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In this study we are aimed to simulate incompressible fluid flows with moving interface 
separating liquid and gas phases. To achieve volume/mass conservation and to capture 
interface, the interface-capturing volume of fluid (VOF) method, which is exercised in 
compliance with requirement of volume/mass conservation, will be coupled with the other 
interface-capturing level-set (LS) method, which is suitable to capture interface accurately. 
In our proposed advection algorithm, VOF is the building block that solves the volume 
fraction and the level-set function is solely used to assist an accurate calculation of some 
geometrically relevant quantities at the interface. A high order scheme developed within 
the optimized compact reconstruction WENO framework has been applied to solve the 
advection equation. The novelty of this purposed advection algorithm is attributed to its 
efficient implementation without sacrifice of computational accuracy.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Modeling two-phase flow motion with sharply evolving interfaces is challenging because of discontinuous physical prop-
erties across interfaces and the difficulties in capturing interfaces and maintaining their sharpness [1]. The shape of interface 
can be predicted using a method developed either in Lagrangian or Eulerian sense. A Lagrangian method adopts moving 
mesh which is convected with fluid flow to follow the interface, where the interface is treated as a sharp boundary. One 
major drawback of this class of methods is owing to the difficulty of tracking topological changes, such as bubble breakup 
and coalescence [2,3]. Besides, this method is computationally expensive. For these reasons, Lagrangian methods have been 
comparatively less applied.

In contrast to Lagrangian methods implemented in moving mesh, Eulerian methods are performed in fixed grids that 
remain stationary in space with flow moving through it. A few Eulerian methods have been proposed to predict gas-liquid 
flow and capture its moving interface, namely, the interface tracking methods and the interface capturing methods. In inter-
face tracking methods, fixed grids are involved to get the velocity field, and the interface is explicitly tracked through the 
use of Lagrangian-type moving mesh by interface marker particles [4–10]. The need of performing surface remeshing makes 
this method computationally expensive, in addition to its implementation difficulty [11]. In interface capturing methods, 
the interface is implicitly predicted using a phase function on fixed grids, and the interface motion is obtained through the 
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advection of phase function. Some well-known interface capturing methods include the Level Set (LS) [12–14], Volume of 
Fluid (VOF) [15–18,20–22], and Coupled Level Set and Volume of Fluid (CLSVOF) methods [23–27].

LS method was first proposed by Osher and Sethian [12] and it has been further improved by Sussman et al. [13] for 
achieving a better simulation of two-phase flows. LS method uses a smooth continuous distance function φ to describe 
its moving interface. The function φ denotes the shortest signed distance to the interface, and its magnitude is positive 
in one fluid and negative in the other, implying the presence of zero level set at the interface. LS method can be used to 
accurately calculate the unit normal vector, mean curvature and, therefore, surface tension force. As a result, it can easily 
model topological change problems such as wave breakup and bubble merger. Moreover, it can be easily generalized from 
two dimensions to three dimensions. However, the drawback of LS method is attributed to its poor ability of maintaining 
volume conservation, which can lead to an erroneously predicted shape of interface.

VOF method, proposed by Hirt and Nichols [15], uses an Eulerian approach to simulate flow motions which are separated 
by a common interface in fixed grid system. The interface is approximated by either horizontal or vertical lines. VOF method 
involves using an indicator function F to implicitly capture the moving interface. The value of this function is zero in 
one fluid and one in the other. There are two major approaches to solve the VOF equation. One involves discretizing the 
advection equation of indicator function using a high-resolution scheme, which is easier to implement but it would yield a 
diffusive interface. The other involves reconstructing the geometric interface through Simple Line Interface Calculation (SLIC) 
[28], Piecewise Linear Interface Calculation (PLIC) [29] and Weighted Line Interface Calculation (WLIC) [31] can be chosen 
as well. VOF method is characterized by its extremely good volume conservation property, but it has difficulty of accurately 
computing the geometric quantities such as the unit normal vector, mean curvature and surface tension force, which can 
altogether render nonphysical flow physics (spurious currents) [16–18].

In light of the above mentioned facts that LS and VOF are complimentary to each other, it seems reasonable to combine 
them together to construct an attractive refined model. Thus, taking all the good aspects of LS method and VOF method into 
account, at the same time, makes it possible to establish the proposed LS-assisted VOF advection method. Similar idea was 
first proposed by Bourlioux [23] and it was further made popular by Sussman and Puckett [24], Son and Hur [25] and Son 
[26]. This class of methods can be used to calculate the geometric quantities accurately and can retain volume conservation 
well.

Interface reconstruction is a key issue in improving the prediction accuracy for this class of methods, since it may 
lead to numerical instability in the simulation. Reconstruction of interface can be done by the modification of level set 
function from volume fraction. In the previous work [24,33], the level set function is solved iteratively to be the exact 
signed distance from the location to the reconstructed interface in two-dimensional grids. In the paper presented by Son in 
[26], the interface is constructed similarly and the geometric relations in Cartesian grids have been generalized. While this 
type of reconstruction can be implemented accurately with an analytic geometrical relation [34], its geometric relation is 
not necessarily applicable to all types of mesh under consideration. One can refer to another type of interface reconstruction 
given in [35], which incorporates Lagrangian transportation of the interface. In the present work, we develop an efficient 
interface reconstruction algorithm which is applicable to all types of grid system. The proposed interface reconstruction 
procedure can be easily adopted to the classical level set method, without performing any if-else logic during the computer 
coding. Moreover, reconstruction of an interface with some specific ways helps to gain computational efficiency, without a 
significant sacrifice of the computational accuracy.

The organization of this paper is as follows. In Section 2, the two-phase incompressible Navier-Stokes equations formu-
lated in primitive-variable form and the proposed LS-assisted VOF coupling algorithm are presented. Section 3 is devoted 
to the approximation of LS equation using the optimized compact reconstruction weighted essentially non-oscillatory (OCR-
WENO) scheme. For the verification and validation sakes, in Section 4, four benchmark problems including two and three 
dimensional vortex deforming problems and one Rayleigh-Taylor instability problem are investigated using the proposed 
algorithm. In Section 5, two droplet/bubble hydrodynamic problems are investigated. Concluding remarks are drawn in 
Section 6.

2. Mathematical model

Our interface capturing model contains two major building blocks, namely, the LS and VOF methods, and they will 
be described in Section 2.1.1 and 2.1.2, separately. Then, the proposed LS-assisted VOF advection method will be detailed 
in Section 2.1.3. Besides the description of the interface capturing mathematical model, in Section 2.2 the incompressible 
Navier-Stokes equations used in this study are detailed as well.

2.1. Interface capturing method

2.1.1. Level set (LS) method
In the LS method, the level-set function φ is defined as the signed distance measured from the interface �. The value of 

φ is positive in liquid phase �1, negative in gas phase �2, and is defined to be zero on the interface �:
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φ(x, t = 0) =

⎧⎪⎪⎨⎪⎪⎩
d̂; for x ∈ �1,

0; for x ∈ �,

−d̂; for x ∈ �2.

(1)

Note that d̂ is the shortest distance from a given point x to the interface �. The following level set equation is solved for φ
to track the evolution of the interface:

φt + u · ∇φ = 0. (2)

Take the two-dimensional case as an example, Eq. (2) can be rewritten as follows for incompressible fluid flow

φt + ∇ · (uφ) = φt + (uφ)i+1/2, j − (uφ)i−1/2, j

�x
+ (vφ)i, j+1/2 − (vφ)i, j−1/2

�y
= 0. (3)

After solving the Eq. (3), the level set function φ can no longer be kept as a signed distance function because of the 
introduced dissipation and dispersion discretization errors. To demand φ as a signed distance function, a re-initialization 
step has been devised by calculating the φ values at grid points away from the interface [36]:

φτ = S̄(φ0)(1 − |∇φ|) + λδ(φ)|∇φ|, (4)

where τ is the pseudo-time and �x is the local grid spacing. It is noted here that φ0 = φ(t, τ = 0). The parameter λ shown 
in Eq. (4) is as follows [36]

λ = −
∫
�i, j

δ(φ)( S̄(φ0)(1 − |∇φ|))d�∫
�i, j

δ2(φ)|∇φ|d�
. (5)

In the above equation, the delta function δ(φ) is approximated as:

δ(φ) =
{

1
2ε (1 + cos(πφ

ε )) ; if |φ| < ε,

0 ; otherwise.
(6)

S̄(φ0) in Eq. (4) denotes the smoothed sign function

S̄(φ0) = 2
(

H̄(φ0) − 0.5
)
, (7)

where

H̄(φ) =
⎧⎨⎩

0; if φ < −ε,
1
2 [1 + φ

ε + 1
π sin(

πφ
ε )]; if |φ| ≤ ε,

1; if φ > ε,

(8)

and ε is chosen to be 1.5�x in this study.

