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A new higher-order RBF-FD scheme with optimal variable
shape parameter for partial differential equation
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bSchool of Engineering, Taylor’s University, Selangor Darul Ehsan, Malaysia; cCenter of Advance Studies in
Theoretical Sciences (CASTS), National Taiwan University, Taipei, Taiwan; dDepartment of Mechanical
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ABSTRACT
Radial basis functions (RBFs) with multiquadric (MQ) kernel have been
commonly used to solve partial differential equation (PDE). The MQ kernel
contains a user-defined shape parameter (e), and the solution accuracy is
strongly dependent on the value of this e. In this study, the MQ-based RBF
finite difference (RBF-FD) method is derived in a polynomial form. The opti-
mal value of e is computed such that the leading error term of the RBF-FD
scheme is eliminated to improve the solution accuracy and to accelerate
the rate of convergence. The optimal e is computed by using finite differ-
ence (FD) and combined compact differencing (CCD) schemes. From the
analyses, the optimal e is found to vary throughout the domain. Therefore,
by using the localized shape parameter, the computed PDE solution accur-
acy is higher as compared to the RBF-FD scheme which employs a con-
stant value of e. In general, the solution obtained by using the e computed
from CCD scheme is more accurate, but at a higher computational cost.
Nevertheless, the cost-effectiveness study shows that when the number of
iterative prediction of e is limited to two, the present RBF-FD with e by
CCD scheme is as effective as the one using FD scheme.
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1. Introduction

The method of radial basis function (RBF) is an efficient technique in solving multidimensional
interpolation problem due to the ease of implementation and use of directionally-independent
kernel. In spite of many advantages, a highly ill-conditioned dense matrix needs to be solved
especially for the case that involves a large number of nodes. A more practical approach is to use
the local method, in which only a fixed number of neighboring nodes is taken into account.
Application of this method results in a sparse linear system with smaller conditioning number.

The infinitely smooth RBF kernels such as the Gaussian and multiquadric (MQ) kernels intro-
duced by Hardy [1] are known to give a more accurate solution as compared to the other types
of kernels. However, the quality of the computed solution is strongly dependent on the intro-
duced tuning shape parameter, e; in the infinitely smooth kernels. The shape parameter also gives
rise to a singularity problem as e ! 0; in which the RBF linear system tends to be ill-conditioned.
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When the value of e is small enough, the solution obtained by the conventional linear solver (e.g.
Gauss elimination) may fluctuate drastically.

Fornberg and Wright [2] employed contour-Pad�e algorithm to derive the RBF interpolating
function for any value of e: The studies by Kindelan et al. [3, 4] treated the RBF matrix as the
perturbed singular matrix, and the inverse of the RBF matrix was computed in the form of
Laurent expansion. The singularity point at e ¼ 0 can be removed by expressing the interpolating
function in polynomial form; hence, the RBF interpolating function is valid for any value of e:
Both studies found that the RBF interpolating function is converged to a Lagrange polynomial
when e ! 0: The optimal value of the shape parameter is often found to lie within the unstable
region. Hence, one is unable to obtain the optimal solution from the conventional matrix solver,
even if the optimal value of the shape parameter is known. Moreover, the optimal shape param-
eter is found to be problem-dependent, in which the value is unknown beforehand.

The RBF method has been extended and used to solve partial differential equation [5, 6]. This
method is commonly known as the RBF-FD method, as the discretization of the derivative term
is similar to that of the conventional finite difference. The coefficient of each stencil point is
found by approximating the derivative using the RBF function instead of the polynomial as
employed in conventional finite difference schemes. The resulting discretization scheme becomes
the function of the shape parameter e: Hence, the solution quality is dependent on the chosen
value of e: Although the use of a constant value of e could somehow produce accurate results as
shown in some studies [7, 8], there is no guarantee that the randomly chosen shape parameter
could always improve the solution accuracy.

