SPH results shown in Figs. 11(b) and 12(b), in
which the SPH solutions are not very sensitive to the particle resolution
as d < 0.62mm. As observed, the pattern of decay of (Q),, predicted us-
ing SPH at higher particle resolution agrees considerably well with the
FVM solution.

The instantaneous speed and temperature fields at t=0.6 s predicted
using SPH have been compared to those using FVM and the results are
shown in Fig. 13. Good agreement has been found between both sets of
result. In both cavities, the inner hot particles experience a slight upward
drift from the cavity centre due to the buoyancy force and meanwhile
exchange heat with the outer cold wall. The fluid particles are almost
stagnant at the corners. The strong descending jets near the side walls
of the triangular cavity and the side convex corners of the star cavity
are well captured using SPH.
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Fig. 13. The instantaneous temperature, T [K] and speed,
|u| [m/s] at t=0.6s for unsteady natural convections oc-
curred in (a) triangular and (b) star cavities. d=0.31 mm.
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5. Conclusion

In this work, the weakly compressible Smoothed Particle Hydrody-
namics approach coupled with the dummy particle method has been
used to model the Dirichlet temperature boundary condition and to com-
pute the total wall heat transfer rate. The accuracies of the two popular
dummy particle methods, namely the Adami Approach (AA) and the
Mirror + Moving Least Square (MMLS) method have been comprehen-
sively assessed. Based on the modified equation analysis, the accuracy
of the total wall heat transfer rate predicted using the more accurate
yet complicated scheme (i.e. MMLS) degrades to O(1) due to the lead-
ing error term contributed by particle irregularity. Therefore, the Adami
Approach (AA) that exhibits the same order of accuracy of MMLS for an
irregular particle layout would be more attractive in practical simula-
tion due to its simplicity in implementation. The AA method has been
applied to predict the wall heat transfer rate in complex geometries in-
volving convex and concave corners. The prediction agrees considerably
well with the benchmark solutions.
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