2.1.2. Volume of fluid (VOF) method
In VOF method, a characteristic function χ is chosen to represent the interface. For the two-dimensional case, as an 

example, χ is given below:

χ(x, y) =
{

1; if (x, y) ∈ �1,

0; if (x, y) ∈ �2.
(9)

Note that χ(x, y) is the value on (x, y) in the whole computational domain. Therefore, an integral of the function χ is 
introduced, called as the color function C :

Ci, j = 1

�x�y

xi+1/2, j∫
xi−1/2, j

yi, j+1/2∫
yi, j−1/2

χ(x, y)dxdy. (10)

The characteristic function χ is advected by virtue of the following equation

∂χ

∂t
+ ∇ · (uχ) − χ∇ · u = 0. (11)

For Eq. (11), the dimensional splitting algorithm is applied at an interior point (i, j). The flux terms given below are 
calculated separately along x and y directions:
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C∗
i, j = Cn

i, j − F n
x,i+1/2, j − F n

x,i−1/2, j

�x
− Cn

i, j
ui+1/2, j − ui−1/2, j

�x
�t, (12)

Cn+1
i, j = C∗

i, j − F ∗
y,i, j+1/2 − F ∗

y,i, j−1/2

�y
− Cn

i, j
vi, j+1/2 − vi, j−1/2

�y
�t, (13)

where Fx,i+1/2, j and F y,i, j+1/2 are

Fx,i+1/2, j = − 1

�y

yi, j+1/2∫
yi, j−1/2

xi+1/2, j−ui+1/2, j�t∫
xi+1/2, j

χis, j(x, y)dxdy, (14)

F y,i, j+1/2 = − 1

�x

yi, j+1/2−vi, j+1/2�t∫
yi, j+1/2

xi+1/2, j∫
xi−1/2, j

χi, js(x, y)dxdy. (15)

In the above equations, Fx,i+1/2, j and F y,i, j+1/2 denote the advection fluxes in x and y directions, respectively. The 
subscripts is and js are defined as

is =
{

i; if ui+1/2, j ≥ 0,

i + 1; if ui+1/2, j < 0,
(16)

and

js =
{

j; if vi, j+1/2 ≥ 0,

j + 1; if vi, j+1/2 < 0.
(17)

The tangent of hyperbola for interface capturing (THINC) [30] scheme with the weighed linear interface calculation 
(WLIC) [31] introduced in Section 3 is used to calculate the VOF flux terms Fx,i+1/2, j and F y,i, j+1/2.

2.1.3. LS-assisted VOF coupling solution algorithm
While volume conservation can be retained extremely well in VOF method, it has difficulty of getting an accurately 

calculated geometric quantities on complex interface [48] (see Appendix AA). In LS method, the distance function φ is 
continuous and the geometry of the interface can be easily described by φ. However, application of LS method can not 
guarantee volume conservation. To achieve good volume conservation and to capture interface accurately motivate us to 
combine the LS and VOF methods. In the proposed method, our coupling strategy takes the advantage of the interface 
smoothness of the level set method and the excellent volume conservation attribute of the VOF method.

In the proposed method, level set function φ and volume fraction C are advected by solving the respective govern-
ing equations from tn to tn+1. To ensure the predicted interfaces from both φ and C are sufficiently close to each other, 
reconstruction of interface is needed after the advections of φ and C .

In the reconstruction procedure, an intermediate function η = 2Cn+1 − 1 is introduced. The iso-line η = 0 denotes the 
position of the interface, which is identical to the interface described by Cn+1 = 1/2 (or η = 0). Next, to make η to be a 
distance function at the interface, the following equation is solved iteratively until η reaches its steady-state solution at the 
interface.

∂η

∂τ̂
+ S̄(η0)(|∇η| − 1) = 0. (18)

Another intermediate level set function φn+1,∗ , constructed from φn+1 and η, is introduced to ensure that φn+1,∗ and 
Cn+1 have almost the same position of interface, that is,

φn+1,∗ =
{

η, if |φn+1| ≤ ε,

φn+1, if |φn+1| > ε.
(19)

To avoid the discontinuity at |φn+1,∗| = ε, the following equation is solved iteratively to steady state,

∂φn+1,∗

∂τ̄
+ S̄(φ

n+1,∗
0 )(|∇φn+1,∗| − 1) = λδ(φn+1,∗)|∇φn+1,∗|. (20)

The parameter λ shown in the above equation is given in Eq. (5). It should be pointed out that although discontinuities 
occur in the region where δ(φn+1,∗) = 0, it is still necessary to solve Eq. (20) with a non-zero value of λ to retain good 
volume conservation ( ∂

∫
� H(φn+1,∗) d�

∂τ̄ = 0) during the iteration [36].
After solving Eq. (20) to steady state, φn+1,∗ is the continuous distance function with the same interface as Cn+1 . The 

above procedure describes the way of reconstructing of the level set function from volume fraction, including solving the 
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initialization, Eq. (18), and the reinitialization, Eq. (20). Note that reconstruction procedure is not necessarily applied only 
in each step. Rather, it is recommended to apply one reconstruction procedure only after every ten-step calculation. One 
can refer to Appendix B to see the importance of introduction of η function and to Appendix C for the determination of a 
proper frequency of performing reconstruction.

In contrast to the previously developed method [23–27], the reconstructed interface in our proposed method has ad-
vantages in its implementation, which can be easily adopted to the classical level set solver. Also, three-dimensional solver 
can be extended directly from the two-dimensional cases for our proposed method. Without performing any if-else logic in 
this solver, the proposed method has also a great potential to be applied in parallel computing for the better computational 
efficiency.

2.2. Integration of Navier-Stokes equations with level set function and volume fraction

Fluid behaviors on both sides of the interface should be computed when adopting the proposed method to predict the 
time-evolving of interface. In the simulation of two-phase flow of air and water with the proposed method, the classical 
three-dimensional Navier-Stokes equation is modified to include variable density, viscosity and surface force terms. The 
resulting set of Navier-Stokes equation, subject to volume conservation equation (21), is written as follows:

∇ · u = 0, (21)

and

ut + (
u · ∇)

u = − ∇p

ρ(C)
+ ∇ · (2μ(C)D)

ρ(C)
− σκ(φ)∇φδ(φ)

ρ(C)
+ F, (22)

where u = (u, v, w) is the fluid velocity, p the pressure field, φ the level set function, D = 1
2 ((∇u) + (∇u)T ) the strain 

tensor, and F = gêg the gravitational force (in the direction êg ). ρ and μ denote the density and viscosity, respectively. Note 
that κ(φ) = ∇ · n = ∇ · ( ∇φ

|∇φ| ) denotes the curvature of the interface of interest, and σ is the surface tension coefficient.
Non-dimensional analysis is a widely-used technique in fluid mechanics. In this study, the following four characteristic 

scales are adopted: Lc , Uc , Pc = ρL U 2
c , Tc = Lc/Uc , where Lc is the characteristic length, Uc the characteristic velocity, Pc

the characteristic pressure and Tc the characteristic time. By virtue of the above chosen characteristic scales to normalize 
the variables shown in the volume continuity equation and momentum continuity equation, one can get the following 
non-dimensionalized variables:

x = x∗Lc, y = y∗Lc, z = z∗Lc, t = t∗Tc = t∗(Lc/Uc), ρ = ρ∗ρL,

u = u∗Uc, v = v∗Uc, w = w∗Uc, p = p∗ Pc = p∗(ρL U 2
c ), μ = μ∗ρL . (23)

Eq. (21) and Eq. (22) can then be rewritten to the following dimensionless equations:

∇ · u = 0, (24)

∂u

∂t
+ (

u · ∇)
u = − 1

ρ(C)
∇p + 1

Re

∇ · (2μ(C)D)

ρ(C)
+ 1

F r2 êg − 1

W e

κ(φ)δ(φ)∇φ

ρ(C)
. (25)

Note that all the superscripts * shown above have been omitted for convenience. Dimensionless density ρ∗ and viscosity 
μ∗ are given in the following forms, respectively,

ρ∗(C) = C + (
ρG

ρL
)(1 − C),

μ∗(C) = C + (
μG

μL
)(1 − C), (26)

where C is the volume fraction function, or, the color function. The subscripts G and L in Eq. (26) represent the gas phase 
and liquid phase, respectively. Three dimensionless parameters are known as the Reynolds number Re for representing the 
ratio of the magnitudes of the inertial force to viscous force, Weber number W e for representing the ratio of the magnitudes 
of the inertial force to surface tension force, and Froude number F r for representing the ratio of the magnitudes of the 
inertial force to gravity. The three flow parameters are expressed as below:

Re = ρL Lc Uc

μL
, W e = ρL Lc U 2

c

σ
, F r = Uc√

gLc
. (27)
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3. Numerical scheme

3.1. Level set solution solver

In the present calculation, the convection term in level set advection and re-initialization equations are discretized using 
the proposed OCRWENO4 and HJ-WENO [38] schemes, respectively. The third-order total variation diminishing Runge-Kutta 
(TVD-RK3) scheme is used for time advancement [39].

3.1.1. Approximation of spatial derivatives in level set equation
To get an accurately predicted interface, a numerical scheme of higher accuracy order with less dispersion error in 

smooth regions shall be chosen. We are also aimed to avoid oscillatory solutions near discontinuities. For achieving the 
above two goals simultaneously, the optimized compact reconstruction weighted essentially non-oscillatory (OCRWENO4) 
scheme [41,42] for the convective flux term in the level set equation is developed. In two-dimensional space, the convective 
flux term in Eq. (3) can be discretized as below

U · ∇φ = ∇ · (Uφ
) = Fi+1/2, j − Fi−1/2, j

�x
+ Gi+1/2, j − Gi−1/2, j

�y
. (28)

In the above equation, Fi+1/2, j and Gi, j+1/2 are the numerical fluxes reconstructed at the cell face along x, y direction, 
respectively.