Optimization of the shape parameter is always a topic of interest within the RBF research
community. Several studies have been carried out in this regard. Huang et al. [9] used the arbi-
trary precision computation in their work to determine the correlation between the value of e
and the solution accuracy. In their study, they solved the RBF problem using 100-digit precision
arithmetic to overcome the singularity problem caused by the round-off error in common 16-
digit precision arithmetic when e is small. Based on the obtained numerical results, they derived
an error formulation based on the shape parameter and the grid spacing. Bayona et al. [10, 11]
derived an error function as an infinite series, which is dependent on the local value of the func-
tion and its derivative at the node of interest. They found that the optimal value of e can be cal-
culated by minimizing the error function. As reported in their study in Bayona et al. [11], the
optimal shape parameter does not exist in cases involving a large number of nodes (accuracy
deteriorates significantly). On the other hand, in the work of Guo and Jung [12, 13], the opti-
mized shape parameter was found by applying the Taylor series expansion on the discretization
scheme. The higher-order derivative terms appeared in the optimal shape parameter were com-
puted by using a polynomial reconstruction method.

In this article, we have developed a RBF-FD formulation based on the MQ kernel for solving
partial differential equations. The RBF interpolating function is derived in polynomial form with
a limited number of terms. The optimal value of the shape parameter is computed based on the
Taylor series expansion of the discretized RBF-FD formula. The optimized shape parameter is
nodally dependent and it is calculated such that the leading error term is eliminated to improve
the solution accuracy and to accelerate the rate of convergence.

2. RBF-FD formulation

The method of RBF is an efficient technique in solving multidimensional interpolation problem
due to the ease of implementation and use of directionally-independent kernel. In spite of many
advantages, a highly ill-conditioned dense matrix needs to be solved especially for the case that
involves a large number of nodes. A more practical approach is to use the local method, in which
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only a fixed number of neighboring nodes is taken into account. Application of this method
results in a sparse linear system with smaller conditioning number.

The standard RBF interpolation function can be constructed from N scattered nodes
x1; x2; :::; xN with the function value of uðxiÞ being known at each node. It can be written in the
form of:

u xð Þ � s xð Þ ¼
XN
i¼1

kiu x�xið Þ; (1)

where u x�xið Þ is the chosen RBF kernel. ki is the interpolation coefficients to be determined by
solving a linear system of N equations Ak ¼ b; where k ¼ k1 k2

�
::: kN �T ; b ¼ u1 u2 ::: uN

� �T
; and the RBF matrix A is:

A ¼
u x1�x1j jj jð Þ u x1�x2j jj jð Þ
u x2�x1j jj jð Þ u x2�x2j jj jð Þ

� � � u x1�xNj jj jð Þ
� � � u x2�xNj jj jð Þ

..

. ..
.

u xN�x1j jj jð Þ u xN�x2j jj jð Þ
. .
. ..

.

� � � u xN�xNj jj jð Þ

2
6664

3
7775: (2)

Eq. (1) can also be written in the form of:

u xð Þ � s xð Þ ¼
XN
i¼1

ai x�xið Þu xið Þ; (3)

The finite difference type formula for a derivative at a node, say node xk; can be derived by
applying the differential operator L to Eq. (3).

Lu xkð Þ � Ls xkð Þ ¼
XN
i¼1

Lai xk�xið Þu xið Þ ¼
XN
i¼1

wiu xið Þ; (4)

where, wi ¼ Lai x1�xið Þ are the weighted coefficients which can be found by solving the linear
system:

Luj xkð Þ ¼
XN
i¼1

wiuj xið Þ; j ¼ 1; 2:::N: (5)

In Eqs. (1) and (5), the chosen RBF kernel uðxÞ is known to affect the accuracy of the solu-
tion. The infinitely smooth RBF kernels shown in Table 1 have a user-defined shape parameter e:
When approximating a smooth function, application of a properly chosen value of e can render a
faster rate of convergence than that using the piecewise smooth kernels [14–16]. Among the
infinitely smooth RBF kernels, MQ kernel introduced by Hardy [1] is known to give a more
accurate solution compared to those obtained from the other kernels [17]. Hence, it is chosen as
the kernel in our study.

The determination of the weighted coefficients wi in Eq. (5) involves solving a linear system of
equations Aw ¼ f; where Ai;j ¼ uj xið Þ and fj ¼ LujðxkÞ: However, the RBF interpolation matrix
A approaches singularity as e ! 0: The solution obtained from a straightforward computation
becomes oscillatory even with a small change of e: In the following section, the RBF-FD scheme
is derived in a polynomial form to avoid this oscillatory problem.

Table 1. Some commonly used infinitely smooth RBF kernels.