Reconstruction of convective fluxes lies in the use of Lax-Friedrichs splitting method such that the term Fi+1/2, j can be 
written as follows

Fi+1/2, j = 1

2

(
F̆ L

i+1/2, j + F̂ R
i+1/2, j

)
= 1

2

(
(u+φ)L

i+1/2, j + (u−φ)R
i+1/2, j

)
. (29)

The expression of Gi, j+1/2 can be derived similarly as well. Note that u+ = u +|u| and u− = u −|u|, and the superscripts 
L, R denote the reconstruction of OCRWENO4 scheme from the left- and right-biased interpolations, respectively. The value 
of F̆ L

i+1/2, j = (u+φ)L
i+1/2, j can be obtained by solving the following tridiagonal matrix equation [41]

[
2ωL

1 + ωL
2

3

]
F̆ L

i− 1
2

+
[
ωL

1 + 2(ωL
2 + ωL

3)

3

]
F̆ L

i+ 1
2

+ ωL
3

3
F̆ L

i+ 3
2

= ωL
1

6
F̆ i−1 +

[
5(ωL

1 + ωL
2) + ωL

3

6

]
F̆ i +

[
ωL

2 + 5ωL
3

6

]
F̆ i+1.

(30)

In the above equation, ωL
k , k = 1, 2, 3, are the weighting factors associated with the smoothness indicators β L

k , k = 1, 2, 3. 
They are used to detect the degree of discontinuity in grid stencil to properly interpolate the numerical flux at cell face. 
Expressions of ωL

k and β L
k are given as follows

ωL
k = αL

k

�k αL
k

, αL
k = ck

(
1 + |β L

3 − β L
1 |

ε + β L
i

)
,

β L
1 = 13

12
( F̆ i−2 − 2 F̆ i−1 + F̆ i)

2 + 1

4
( F̆ i−2 − 4 F̆ i−1 + 3 F̆ i)

2
,

β L
2 = 13

12
( F̆ i−1 − 2 F̆ i + F̆ i+1)

2 + 1

4
( F̆ i−1 − F̆ i+1)

2
,

β L
3 = 13

12
( F̆ i − 2 F̆ i+1 + F̆ i+2)

2 + 1

4
(3 F̆ i − 4 F̆ i+1 + F̆ i+2)

2
.

(31)

The corresponding tridiagonal matrix equation for F̂ R
i+1/2, j = (u−φ)R

i+1/2, j is given below

[
2ωR

1 + ωR
2

3

]
F̂ R

i+ 3
2

+
[
ωR

1 + 2(ωR
2 + ωR

3 )

3

]
F̂ R

i+ 1
2

+ ωR
3

3
F̂ R

i− 1
2

= ωR
1 F̂ i+2 +

[
5(ωR

1 + ωR
2 ) + ωR

3
]

F̂ i+1 +
[
ωR

2 + 5ωR
3

]
F̂ i .

(32)
6 6 6
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The weighting factors associated with the smoothness indicators are given as

ωR
k = αR

k

�k αR
k

, αR
k = ck

(
1 + |βR

3 − βR
1 |

ε + βR
k

)
,

βR
1 = 13

12
( F̂ i+1 − 2 F̂ i+2 + F̂ i+3)

2 + 1

4
(3 F̂ i+1 − 4 F̂ i+2 + F̂ i+3)

2
,

βR
2 = 13

12
( F̂ i − 2 F̂ i+1 + F̂ i+2)

2 + 1

4
( F̂ i − F̂ i+2)

2
,

βR
3 = 13

12
( F̂ i−1 − 2 F̂ i + F̂ i+1)

2 + 1

4
( F̂ i−1 − 4 F̂ i + 3 F̂ i+1)

2
.

(33)

The magnitude of the parameter ε shown in (31) and (33) is set at 10−8 to avoid zero-valued denominator. The optimized 
coefficients shown in (31) and (33) are given by c1 = 0.20891413, c2 = 0.49999999 and c3 = 0.29108586 which altogether 
can yield a fourth order accurate approximation with low dispersion error in the approximation of spatial derivatives. One 
can refer to Appendix D for the detailed derivation of the optimized coefficients.

3.1.2. Approximation of spatial derivatives in initialization equation
The semi-discrete form of the WENO scheme for the initialization equation can be expressed as [38]

dφ

dt
+ HG

(
φ+

x , φ−
x , φ+

y , φ−
y

) = 0, (34)

where φ−
x,i (left-biased stencil from i − 3 to i + 2) and φ+

x,i (right-biased stencil from i − 2 to i + 3) shown in Eq. (34) are 
known as the WENO approximations of ∂φ

∂x (xi, y j), and they are given by

φ−
x,i = 1

12

(
−�+φi−2

�x
+ 7

�+φi−1

�x
+ 7

�+φi

�x
− �+φi+1

�x

)
− φW E N O

(
�−�+φi−2

�x
,
�−�+φi−1

�x
,
�−�+φi

�x
,
�−�+φi+1

�x

)
, (35)

and

φ+
x,i = 1

12

(
−�+φi−2

�x
+ 7

�+φi−1

�x
+ 7

�+φi

�x
− �+φi+1

�x

)
− φW E N O

(
�−�+φi+2

�x
,
�−�+φi+1

�x
,
�−�+φi

�x
,
�−�+φi−1

�x

)
. (36)

In Eqs. (35) and (36), the notations �+φk = φk+1 −φk, �−φk = φk −φk−1(k = i − 3 ∼ i + 2) are introduced. The nonlinear 
function φW E N O can be expressed in terms of a, b, c, d as

φW E N O (a,b, c,d) = 1

3
ω0(a − 2b + c) + 1

6

(
ω2 − 1

2

)
(b − 2c + d). (37)

In the above equation, the weighting factors ω0 and ω2 are as follows

ω0 = α0

α0 + α1 + α2
,ω2 = α2

α0 + α1 + α2
(38)

with

α0 = 1

(ε + I S0)2
,α1 = 6

(ε + I S1)2
,α2 = 3

(ε + I S2)2
, (39)

and

I S0 = 13(a − b)2 + 3(a − 3b)2,

I S1 = 13(b − c)2 + 3(b + c)2, (40)

I S2 = 13(c − d)2 + 3(3c − d)2.

It is noted that ε is chosen as 10−8 to avoid division by zero according to the suggestion of Jiang and Peng [38]. We use 
the following Godunov flux HG in Eq. (34) [39]
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HG(ā, b̄, c̄, d̄) =

⎧⎪⎪⎨⎪⎪⎩
S̄(φ0)

(√
[max(ā−, b̄+)]2 + [max(c̄−, d̄+)]2 − 1

)
; if φ0 ≥ 0,

S̄(φ0)

(√
[max(ā+, b̄−)]2 + [max(c̄+, d̄−)]2 − 1

)
;otherwise,

(41)

where the notations #+ = max(#, 0) and #− = min(#, 0) have been adopted.

3.2. Volume of fluid (VOF) solver

3.2.1. Weighed linear interface calculation (WLIC)
Following the idea of Simple Linear Interface Calculation (SLIC) method given in Ref. [15], Yokoi [31] defined an interface 

that combines the horizontal interface (interface along x-coordinate) and the vertical interface (interface along y-coordinate) 
under different weights. In two-dimensional space, the characteristic function χi, j(x, y) at each node (i, j) can be expressed 
as

χi, j(x, y) = ωx,i, j(ni, j)χx,i, j(x, y) + ωy,i, j(ni, j)χy,i, j(x, y). (42)

In the above equation, χx,i, j(x, y) and χy,i, j(x, y) are the characteristic functions of the vertical interface and horizontal 
interface. The weighting factors ωx,i, j and ωy,i, j can be obtained by calculating nx,i, j and ny,i, j , which are the x−component 
and y−component of the surface normal ni,j , respectively.

ωx,i, j = |nx,i, j|
|nx,i, j| + |ny,i, j| ,

ωy,i, j = |ny,i, j|
|nx,i, j| + |ny,i, j| .

(43)

How to efficiently calculate the values of nx,i, j and ny,i, j is a key issue. In [31], the surface normal near the interface is 
calculated by using the volume fraction function C :

nx,i, j = 1

4
(nx,i+1/2, j+1/2 + nx,i−1/2, j+1/2 + nx,i+1/2, j−1/2 + nx,i−1/2, j−1/2),

ny,i, j = 1

4
(ny,i+1/2, j+1/2 + ny,i−1/2, j+1/2 + ny,i+1/2, j−1/2 + ny,i−1/2, j−1/2),

(44)

where

nx,i+1/2, j+1/2 = 1

2�x
(Ci+1, j − Ci, j + Ci+1, j+1 − Ci, j+1),

ny,i+1/2, j+1/2 = 1

2�y
(Ci, j+1 − Ci, j + Ci+1, j+1 − Ci+1, j).