RBF kernel u rð Þ
Gaussian e�er2

Multiquadric (MQ) ð1þ er2Þ1=2
Inverse Multiquadric (IMQ) ð1þ er2Þ�1=2

Inverse quadratic (IQ) ð1þ er2Þ�1
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3. Improvement of the accuracy of RBF-FD scheme

3.1. RBF-FD in polynomial form

Several studies have been done to overcome the singularity problem encountered in the RBF
interpolation method when e ! 0: Fornberg and Wright [2] employed contour-Pad�e algorithm to
circumvent the singularity problem and computed the RBF interpolation function using any value
of shape parameter e: The works by Kindelan et al. [3, 4] computed the Laurent series of the
inverse of the RBF interpolation matrix A analytically. Then, the singularity term can then be
removed in the process of constructing an RBF interpolation function. The resulting RBF func-
tion s xð Þ is a power series of the shape parameter e and the polynomial functions
P0 xð Þ; P1 xð Þ; P2 xð Þ; :::; as shown in Eq. (6):

u xð Þ � s xð Þ ¼ P0 xð Þ þ eP1 xð Þ þ e2P2 xð Þ þ � � � : (6)

In one dimensional problem, the RBF interpolation function s xð Þ derived by using MQ kernel
converges to the Lagrange polynomial P0 xð Þ when e ! 0: However, all approaches mentioned
above are impractical as they involve heavy computation especially for the case involving a large
number of nodes and a high-order singularity.

In this article, our intention is to develop a new finite-difference-like derivative scheme to
solve the PDE problem. Hence, the number of nodes involved in the derivative formulation is
pre-fixed. For a set of three equally spaced nodes schematically shown in Figure 1, the RBF
matrix A using MQ kernel is as shown in Eq. (7):

A ¼

1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e Dx

Dx

� �2r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e Dx

Dx

� �2r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e Dx

Dx

� �2r
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e 2Dx

Dx

� �2r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e Dx

Dx

� �2r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e 2Dx

Dx

� �2r
1

2
66666664

3
77777775
¼

1
ffiffiffiffiffiffiffiffiffiffi
1þ e

p ffiffiffiffiffiffiffiffiffiffi
1þ e

pffiffiffiffiffiffiffiffiffiffi
1þ e

p
1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4e

pffiffiffiffiffiffiffiffiffiffi
1þ e

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4e

p
1

2
4

3
5: (7)

The terms
ffiffiffiffiffiffiffiffiffiffi
1þ e

p
and

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2e

p
can be expanded in binomial series as follows:ffiffiffiffiffiffiffiffiffiffi

1þ e
p ¼ 1þ 1

2
e� 1

8
e2 þ 1

16
e3� 5

128
e4 þ � � � ;

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4e

p ¼ 1þ e� 1
2
e2 þ 1

2
e3� 5

8
e4 þ � � � :

(8)

By substituting Eq. (8) into Eq. (7), the matrix A can be expanded as:

A ¼
1

ffiffiffiffiffiffiffiffiffiffi
1þ e

p ffiffiffiffiffiffiffiffiffiffi
1þ e

pffiffiffiffiffiffiffiffiffiffi
1þ e

p
1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4e

pffiffiffiffiffiffiffiffiffiffi
1þ e

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4e

p
1

2
64

3
75 �

1 1 1

1 1 1

1 1 1

2
64

3
75þ e

0
1
2

1
2

1
2

0 2

1
2

2 0

2
6666664

3
7777775

þ e2

0
�1
8

�1
8

�1
8

0 �2

�1
8

�2 0

2
6666664

3
7777775
þ e3

0
1
16

1
16

1
16

0 4

1
16

4 0

2
6666664

3
7777775
þ e4

0
�5
128

�5
128

�5
128

0 �10

�5
128

�10 0

2
6666664

3
7777775
þ � � � :

(9)

The matrix A in Eq. (9) can be considered as singular perturbed matrix for the small value of
shape parameter e: The Laurent series of the inverse matrix A�1 can be expressed in terms of the
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shape parameter by using the calculation procedure introduced by Kindelan et al. [3, 4] as:

A�1 ¼ 1
e2

�1
1
2

1
2

1
2

�1
4

�1
4

1
2

�1
4

�1
4

2
6666664

3
7777775
þ 1

e

�3
5
4

5
4

5
4

�3
4

�1
4

5
4

�1
4

�3
4

2
6666664

3
7777775
þ

0
�1
16

�1
16

�1
16

0
1
2

�1
16

1
2

0

2
6666664

3
7777775

þ e

�1
21
32

21
32

21
32

�1
4

�3
4

21
32

�3
4

�1
4

2
6666664

3
7777775
þ e2

3
�485
256

�485
256

�485
256

3
4

7
4

�485
256

7
4

3
4

2
6666664

3
7777775
þ � � � :