(45)

It has been pointed out that the above reconstruction of the interface is more accurate than the classical method in 
[31]. However, the VOF function whose spatial derivatives are not continuous near the interface may lead to an inaccurately 
predicted geometric quantities. To overcome this drawback in VOF method, the smoothed signed distance function will be 
employed to calculate surface normal, which can be expressed as follows

ni, j = (∇φ)i, j

|∇φ|i, j
. (46)

The term ∇φ is the gradient of the smoothed distance function, which is approximated by the second-order centered 
difference scheme

(∇φ)i, j = φi+1, j − φi−1, j

2�x
êx + φi, j+1 − φi, j−1

2�y
êy . (47)

3.2.2. Tangent of hyperbola for interface capturing (THINC) scheme
A tangent of hyperbola for interface capturing (THINC) scheme has been proposed in [30]. In the one-dimensional THINC 

scheme, the piecewise hyperbolic tangent function given below is used to approximate the characteristic function

χx,i = 1

2

[
1 + α tanh

(
β
( x − xi−1/2

�x
− x̃i

))]
, (48)

where α = 1 for Ci−1 < Ci+1 and α = −1 for Ci−1 > Ci+1. Note that the parameter β (= 3.5) is introduced to control the 
slope and the span of jump. The center x̃i in Eq. (48) is determined from Ci by calculating



H.L. Wen et al. / Journal of Computational Physics 406 (2020) 109188 9
Ci = 1

�xi

xi+1/2∫
xi−1/2

χx,i(x)dx

= 1

�x

xi+1/2∫
xi−1/2

1

2

[
1 + α tanh

(
β
( x − xi−1/2

�x
− x̃i

))]
dx. (49)

An improved THINC scheme, called THINC of Slope Weighting (THINC/SW) with an extreme simple expression yet ac-
commodating considerable accuracy, has been further discussed in [32].

3.2.3. THINC/WLIC scheme
The numerical flux Fx,i+1/2, j shown in Eq. (12) with an appropriately prescribed characteristic function χi, j(x, y) shown 

in Eq. (42) can be calculated as

Fx,i+1/2, j = − 1

�y

yi, j+1/2∫
yi, j−1/2

xi+1/2, j−ui+1/2, j�t∫
xi+1/2, j

χis, j(x, y)dxdy,

= − 1

�y

yi, j+1/2∫
yi, j−1/2

xi+1/2, j−ui+1/2, j�t∫
xi+1/2, j

ωx,is, jχx,is, jdxdy

− 1

�y

yi, j+1/2∫
yi, j−1/2

xi+1/2, j−ui+1/2, j�t∫
xi+1/2, j

ωy,is, jχy,is, jdxdy,

≡ Fx,x,i+1/2, j(ωx,is, j,χx,is, j) + Fx,y,i+1/2, j(ωy,is, j,χy,is, j). (50)

Calculation of the numerical flux Fx,i+1/2, j by THINC/WLIC scheme is given below for convenience:
1. Calculate the location of jump in the cell x̃is by

x̃is = 1

2β
ln(

a2
3 − a1a3

a1a3 − 1
), (51)

where a1 = exp(
β
α (2Cis − 1)) and a3 ≡ exp(β).

2. Calculate the numerical flux Fx,x,i+1/2, j by using the piecewise modified hyperbolic tangent function in Eq. (48)

Fx,x,i+1/2, j = − 1

�y

yi, j+1/2∫
yi, j−1/2

xi+1/2, j−ui+1/2, j�t∫
xi+1/2, j

ωx,is, jχx,is, jdxdy,

= − 1

�y

yi, j+1/2∫
yi, j−1/2

dy

xi+1/2−ui+1/2�t∫
xi+1/2

ωx,is

2

[
1 + α tanh

(
β
( x − xis−1/2

�x
− x̃i

))]
dx,

= −ωx,is

2

[
x + α�x

β
ln

(
cosh

(
β(

x − xis−1/2

�x
) − x̃is

))]xi+1/2, j−ui+1/2, j�t

xi+1/2, j

,

= ωx,is, j

2

[
ui+1/2, j�t − α�x

β
ln

(
a4

a5

)]
,

(52)

where a4 = cosh[β(γ −ui+1/2, j�t/�x − x̃is)], a5 = cosh[β(γ − x̃is)]. The value of γ is 1 if ui+1/2, j > 0, and γ = 0 otherwise.
3. Calculate the numerical flux Fx,y,i+1/2 using the following equation

Fx,y,i+1/2, j = ωy,is, jCis, jux,i+1/2, j�t. (53)

4. Generalize the numerical flux Fx,i+1/2, j by adding Fx,x,i+1/2, j and Fx,y,i+1/2, j

Fx,i+1/2, j = Fx,x,i+1/2, j + Fx,y,i+1/2, j. (54)

One can refer to [31] for the numerical flux term F y,i, j+1/2 using the THINC/WLIC scheme.
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3.3. Navier-Stokes equation solver

3.3.1. Momentum equation solver
Advection terms are discretized using the second-order upwind scheme in this paper. Take the term u ∂u

∂x in two-
dimensional space as an example, we have

u
∂u

∂x
= 1

4�x

(
u+(3ui, j − 4ui−1, j + ui−2, j) + u−(−ui+2, j + 4ui+1, j − 3ui, j)

)
, (55)

where u+ = ui, j +|ui, j | and u− = ui, j −|ui, j |. Other advection terms can be approximated in the same way. The second-order 
center difference scheme is used for the approximation of the diffusion terms.

3.3.2. Projection method
Projection method can be implemented by splitting Eq. (25) into two steps. In the first step, An given below is defined

An ≡ (
un · ∇)

un − 1

Re

∇ · (2μnDn)

ρn
− 1

F r2
êg + 1

W e

κ(φn)δ(φn)∇φn

ρn
. (56)

Intermediate velocity u∗ can be solved directly by using the second-order Adams-Bashforth scheme,

u∗ − u

�t
+ (3

2
An − 1

2
An−1) = 0. (57)

The second step is for the calculation of un+1 using the following equation,

un+1 − u∗

�t
= − 1

ρn+1 ∇pn+1. (58)

To obtain pn+1, the divergence operator is performed on both sides of Eq. (58) and applying ∇ ·un+1 = 0, thereby leading 
to the following Poisson equation:

∇ · ( 1

ρn+1 ∇pn+1) = ∇ · u∗

�t
. (59)

If pn+1 can be obtained through Eq. (59), the computed velocity field satisfies the continuity equation:

∇ · un+1 = 0. (60)

It is worthy to address here that after the calculation of the pressure value, the continuity constraint will be satisfied 
automatically. Approximation of Eq. (59) leads to the following difference equation:

aPi−1, j + bPi+1, j + c Pi, j + dPi, j−1 + e Pi, j+1 = (
∇ · u∗

�t
)i, j, (61)

where a = 1
ρn+1

i−1/2, j�x2 , b = 1
ρn+1

i+1/2, j�x2 , d = 1
ρn+1

i, j−1/2�y2 , e = 1
ρn+1

i, j+1/2�y2 , and c = −(a + b + d + e). We then apply the point-

successive over-relaxation method given below to iterate Eq. (61):

Pm+1
i, j = ωPm+1

i, j + (1 − ω)Pm
i, j, (62)

where the relaxation factor ω is set to 1.5 in this paper. In Eq. (62), m is the number of iterations. Point-wise absolute 
convergence tolerance is chosen as:

|Pm+1
i, j − Pm

i, j| ≤ 1 × 10−5. (63)

Substitute the computed pressure value into Eq. (58), the velocity solution for un+1 can then be obtained. The advantage 
of this method is that the continuity equation is satisfied automatically, and the pressure value can be calculated iteratively. 
The numerical accuracy order is O (�t2, �x2). In summary, a detailed flow chart of the proposed LS-assisted VOF advection 
method together with the momentum solver is given in Fig. 1.
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Fig. 1. Flow chart of the proposed solution algorithm, k ∈N .

4. Verification and validation studies

To justify the ability of applying the proposed to capture interface and to conserve volume, three different error norms 
εV , ̄εV and εI are introduced as follows:

εM = |V 0 − V T |
V 0

,

ε̄M = 1

T

T∫
0

|V (t) − V 0|
V 0

dt,

εI =
∫
�

|H T
i, j − H T (xi, y j)| d�∫

d�
.

(64)
�
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The computational domain � is separated by the interface �, with �1 and �2 inside and outside of the interface, 
respectively. V 0 denotes the total volume of �1 in the beginning and V T denotes the total volume at the end of the 
computation, respectively. V (t) is the volume at a time t with T > t > 0. H T

i, j is the Heaviside function of the solution at 
(xi, y j) at t = T , and H T (xi, y j) is the Heaviside function of the exact solution. It is noted that the total volume obtained by 
different methods can be expressed below

total volume by pure level set method =
∫
�

H(φ) d�,

total volume by the proposed method =
∫
�

C d�.

(65)

Calculation of the three error norms defined in Eq. (64) for pure level set method and our proposed method is associated 
with the definition of volume in Eq. (65). εM and εI can directly reveal the ability of the employed numerical method to 
capture the interface. εM accounts for the loss of volume and εI exhibits the accuracy of the predicted interface position. 
ε̄M denotes the averaged loss of volume for the entire computation. For a problem undergoing a sharp topology change, 
ε̄M can provide more information than the information about the amount of decreased volume, like εM . These three errors 
will be calculated and discussed in the four chosen benchmark problems, including two-dimensional and three-dimensional 
problems.

To make a comparison on the computational efficiency of the two methods, the factor, defined as �+ ≡ �present−�ls
�ls

, 
has been introduced, where �ls is the CPU time consumed using the pure level set method and �present is the CPU time 
consumed by the proposed method. The time step �t and the mesh size h are set as �t = 0.1h in each problem described 
in Section 4.1.

4.1. Verification studies

4.1.1. Two-dimensional vortex deforming problem
The problem with a circle evolving with a prescribed velocity field can be traced back to the study conducted by Rider 

et al. [18] and Rudman [19]. In this problem, a circle with the radius r = 0.15 is initially located at (x, y) = (0.5, 0.75) in a 
square box � : [0, 1] × [0, 1]. The prescribed velocity is given below:

u(x, y, t) = sin2(πx) sin(2π y) cos(πt/T ), (66)

v(x, y, t) = − sin(2πx) sin2(π y) cos(πt/T ). (67)

The circle starts deforming its shape, and will return back to its initial shape at t = T . During the shape deformation, a 
very thin tail will be formed. The longer the period is, the thinner the filament will be. This problem has been considered 
as a standard assessment test case for different numerical methods.

This problem has been simulated at three different time periods, T = 4, 8, 16, and the corresponding errors εM , ̄εM and 
εI obtained at different grid numbers are given in Table 1–3. According to these tables, the proposed method demonstrates 
a very good ability of conserving the volume. The values of εM and ε̄M are both smaller than those obtained from the pure 
level set method. The averaged volume loss using the proposed method at T = 16 in the grid number 322 is 1.2489 × 10−7

while 6.9462 × 10−1 using the pure level set method. This indicates that volume can be preserved extremely well even in 
such a coarse mesh using our proposed method. The solution is also compared with the exact solution by calculating εI at 
t = T . The solution obtained by the proposed method has a very good agreement with the exact solution. The snapshots of 
the predicted solutions at different periods of time with two different grid numbers are given in Figs. 2–4. From these figures 
good agreement with the exact solution has been confirmed for the solution obtained at t = T using the proposed method. 
It is noticed that the error norms in fine grids seem too small to be properly calculated in double-precision framework. 
According to the tabulated results in Table 4, it is shown that the proposed method consumed about 35-40 percentages of 
CPU time more than the pure level set method.

4.1.2. Rotating (Zalesak’s) disk problem
The Zalesak’s disk problem has been investigated to verify the scheme ability of capturing interface. A slotted circle 

of radius 0.15 with the slot length of 0.25 and the width of 0.05 is initially located at (x, y) = (0.5, 0.75) in a square 
� : [0, 1] × [0, 1]. The circle is rotated about the point (0.5, 0.5) at a constant velocity given by:

u(x, y) = 2π

T
(0.5 − y),

v(x, y) = 2π
(x − 0.5).

(68)
T
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Table 1
Comparison of the computed error norms defined in Eq. (64) for the two-dimensional vortex deforming problem at different grid numbers and at period 
T = 4.

Error norms Grid number

322 642 1282 2562 5122

Proposed method
εM 7.7969 × 10−9 1.9638 × 10−16 5.8906 × 10−16 2.7487 × 10−15 3.0431 × 10−14

ε̄M 2.9735 × 10−9 2.5409 × 10−16 8.7345 × 10−16 4.0627 × 10−15 1.9727 × 10−14

εI 6.4324 × 10−3 1.5848 × 10−3 7.4680 × 10−4 2.9672 × 10−4 1.7412 × 10−4

Pure level set method
εM 2.5157 × 10−1 6.7310 × 10−2 1.1492 × 10−2 2.9732 × 10−3 8.0280 × 10−4

ε̄M 1.6856 × 10−1 4.2187 × 10−2 6.7685 × 10−3 1.6316 × 10−3 3.8082 × 10−4

εI 2.5201 × 10−2 6.7419 × 10−3 1.4351 × 10−3 4.4390 × 10−4 2.6008 × 10−4

Table 2
Comparison of the computed error norms defined in Eq. (64) for the two-dimensional vortex deforming problem at different grid numbers and at period 
T = 8.

Error norms Grid number

322 642 1282 2562 5122

Proposed method
εM 2.2130 × 10−8 1.2961 × 10−14 1.1781 × 10−15 2.1597 × 10−15 2.4149 × 10−14

ε̄M 1.5484 × 10−8 2.5541 × 10−15 5.4199 × 10−16 3.7515 × 10−15 3.0528 × 10−14

εI 3.9169 × 10−2 1.1063 × 10−2 1.9889 × 10−3 5.2282 × 10−4 2.2537 × 10−4

Pure level set method
εM 6.5916 × 10−1 7.2638 × 10−1 1.8404 × 10−1 3.5970 × 10−2 8.9098 × 10−3

ε̄M 4.5934 × 10−1 4.7033 × 10−1 1.1506 × 10−1 2.1393 × 10−2 4.7859 × 10−3

εI 9.8008 × 10−2 5.2966 × 10−2 1.5121 × 10−2 3.4015 × 10−3 1.0145 × 10−3

Table 3
Comparison of the computed error norms defined in Eq. (64) for the two-dimensional vortex deforming problem at different grid numbers and at period 
T = 16.

Error norms Grid number

322 642 1282 2562 5122

Proposed method
εM 3.7134 × 10−7 1.5318 × 10−13 1.9635 × 10−16 2.5524 × 10−15 2.2578 × 10−14

ε̄M 1.2489 × 10−7 6.1319 × 10−14 3.8988 × 10−16 2.0751 × 10−15 1.6975 × 10−14

εI 3.0783 × 10−2 4.9155 × 10−2 2.0170 × 10−2 3.6789 × 10−3 7.3369 × 10−4

Pure level set method
εM 1.1310 × 100 2.2455 × 100 1.3396 × 100 2.6457 × 10−1 4.1024 × 10−2

ε̄M 6.9462 × 10−1 1.5700 × 100 9.3730 × 10−1 2.0167 × 10−1 3.5942 × 10−2

εI 1.6421 × 10−1 1.6741 × 10−1 9.4898 × 10−2 2.6491 × 10−2 6.8054 × 10−3

Table 4
Comparison of the CPU time (seconds) for the two-dimensional vortex deforming problem at different grid numbers and at period T = 16.

Grid number

322 642 1282 2562 5122

Proposed method 26.40 57.07 227.11 1061.58 8547.37
Pure level set method 20.00 38.16 163.85 790.82 6225.49

�+ 32.00% 49.55% 38.61% 34.23% 37.29%

In the above equation, T is the period for a circle to proceed one rotation, which is set to 2π in our study. Error 
estimations of the proposed method and the pure level set method have been performed as shown in Table 5. Solutions 
computed under different grid numbers are compared with the exact solution after one and two revolutions, or at t = T
and t = 2T . As expected, the proposed method conserves the volume extremely well in comparison with the degree of 
volume conservation using the pure level set method. According to Table 5, interface predicted by the proposed method is 
better than the pure level set method carried out in coarser grids (322, 642 and 1282). In finer grids with the resolutions 
of 256 × 256 and 512 × 512, for the predicted values of εI we found that the pure level set method performs slightly 
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Fig. 2. Comparison of the predicted interfaces for the two-dimensional vortex deforming problem with the period of T = 4 at different grid numbers. (Red 
solid denotes the solution obtained by the proposed method, green dash denotes the solution obtained by the pure level set method, and black dash-dot 
denotes the exact solution at t = T .) (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

better than the proposed method. In general, we can conclude that the ability of retaining volume conservation using our 
proposed method is much better than that using the pure level set method. However, an additional CPU time is need in our 
proposed method as it shown in Table 6. Our proposed method costs about 40 percentages of the additional CPU time than 
the classical level set method. Solution snapshots are given in Fig. 5.

4.1.3. Three-dimensional vortex deforming problem
In order to show the scheme ability of retaining volume conservation in three dimensional simulation, the single vortex 

deforming problem will be simulated using the proposed method and the pure level set method. This problem was first 
introduced by LeVeque [45]. A sphere of radius r = 0.15 is located at (x, y, z) = (0.35, 0.35, 0.35) in a cubic domain � :
[0, 1] × [0, 1] × [0, 1]. Velocity components considered in this problem at any time 0 ≤ t ≤ T are given by
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Fig. 3. Comparison of the predicted interfaces for the two-dimensional vortex deforming problem with the period of T = 8 at different grid numbers. (Red 
solid denotes the solution obtained by the proposed method, green dash denotes the solution obtained by the pure level set method, and black dash-dot 
denotes the exact solution at t = T .)

u(x, y, z, t) = 2 sin2(πx) sin(2π y) sin(2π z) cos(πt/T ),

v(x, y, z, t) = − sin(2πx) sin2(π y) sin(2π z) cos(πt/T ),

w(x, y, z, t) = − sin(2πx) sin(2π y) sin2(π z) cos(πt/T ).

(69)

Note that T is the period of the rotating shear vortex, and the sphere should reverse back to its initial shape at t = T , 
which is set at 3.0 in this study. Eq. (69) allows the sphere to start to deform, and, then, to evolve to form two vortices 
that scoop out the opposite side of the sphere. A thin film can be seen during the evolution as shown in Figs. 6, 7. The 
error norms are also calculated in various grids as shown in Table 7. According to these tabulated results, the conservation 
of volume property is well retained using our proposed method in three grid numbers 323, 643, 1283, without having to 
sacrifice computational accuracy, in the prediction of interface location. Moreover, only 30 percentage of the additional CPU 
time is needed for our proposed method, as shown in Table 8.
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Fig. 4. Comparison of the predicted interfaces for the two-dimensional vortex deforming problem with the period of T = 16 at different grid numbers. (Red 
solid denotes the solution obtained by the proposed method, green dash denotes the solution obtained by the pure level set method, and black dash-dot 
denotes the exact solution at t = T .)