(10)

From Eq. (10), the terms 1=e2 and 1=e become singular when e ! 0: However, these singular-
ity components can be eliminated when the interpolation function is built. The interpolation
coefficients k in Eq. (1) can be obtained by multiplying A�1 in Eq. (10) with the solution vector

b ¼ u1 u2 u3
� �T

: The RBF interpolation function in its polynomial form can then be obtained
using Eq. (1).

s xð Þ ¼ 1�d2ð Þui þ d
2
þ d2

2

� �
uiþ1 þ � d

2
þ d2

2

� �
ui�1

þ e Dxð Þ2 d4�d2ð Þui þ d
4
þ d2

2
� d3

4
� d4

2

� �
uiþ1 þ � d

4
þ d2

2
þ d3

4
� d4

2

� �
ui�1

	 

þ ::::

(11)

The term d in Eq. (11) is the normalized distance from point i defined as d ¼ ðx� xiÞ=Dx
with a range of 0 � d � 1: In Eq. (11), the higher-order terms such as e2; e3; :::; are truncated
for simplicity purpose. Both solution accuracy and rate of convergence are not significantly
affected by this truncation.

The derivatives can be formulated by applying the respective differential operator to the RBF
interpolation function as shown in Eq. (4). For the second derivative term, Eq. (11) is differenti-
ated twice, leading to Eq. (12):

s00 xð Þ ¼ �2ui þ uiþ1 þ ui�1

Dxð Þ2 þ e �2þ 12d2ð Þui þ 1� 3d
2
�6d2

� �
uiþ1 þ 1þ 3d

2
�6d2

� �
ui�1

	 

:

(12)

By evaluating Eq. (12) at x ¼ xi (d ¼ 0Þ; the centered type of differencing scheme is obtained
as

s00 xið Þ ¼ �2ui þ uiþ1 þ ui�1

Dxð Þ2 þ e �2ui þ uiþ1 þ ui�1½ �: (13)

The first term on the right-hand side of Eq. (13) represents the conventional second-order
central differencing scheme. Hence, for e ¼ 0; Eq. (13) is equivalent to the finite difference

Figure 1. Nodal configuration for Eq. (7).
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scheme. The following section shows that there exists an optimal value of e that can improve the
accuracy of Eq. (13).

3.2. Optimal shape parameter with three equidistant nodes

The RBF-FD scheme used to approximate the second derivative shown in Eq. (13) contains a
user-defined shape parameter e that would affect the accuracy of the PDE solution. In the work
of [12, 13], Guo and Jung applied the RBF method during the reconstruction process of their
ENO scheme. The optimal value of the shape parameter is computed in such a way that it mini-
mizes the leading error term of the RBF-FD scheme. The similar approach is applied to deter-
mine the optimal shape parameter based on the leading error terms of the present RBF-FD
scheme in Eq. (13). Assuming that the function s xð Þ is smooth, the Taylor series expansion of
s00 xið Þ in Eq. (13) has the form of:

s00 xið Þ ¼ u00 þ Dxð Þ2 1
12

u 4ð Þ þ eu00
	 


þ Dxð Þ4 1
360

u 6ð Þ þ 1
12

eu 4ð Þ
	 


þ O Dx6ð Þ: (14)

From Eq. (14), the value of e can be chosen in the sense that u 4ð Þ=12þ eu00 ¼ 0 to eliminate
the OðDx2Þ term. Therefore, the scheme in Eq. (13) can be improved to yield the accuracy of
OðDx4Þ if the shape parameter is computed as e ¼ �u 4ð Þ=12u00:

The shape parameter of the second derivative expressed in the present work, that is, e ¼
�u 4ð Þ=12u00; is different from that derived by Feng and Duan [18], that is, e ¼ �u 4ð Þ=15u00: The
slight difference is due to the variation of the expression of RBF-FD schemes. Nevertheless, both
optimal shape parameters are still depending on derivative terms uð4Þ and u00:

From the expression of the optimal e for the scheme outlined in Eq. (13), we are aware that:

1. The optimal value of e depends on the local derivative terms. This indicates that the optimal
e is not only problem-dependent, but it is also varying throughout the domain.