4.1.4. Rotating (Zalesak’s) sphere problem
Analogous to the two-dimensional Zalesak’s disk problem, a slotted sphere is also chosen in this study to examine 

the degree of volume conservation and the computational accuracy in capturing the interface using the proposed method 
in three spatial dimensions. A slotted sphere of radius 0.15 with slot length 0.25 and width 0.05 is initially located at 
(x, y, z) = (0.5, 0.75, 0.5) in a cubic domain � : [0, 1] × [0, 1] × [0, 1]. This sphere undergoes a rigid body rotation about the 
point (0.5, 0.5, 0.5) in the constant velocity field given by:

u(x, y, z) = 2π

T
(0.5 − y),

v(x, y, z) = 2π

T
(x − 0.5),

w(x, y, z) = 0.

(70)



H.L. Wen et al. / Journal of Computational Physics 406 (2020) 109188 17
Table 5
Comparison of the computed error norms for the rotating disk problem after one and two revolutions at different grid numbers.

Error norms Grid number

322 642 1282 2562 5122

Proposed method
One revolution
εM 1.9966 × 10−6 6.9467 × 10−13 8.0003 × 10−14 1.5439 × 10−14 3.1289 × 10−13

ε̄M 9.3930 × 10−7 3.5887 × 10−13 8.6364 × 10−14 1.7407 × 10−14 2.3138 × 10−13

εI 8.5244 × 10−3 2.3729 × 10−3 1.0900 × 10−3 4.7988 × 10−4 2.6941 × 10−4

Two revolutions
εM 6.5687 × 10−6 1.1161 × 10−12 2.6175 × 10−13 4.9175 × 10−14 3.5415 × 10−13

ε̄M 3.2921 × 10−6 8.0847 × 10−13 2.1386 × 10−13 6.3525 × 10−14 3.8095 × 10−13

εI 1.0073 × 10−2 3.3466 × 10−3 1.4420 × 10−3 5.8798 × 10−4 3.1982 × 10−4

Pure level set method
One revolution
εM 2.8083 × 10−2 1.2157 × 10−2 1.3399 × 10−2 1.1621 × 10−3 6.9726 × 10−5

ε̄M 2.5896 × 10−2 1.1838 × 10−2 8.4206 × 10−3 5.9694 × 10−4 4.3832 × 10−5

εI 5.2193 × 10−3 6.7121 × 10−3 1.0917 × 10−3 1.9377 × 10−4 5.6305 × 10−5

Two revolutions
εM 1.0767 × 10−2 6.6267 × 10−3 1.4404 × 10−2 3.0966 × 10−3 1.1355 × 10−4

ε̄M 3.6370 × 10−3 1.4920 × 10−2 1.5563 × 10−2 1.6482 × 10−3 9.6142 × 10−5

εI 6.2970 × 10−3 1.2703 × 10−2 1.8785 × 10−3 3.1685 × 10−4 6.2972 × 10−5

Table 6
Comparison of the CPU time (seconds) for the rotating disk problem at different grid numbers after two revolutions.

Grid number

322 642 1282 2562 5122

Proposed method 16.00 40.01 107.53 479.04 3255.67
Pure level set method 10.42 24.75 81.58 345.92 2376.40

�+ 53.55% 61.65% 31.81% 38.48% 37.29%

Table 7
Comparison of the computed error norms defined in Eq. (64) for the three-dimensional vortex deforming problem 
at different grid numbers.

Error norms Grid number

323 643 1283

Proposed method
εM 2.9133 × 10−12 2.3683 × 10−14 3.7475 × 10−13

ε̄M 1.1944 × 10−12 1.2834 × 10−14 1.4903 × 10−13

εI 3.8052 × 10−3 1.7552 × 10−3 4.1459 × 10−4

Pure level set method
εM 7.1916 × 10−2 1.9904 × 10−1 1.4743 × 10−1

ε̄M 1.3558 × 10−1 1.1656 × 10−1 5.2291 × 10−2

εI 9.4198 × 10−3 6.9538 × 10−3 3.0152 × 10−3

Table 8
Comparison of the CPU time (seconds) for the three-dimensional vortex deforming problem at 
different grid numbers.

Grid number

323 643 1283

Proposed method 19.21 213.69 3495.02
Pure level set method 15.07 169.78 2666.94

�+ 27.47% 25.86% 31.05%

The period T of one revolution is set as 2π in this study. The initial condition and the snapshots of the numerical 
solutions after one and two revolutions are shown in Figs. 8, 9, and the errors are tabulated in Table 9. According to Figs. 8, 
9 and Table 9, the solution obtained by the proposed method has a good match with the exact solution. As expected, the 
degree of conserving volume is extremely high using our proposed method. Only a 1.1566 × 10−10% of volume is lost after 
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Fig. 5. Comparison of the predicted interfaces for the rotating disk problem at different grid numbers. (Red solid denotes the solution obtained by the 
proposed method, green dash denotes the solution obtained by the pure level set method, and black dash-dot denotes the exact solution.)

one rotation in the coarse grid 643, while a 3.8093% of the volume loss has been seen for the pure level set method. 
According to Table 10, solutions obtained by using our proposed method consumed about 30 percentages more CPU time 
than the classical level set method.

4.2. Validation study

Flow instability of the Rayleigh-Taylor type involves a complicated topology change in the solution. This instability prob-
lem is associated with the penetration of a heavy fluid into a light fluid in the direction of gravity, which consists damped 
oscillatory motions of interface [46]. The Atwood number is used to characterize the density difference of two fluids, which 
is defined as:

At = ρA − ρB

ρA + ρB
(71)

ρA and ρB are the densities of the heavy and light fluids, respectively. Reynolds number under investigation is 3000 and 
At = 0.5 in this study. Initially, the interface is given by y(x) = 0.1D cos (2πx/D) in a rectangular domain � : [0, D] ×
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Fig. 6. Snapshot of the predicted interfaces for the three-dimensional vortex deforming problem predicted in fine grid 643. From top to down, from left to 
right, t = 0, 0.6, 1.2, 1.8, 2.4, 3.0.

[−2D, 2D], where D is set to 1.0 in this study. Surface tension is ignored in this problem. No-slip condition is applied at 
the top and the bottom, while slip condition is applied at two sides of the cavity.

The predicted interface profiles in the coarse mesh 50 × 200 is plotted in Fig. 10 and the fine mesh 200 × 800 in 
Fig. 11. The contours of H(φ) obtained by the pure level set method and C by the proposed method have been shown. 
The corresponding time step is �t = 0.01�x. In meshes with different number of grid points, the percentages of area 
loss are plotted in Fig. 13. In this figure, the proposed method demonstrates a very good ability to preserve area/volume 
in comparison with the ability of pure level set method. As a result, the predicted interface profile remains to have a 
good symmetry during the evolution as shown in Figs. 10 and 11. In Fig. 12, a good match of our results with those of 
the previous studies [43,44] can be seen at the positions of falling and rising fluid. In Figs. 10-12, our chosen time scale 
tTryg = t

√
At is related to the time scale chosen in [47].
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Fig. 7. Snapshot of the predicted interfaces for the three-dimensional vortex deforming problem predicted in fine grid 1283. From top to down, from left to 
right, t = 0, 0.6, 1.2, 1.8, 2.4, 3.0.

5. Numerical results

5.1. 3D gas bubble bursting at a free surface

Bubble bursting at a water surface occurs often in our daily life. This phenomenon results in a transport or an exchange 
of substances across the interface [52]. One of the important applications is the exchange of various substances between the 
ocean and the atmosphere, including the transports of heat, mass, CO2 and other contaminants. The phenomena of bubble 
bursting occur at the moment that the bubble reaches the interface and the film separating the bubble from the atmosphere 
starts collapsing. The resulting rapture of the film can generate hundreds of tiny droplets, whose diameters can be the scale 
of micrometer-sized. Such a formation of droplets may cause a large fraction of media transfer to occur [53]. The second 
major phenomenon subsequent to the rupture of the film results from surface tension and the formation of buoyancy force 
along the film. By the combined effects of both surface-tension and buoyancy, a narrow vertical jet can be formed and it 



H.L. Wen et al. / Journal of Computational Physics 406 (2020) 109188 21
Fig. 8. Snapshot of the predicted interfaces for the rotating sphere problem predicted in coarse grid 643. From left to right, t = 0, T ,2T .

Fig. 9. Snapshot of the predicted interfaces for the rotating sphere problem predicted in fine grid 1283. From left to right, t = 0, T ,2T .

will eventually break into several droplets (see Fig. 14). Droplet ejection owing to bubble impacting to thin film is also 
attributed to an intricate formation of capillary waves, in addition to the properties of the liquid under consideration in the 
gravity field [60]. Moreover, flow motion and energy dissipation of high speed jets have been studied intensively since it 
has been pointed out in many research reports that high stresses originating from bubble bursting could even kill live cells 
[54,55].

Gas bubble bursting at a free surface has been numerically investigated by Boulton-Stone and Blake [37]. However, their 
simulation did not take the pinch-off liquid jet into account. In this study, Fig. 14 plots the evolution of a liquid jet resulting 
from the submerged gas bubble. A spherical bubble of unit radius is initially located at (x, y, z) = (0, 0, −3.2) in a box 
domain � : [−3, 3] × [−3, 3] × [−6, 10]. The simulation is conducted in 90 × 90 × 240 grids. No-slip condition has been 
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Table 9
Comparison of the computed error norms defined in Eq. (64) for the rotating sphere problem 
after one and two revolutions at different grid numbers.

Error norms Grid number

323 643 1283

Proposed method
One revolution
εM 9.8321 × 10−7 1.1566 × 10−12 2.2773 × 10−11

ε̄M 4.7692 × 10−7 5.0613 × 10−13 8.7285 × 10−13

εI 1.4356 × 10−3 6.0994 × 10−4 2.7426 × 10−4

Two revolutions
εM 1.8873 × 10−6 1.4834 × 10−12 1.2092 × 10−7

ε̄M 1.2376 × 10−6 1.1606 × 10−13 1.5456 × 10−8

εI 1.7437 × 10−3 8.6733 × 10−4 3.5663 × 10−4

Pure level set method
One revolution
εM 3.5641 × 10−2 3.8093 × 10−2 7.6316 × 10−3

ε̄M 2.3865 × 10−2 2.1679 × 10−2 4.7209 × 10−3

εI 2.1107 × 10−3 1.2685 × 10−3 2.0662 × 10−4

Two revolutions
εM 6.7406 × 10−2 4.4715 × 10−2 8.1937 × 10−3

ε̄M 4.9694 × 10−2 4.4634 × 10−2 8.8627 × 10−3

εI 4.6010 × 10−3 2.5634 × 10−3 3.2132 × 10−4

Table 10
Comparison of the CPU time (seconds) for the rotating sphere problem at different grid num-
bers after two revolutions.

Grid number

323 643 1283

Proposed method 71.71 573.06 9564.30
Pure level set method 60.91 489.50 7361.36

�+ 17.73% 17.07 % 29.93%

applied in this simulation study. We set the Reynolds number as Re = 474, the Weber number as W e = 1, and the Froude 
number as F r = 0.64. The air–water density ratio and the viscosity ratio are chosen to be ρg/ρl = 0.001 and μg/μl = 0.01. 
The liquid jet starts breaking up into a droplet at a time around t = 1.0 and, then, the second droplet is formed at a 
time around 1.5. The pinch-off of the liquid jet and the consequent generation of liquid droplets, which are known to 
be generated by the Rayleigh-Plateau destabilization mechanism [60] and capillary instability [24], have been accurately 
predicted using the proposed method. According to our simulation results, a very thin jet and tiny droplets can be captured 
using the proposed method. It is also worthy to point out that the capillary driven focusing wave gives rise to a high-speed 
upward jet above the free surface [60]. The difference of the two solutions in Fig. 14 is negligibly small. However, the degree 
of volume conservation using the pure level set method is considerably inferior to that predicted by the proposed method 
for the simulation of pinch-off liquid jet, as shown in Fig. 15.

5.2. A single droplet impacting upon thin liquid layer to generate a milkcrown pattern

Droplet collision and impact are omnipresent phenomena occurring in nature and in processing industries. A profound 
understanding and a better control of the events subsequent to impact are crucial to many applications. For instance, 
spreading is desirable for coating or ink-jet printing while splashing may improve the efficiency of evaporation and mixing 
in fuel combustion [57,56]. The outcome of the impact depends on various factors, such as the speed and the type of fluids, 
and on the surface of substrate. If substrate is dry, results will depend on the wetting ability and the smoothness of the 
surface. Droplets impacting into a deep pool or a thin layer lead to an extra degree of physical complexity, as evidenced 
by the presence of a dramatic topology change resulting from the surface tension and capillary instability. A full knowledge 
of droplet impact into liquid surface is still lacking. The subjects of some unexplored complex dynamics about droplet 
impact include, for example, the understanding of the formation of singular surface deformation and the accompanying 
flow instability of different physical origins and the complex transition from splashing to spreading [57]. However, relations 
among the selected dimensionless parameters and the resulting outcomes have been discussed by many researchers [58,59].

The milkcrown problem has been investigated by many research groups to demonstrate their simulation ability of cap-
turing a complicated topology change, both in two-dimensional [49] and three-dimensional [50,51] simulations. The initial 
setup in this study is identical to that in [50]. A droplet of diameter 5.33 mm with the initial velocity 2.0 m/s is impacting 
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Fig. 10. Comparison of the predicted results for the Rayleigh-Taylor instability problem using different methods in coarse grid (50 × 200 grid points).

onto a liquid film of 1 mm depth. We set the Reynolds number as Re = 6270.58, the Weber number as W e = 426.4, and 
the Froude number as F r = 8.75. The air–water density ratio and the viscosity ratio are chosen to be ρg/ρl = 0.0013 and 
μg/μl = 0.0006. The computational domain is set in � : [−3, 3] × [−3, 3] × [0, 3].

This problem is simulated in three grids with the resolutions of 180 × 180 × 90, 240 × 240 × 120 and 300 × 300 × 150
to get the grid independent solution. The simulation results using the proposed method are shown in Figs. 16–18. In the 
coarse grid simulation, tiny drops are not observed, possibly due to the discretization error and the underestimation of the 
surface tension force (mainly by the calculation of curvature), as Kensuke Yokoi pointed out in [50]. We also simulate this 
problem using the pure level set method, as shown in Fig. 19, in fine grid 300 × 300 × 150. One can see that the solution 
obtained by the pure level set method has been strongly affected by the poor volume conservation, as shown in Fig. 20. 
As a result, our proposed method is recommended for application to simulate problems involving complex topology change 
that results from the consideration of surface tension.

6. Concluding remarks

A LS-assisted VOF advection method is proposed in this study with an aim to capture the interface. In this method, vol-
ume fraction function C is used for tracking the time-evolving markers of interest interface, and level set function φ is used 
to assist an accurate calculation of the geometrically relevant quantities at the interface. Advection of C lies in the frame-
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Fig. 11. Comparison of the predicted results for the Rayleigh-Taylor instability problem using different methods in fine grid. (200 × 800 grid points).

work of THINC (tangent of hyperbola for interface capturing) and WLIC (weighted line interface calculation) schemes, while 
the advection of φ is solved by using OCRWENO (optimized compact reconstruction weighted essentially non-oscillatory) 
scheme. Reconstruction of φ from C has been performed to avoid generating numerical instability in the simulation. For our 
proposed interface reconstruction procedure, its potential extension to parallel computing and the flexible adoption to the 
classical level set solver have been also pointed out.

Four verification and one validation studies have been conducted, including two-dimensional and three-dimensional 
problems. Three different error norms are introduced to justify the accuracy of solution obtained by the proposed scheme. 
According to the tabulated results, the proposed method can predict interface position accurately and retain the volume 
extremely well, in comparison with the pure level set method.

The proposed LS-assisted VOF advection scheme has been applied to simulate two-phase flow problems as well for 
showing its ability in capturing interface and retaining volume conservation. Two different problems were investigated, 
including the three-dimensional bubble bursting at a free surface and a single droplet impacting upon thin liquid layer. In 
our simulations, solutions obtained by our proposed method are less deteriorated by the errors leading to volume imbalance, 
in comparison with the pure level set method. As a result, we recommended application of our proposed method to predict 
two-phase flow, especially for problems involving a complex topological change.
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Fig. 12. Comparison of the falling and rising fluid positions for the Rayleigh-Taylor instability problem.
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Appendix A. Curvature calculation on a sphere

To show the different ability of applying level set function and volume fraction function to calculate the curvature, we 
take a sphere of radius 0.5 in a box domain of side length 1.5 as an example. The sphere can be described by the function 
f (x, y, z) given below

f (x, y, z) = −
√

x2 + y2 + z2 + 0.5. (72)

The level set function is initialized as φ(xi, y j, zk) = f (xi, y j, zk), and the volume fraction function C(xi, y j, zk) is initial-
ized as



26 H.L. Wen et al. / Journal of Computational Physics 406 (2020) 109188
Fig. 13. Comparison of the predicted percentages of the loss of area using different methods under different grid resolutions for the Rayleigh-Taylor insta-
bility problem.

C(xi, y j, zk) = 1

�x�y�z

xi+1/2∫
xi−1/2

y j+1/2∫
y j−1/2

zk+1/2∫
zk−1/2

χ(x, y, z) dx dy dz, (73)

where the color function is given as

χ(x, y, z) =
{

1;if f (x, y, z) ≥ 0,

0; otherwise.
(74)

Firstly, we compute the surface normal vector n by φ and C , and, then, calculate the curvature through κ = −∇ · n with 
the second-order central difference scheme. Given the two values of curvature obtained by two different indicator functions, 
we compute the L1 error norms at different grid resolutions for each of them, as shown in Table 11.

According to the tabulated results, curvature calculated by using the level set function converges well with the increase 
of the grid number. However, due to the steep gradient of C across the interface (this issue can not be resolved by increasing 
the number of grid points), direct calculation of curvature is not possible to get the same degree of accuracy as the level 
set function.