2. Obtaining the solution for u from RBF-FD by using the optimal e is indeed a nonlinear pro-
cess, as the optimal e becomes the function of the derivative of u to be solved.

If the exact values of derivative terms uð4Þ and u00 are known, the solution with fourth-order
accuracy can be obtained from Eq. (13) without introducing more nodal points. However, deriva-
tive terms are often unknown beforehand. Therefore, the problem under current investigation
turns out to be a nonlinear problem.

3.3. 1D numerical experiment

An example of a nonhomogeneous boundary value problem in one-dimensional domain is given
as:

u00 ¼ 2p2epxcos pxð Þ; 0<x<1;

u ¼ u xð Þ at x ¼ 0; x ¼ 1;

(
(15)

where the source term f xð Þ and boundary condition are derived from the exact solution u xð Þ ¼
epxsin pxð Þ: The domain is discretized into N segments, and the second derivative term u00 in Eq.
(15) is approximated by using the polynomialized RBF-FD as shown in Eq. (13). The optimal
value of shape parameter e can be computed by e ¼ �u 4ð Þ=12u00: In this numerical experiment,
the derivative terms appeared in the optimal e formulation are computed using the exact solu-
tion. From the result tabulated in Table 2, the present RBF-FD scheme with optimal e is fourth
order accurate.
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The value of optimal e throughout the domain with grid number N ¼ 40 is shown in Figure
2. Obviously, the optimal value of e varies significantly throughout the domain. To investigate the

Table 2. Result for Eq. (15) by using conventional finite difference scheme and present RBF-FD with the optimal value of the
shape parameter. L1 denotes the infinite error norms of the solution obtained.

N L1; Finite difference

Present RBF-FD

L1; Present RBF-FD Order

10 1.041e-2 2.021e-4 –
20 2.704e-3 5.221e-6 5.27
40 6.854e-4 2.724e-7 4.26
80 1.717e-4 1.856e-8 3.87
160 2.716e-5 1.024e-9 4.18

Figure 2. Distribution of the value of optimal e throughout the domain for Eq. (15).

Figure 3. L1 error norm of the solution plotted with respect to e for Eq. (15).
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significance of the optimally varying shape parameter on the solution accuracy, Eq. (15) is solved
by using the same RBF-FD scheme with different constant e values for all nodes in the domain.
From the L1 error norm versus e plot as shown in Figure 3, the RBF-FD scheme with the opti-
mally varying e is more accurate than the one using the constant e (x-axis in Figure 3). Although
the error when using e � �3:2 is the lowest, it is still significantly higher than the one that using
the optimally varying e:

3.4. Predicting optimal shape parameter

From the numerical example in Section 3.3, it is known that the accuracy and the rate of convergence
can be greatly improved using the optimal value of e: However, the exact value of optimal e is a func-
tion of derivative terms that are often not known. The optimal value of e needs to be predicted through
different approaches.

In this study, the value of e is predicted by using two different approaches: low-order finite
difference and high-order combined compact differencing (CCD) schemes. The purpose of using
two different approaches is to compare the accuracy of the solutions predicted from two different
values of e: The calculation of e using two different approaches is explained as follows.

3.4.1. Predicting e using low order finite difference scheme
Taking the optimal e ¼ �u 4ð Þ=12u00 for Eq. (13) as an example, the value of e at an interior node
can be computed explicitly by using a low-order finite difference scheme as in Eq. (16) given
below:

eopt � �u 4ð ÞjFDM
12u00jFDM

¼ � uiþ2�4uiþ1 þ 6ui�4ui�1 þ ui�2ð Þ
12Dx2 uiþ1�2ui þ ui�1ð Þ : (16)

In the above, the derivative terms uð4ÞjFDM and u00jFDM are calculated using the second-order
accurate central differencing scheme. The use of nodal points at i� 2 and iþ 2 will not increase
the complexity of the discretized PDE system as they only involve an explicit computation of e:
Therefore, the band width of the PDE matrix remains unchanged.

3.4.2. Predicting e using high-order combined compact differencing scheme
CCD schemes [19–22] are popular approaches for computing the solution with high accuracy.
The first- and second-order derivative terms are obtained simultaneously in compact stencil
points. This is in contrast with the compact difference (CD) scheme [23], where the first- and
second-order derivative terms need to be obtained separately in a sequential procedure. The com-
putation of the value of e in the present RBF-FD scheme requires the value of higher-order
derivative terms. Hence, we applied the CCD scheme to calculate the values of the first- and
second-order derivative terms simultaneously. The third- and fourth-order derivative terms can
be explicitly calculated after the first- and second-order derivative terms are known.

In this article, only a problem with Dirichlet boundary condition and uniform grid spacing h
is considered for the sake of description of the CCD scheme. The CCD schemes described in [19]
for interior nodes are:

7
16

u0jiþ1 þ u0
� ��

i�1
Þ þ u0ji �

h
16

u00jiþ1�u00
� ��

i�1
Þ ¼ 15

16h
uiþ1�ui�1ð Þ; (17)

9
8h

u0jiþ1�u0
� ��

i�1
Þ � 1

8
u00jiþ1 þ u00
� ��

i�1
Þ þ u00ji ¼

3
h2

uiþ1�2ui þ ui�1ð Þ: (18)

The schemes in Eqs. (17) and (18) have Oðh6Þ accuracy. Subjected to the Dirichlet boundary
condition, four additional equations at the boundary nodes i ¼ 1 and i ¼ N þ 1 proposed in [19]
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are applied.

u0j1 þ 2u0j2 � hu00j2 ¼
1
h

�3:5u1 þ 4u2�0:5u3ð Þ; (19)

hu00j1 þ 5hu00j2 � 6uxj2 ¼
1
h

9u1�12u2 þ 3u3ð Þ; (20)

u0jNþ1 þ 2u0jN þ hu00jN ¼ 1
h

3:5uNþ1�4uN þ 0:5uN�1ð Þ; (21)

hu00jNþ1 þ 5hu00jN þ 6u0jN ¼ 1
h

9uNþ1�12uN þ 3uN�1ð Þ: (22)

Note that the CCD schemes at the boundary nodes shown in Eqs. (19)–(22) have Oðh4Þ accur-
acy. In the applied CCD schemes, the values of u0 and u00 are obtained after solving the 2N þ 2
equations. Then the higher-order derivative terms such as u000 and uð4Þ at the interior nodes can
be explicitly calculated by using Eqs. (23) and (24):

u000ji ¼ � 15
4h3

uiþ1�ui�1ð Þ þ 15
4h2

u0jiþ1 þ u0
� ��

i�1
Þ � 3

4h
u00jiþ1�u00
� ��

i�1
Þ; (23)

u 4ð Þji ¼ � 36
h4

uiþ1�2ui þ ui�1ð Þ þ 21
h3

u0jiþ1�u0
� ��

i�1
Þ � 3

h2
u00jiþ1 þ u00
� ��

i�1
Þ: (24)

4. Numerical algorithm

Predicting the value of e in the present RBF-FD scheme requires the values of the derivative
terms at every node. However, both FD and CCD schemes require the discrete values of uðxÞ
when computing the derivative terms. According to Zhang et al. [24], both level of accuracy and
ROC of the proposed FD scheme can be improved by introducing a compact correction source
term. The procedure involves solving the PDE with conventional FD scheme to obtain a guessed
solution, followed by calculating the compact correction source term by using the guessed solu-
tion to improve the accuracy of the new solution.

In the present implementation, we also have applied a two-step approach. Firstly, an approxi-
mate solution of uðxÞ is computed by using the conventional FD scheme. Then, the solution is
improved using the optimal value of e predicted from the approximate solution. Knowing the
nonlinear nature of the present RBF-FD scheme, the optimal value of e is recomputed using the
refined solution of uðxÞ; and the discretized PDE is solved again using the new predicted value of
e: The procedures are repeated until the solution of uðxÞ converges. The iterative procedures are
summarized below as:

1. An approximate solution of uðxÞ is computed by using the conventional FD scheme (or con-
sider e ¼ 0 in present RBF-FD).

2. The values of the local derivative terms u0; u00; u000; uð4Þ at every node are predicted by vir-
tue of FD/CCD scheme using the approximate solution obtained in (1).

3. Re-compute the new RBF-FD coefficients in the discretized equations by using the value of e
evaluated from the value of the local derivative terms obtained in (2).

4. Compute the new solution of uðxÞ by using the new RBF-FD coefficients found in (3).
5. Continue the iterative procedure until the solution of uðxÞ is converged.