Appendix B. Error norms calculation and interface reconstruction

To show the importance of interface reconstruction procedure described in Section 2.1.3, we simulate the problem in 
Section 5.1 in 60 × 60 × 120 grids for two cases, one is with the consideration of interface reconstruction and the other is 
not. In order to show the degree of mismatch of the interface position described by level set function and volume fraction 
function, we define the difference function ε̂i, j,k at each node

ε̂i, j,k = H(φi, j,k) − Ci, j,k. (75)

The corresponding L2 norms of ε̂i, j,k are plot in Fig. 21 to show its time evolution. According to the figure, solution 
obtained by considering interface reconstruction has a smaller value of ε̂i, j,k than that of ε̂i, j,k without consideration the 
reconstruction procedure. As a result, interface reconstruction and the consideration of η function in Section 2.1.3 are needed 
for implementing our proposed method. It is noted that the interface has different degrees of diffusive effect for level 
set function and volume fraction function. As a result, the norm defined in Eq. (75) is not zero at the beginning of the 
simulation.

Appendix C. Determination of the frequency of performing interface reconstruction

To determine how frequently the interface reconstruction described in Section 2.1.3 should be performed, we conduct a 
numerical test by simulating the problem in Section 5.1 under different frequency of applying reconstruction, that is, every 
5, 10, 15, 20 steps. The higher the frequency, the higher accuracy of the solution is obtained, but may be at the cost of 
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Fig. 14. Comparison of the predicted jetting events following a bubble bursting at a free surface. Simulation has been conducted in 90 × 90 × 120 grid 
points.

deteriorating the computational efficiency. If the frequency is too low, numerical instabilities will occur and lead to several 
unpredictable numerical issues.

According to the comparison of CPU times shown in Table 12, the frequency of every 10 steps for the interface re-
construction has a better computational efficiency. Frequencies of every 15 and 20 steps seem to have some numerical 
instabilities, which seriously slow down the iteration of pressure Poisson equation, please refer to Eq. (59). According to 
the plot of the predicted percentage loss of volume (see Fig. 22), frequency of every 5 and 10 steps has a similar ability of 
preserving the volume. As a result, we conduct the interface reconstruction only for every 5 steps.
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Fig. 15. Comparison of the predicted percentages of the loss of volume using different methods with different grid numbers for the problem of bubble 
bursting at the free surface.

Fig. 16. Plot of the crown forming events (From top to down, left to right, t = 1.5, 2.0, 2.5, 3.0, 3.5, 4.0) following a droplet impacting upon a thin liquid 
layer. The simulation has been conducted in 180 × 180 × 90 grid points using the proposed method.
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Fig. 17. Plot of the crown forming events (From top to down, left to right, t = 1.5, 2.0, 2.5, 3.0, 3.5, 4.0) following a droplet impacting upon a thin liquid 
layer. The simulation has been conducted in 240 × 240 × 120 grid points using the proposed method.

Table 11
L1 error norms and the corresponding rates of convergence for curvature calculation on a 
sphere at different grids using different indicator functions.

Grids Level set function Order Volume fraction function Order

483 1.6397 × 10−2 – 3.8595 × 10−2 –
963 4.0812 × 10−3 2.0064 2.9223 × 10−2 0.4013
1923 1.0171 × 10−3 2.0045 2.5831 × 10−2 0.1780
3843 2.5616 × 10−4 1.9893 2.7813 × 10−2 -0.1067

Table 12
CPU time for different frequency of applying 
the interface reconstruction procedure for the 
problem of bubble bursting at the free surface.

Frequency CPU time (s)

Every 5 steps 29928
Every 10 steps 29688
Every 15 steps 40442
Every 20 steps 38019



30 H.L. Wen et al. / Journal of Computational Physics 406 (2020) 109188
Fig. 18. Plot of the crown forming events (From top to down, left to right, t = 1.5, 2.0, 2.5, 3.0, 3.5, 4.0) following a droplet impacting upon a thin liquid 
layer. The simulation has been conducted in 300 × 300 × 150 grid points using the proposed method.

Appendix D. Derivation of optimized CRWENO scheme

The derivation of this scheme is summarized below in four steps:
(Step 1) The upwind compact difference scheme given below is applied

A
∂φ

∂x
|i−1 + ∂φ

∂x
|i + C

∂φ

∂x
|i+1 = aφi−2 + bφi−1 + cφi + dφi+1

�x
. (76)

By performing the Taylor series expansions on ∂φ
∂x |i−1, ∂φ

∂x |i+1, φi−2, φi−1 and φi+1 with respect to φi , the leading five 
truncation error terms in the corresponding modified equations are eliminated. The following set of algebraic equations is 
derived as

ā + b̄ + c̄ + d̄ = 0,

− 2ā − b̄ + d̄ − Ā − C̄ = 1,

2ā + 1

2
b̄ + 1

2
d̄ + Ā − C̄ = 0,

− 4

3
ā − 1

6
b̄ + 1

6
d̄ − 1

2
Ā − 1

2
C̄ = 0,

2

3
ā + 1

24
b̄ + 1

24
d̄ + 1

6
Ā − 1

6
C̄ = 0.

(77)
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Fig. 19. Plot of the crown forming events (From top to down, left to right, t = 1.5, 2.0, 2.5, 3.0, 3.5, 4.0) following a droplet impacting upon a thin liquid 
layer. The simulation has been conducted in 300 × 300 × 150 grid points using the pure level set method.

To reduce numerical dispersion error generated from this compact scheme for modeling wave propagation over a long 
distance or a long period of simulation time has elapsed, we need another algebraic equation to uniquely determine all the 
six introduced coefficients shown in Eq. (76) that can altogether render the smallest dispersion error. Performing the modi-
fied wave number analysis [40] on each term shown in Eq. (76), the equation for the corresponding numerical wavenumber 
α′�x can be derived

iα′�x( Āe−iα�x + 1 + C̄eiα�x) = āe−2iα�x + b̄e−iα�x + c̄ + d̄eiα�x (78)

The expression of α′�x can then be expressed as follows by substituting the coefficients, as shown in Eq. (77), into 
Eq. (78)

α′�x = i(−3e−2iα�x + 4d̄e−2iα�x − 24e−iα�x + 18d̄e−iα�x + 27 − 36d̄ + 14d̄eiα�x)

−14 − 17e−iα�x + 18d̄e−iα�x + eiα�x − 6d̄eiα�x
(79)

To make α′ an appropriate representation of α, it is required that the following positive error function E(α) should take 
the smallest value

E(α) =
17π
20∫

0

[
Wd · (α �x − �[α′ �x])]2

d(α�x), (80)
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Fig. 20. Comparison of the predicted percentages of the loss of volume using different methods under different grid resolutions for the problem of a single 
droplet impacting upon a thin liquid layer.

Fig. 21. Comparison of the predicted L2 difference norms with and without the consideration of η function in the interface reconstruction procedure.

where Wd shown above is chosen to be the denominator of 
(
α �x − �[α′ �x]) so as to make it possible to integrate Eq. (80)

analytically. The constraint condition defined below is enforced so that we can minimize the value of E(α)

∂ E(α)

∂d
= 0. (81)

This constraint equation is coupled with the other five algebraic equations shown in Eq. (77) to get the optimized 
set of coefficients: A = 0.5418416108, C = 0.1527194630, a = −0.0648536914, b = −1.041841611, c = 0.583683223, and 
d = 0.5230120803.



H.L. Wen et al. / Journal of Computational Physics 406 (2020) 109188 33
Fig. 22. Comparison of the predicted percentages of the loss of volume using different frequency of applying the interface reconstruction procedure for the 
problem of bubble bursting at the free surface.

(Step 2) Define the values φ̂ at half nodal point i ± 1
2 as follows

Ãφ̂i− 1
2

+ φ̂i+ 1
2

+ C̃ φ̂i+ 3
2

= ãφi−1 + b̃φi + c̃φi+1, (82)

and

Ãφ̂i− 3
2

+ φ̂i− 1
2

+ C̃ φ̂i+ 1
2

= ãφi−2 + b̃φi−1 + c̃φi . (83)

The coefficients in Eq. (82) and Eq. (83), which are Ã = 0.5418416108, C̃ = 0.1527194630, ã = 0.0648536914, b̃ =
1.106695303 and c̃ = 0.5230120803, are obtained by comparing the optimized coefficients derived in Eq. (76) for ∂φ

∂x

∣∣
i=(

φ̂i+ 1
2

− φ̂i− 1
2

)
/�x.

(Step 3) The following three third-order accurate compact interpolations have been used for the left-biased compact recon-
struction of φ̂i+1/2 [41]

2

3
φ̂1

i−1/2 + 1

3
φ̂1

i+1/2 = 1

6
(φi−1 + 5φi),

1

3
φ̂2

i−1/2 + 2

3
φ̂2

i+1/2 = 1

6
(5φi + φi+1),

2

3
φ̂3

i+1/2 + 1

3
φ̂3

i+3/2 = 1

6
(φi + 5φi+1).

(84)

Applying three different weighting coefficients c1, c2, c3 on Eq. (84), the following tridiagonal matrix equation can be 
derived[

2c1 + c2

3

]
φ̂i− 1

2
+

[
c1 + 2(c2 + c3)

3

]
φ̂i+ 1

2
+ c3

3
φ̂i+ 3

2

= c1

6
φi−1 +

[
5(c1 + c2) + c3

6

]
φi +

[
c2 + 5c3

6

]
φi+1.

(85)

After a term-by-term comparison of the coefficients in Eq. (82) and Eq. (85), the coefficients c1 = 0.20891413, c2 =
0.49999999 and c3 = 0.29108586 can then be obtained.
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