5. 2D numerical experiments

In the following sections, the proposed numerical algorithm is applied to solve the problems in
two-dimensional domains. In this article, the study is limited only to equally spaced nodes. We
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will show that a significant improvement in accuracy can be achieved by using the optimal value
of e which is predicted locally from the involved derivative terms. In this section, all PDE matri-
ces are solved by using Bi-CGStab iterative solver with incomplete LUT pre-conditioner. Iterative
solver is preferred over direct solver as the solution obtained from the previous iteration can be
used as an initial guess to accelerate the convergence.

5.1. Solution of Poisson equation

Consider the problem:

@2u
@x2

þ @2u
@y2

¼ �f x; yð Þ; in X ¼ 0; 1ð Þ � 0; 1ð Þ;
u ¼ u x; yð Þ; on @X;

8><
>: (25)

The solution is approximated on a uniform grid as shown in Figure 4. The discretization of
@2u
@x2 þ @2u

@y2 is obtained by combining the one-dimensional three stencil points scheme for predicting
s00 (as in Eq. (13)). This scheme involves stencil points in x (i.e. i�1; jð Þ; i; jð Þ; iþ 1; jð Þ) and
y-directions (i.e. i; j�1ð Þ; i; jð Þ; i; jþ 1ð Þ):

s00 xið Þ ¼ @2s
@x2

ji;j ¼
�2ui;j þ uiþ1;j þ ui�1;j

Dxð Þ2 þ e �2ui;j þ uiþ1;j þ ui�1;j½ �; (26)

s00 yið Þ ¼ @2s
@y2

ji;j ¼
�2ui;j þ ui;jþ1 þ ui;j�1

Dyð Þ2 þ e �2ui;j þ ui;jþ1 þ ui;j�1½ �: (27)

For equally spaced grid Dx ¼ Dy ¼ h; the discretization of @2u
@x2 þ @2u

@y2 using the present RBF-FD
scheme is the summation of Eqs. (26) and (27):

@2u
@x2

j i;j þ @2u
@y2

ji;j �
@2s
@x2

ji;j þ
@2s
@y2

ji;j ¼
�4ui;j þ uiþ1;j þ ui�1;j þ ui;jþ1 þ ui;j�1

h2

þe �4ui;j þ uiþ1;j þ ui�1;j þ ui;jþ1 þ ui;j�1ð Þ: (28)

Figure 4. Local uniform grid in present RBF-FD discretization.
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Upon conducting the modified equation analysis on Eq. (28) using Taylor’s series, we get

@2s
@x2

j i;j þ @2s
@y2

ji;j ¼
@2u
@x2

þ @2u
@y2

þ h2
1
12

@4u
@x4

þ @4u
@y4

 !
þ e

@2u
@x2

þ @2u
@y2

 !0
@

1
A

þh6
1
360

@6u
@x6

þ @6u
@y6

 !
þ e

1
12

@4u
@x4

þ @4u
@y4

 !0
@

1
Aþ O h6ð Þ; (29)

Hence, the shape parameter expressed below can be used to eliminate the O h2ð Þ error term so
that the scheme in Eq. (28) becomes fourth order accurate.

eopt ¼
� @4u

@x4 þ @4u
@y4

� �
12 @2u

@x2 þ @2u
@y2

� � : (30)

5.1.1. 2D numerical experiment 1
Consider the problem:

@2u
@x2

þ @2u
@y2

¼ �f x; yð Þ; in X ¼ 0; 1ð Þ � 0; 1ð Þ;

u x; yð Þ ¼ exp � x� 1
4

� 
2� y� 1
2

� 
2� �
sin pxð Þcos 2pyð Þ on @X:

8>><
>>: (31)

The source term f x; yð Þ is derived from the exact solution u x; yð Þ ¼
exp � x�1=4ð Þ2� y�1=2

� 
2� �
cos 2pyð Þsin pxð Þ: The same problem has been solved in [11, 25, 26].

The calculation begins with the initial value of e ¼ 0; thus simplified the Eq. (28) to conven-
tional second order central differencing scheme. The optimal value of e is computed from the ini-
tial solution u0 obtained after solving the PDE in Eq. (31). The coefficients of the PDE matrix are
updated with the new value of optimal e; leading to the new refined solution u1: The iterative
solution process continues until the solution u becomes converged, that is,
when max un�un�1j jj j < 10�6:

The infinite error norms of the solution obtained by using the present RBF-FD scheme are
shown in Table 3. The range of the computed e throughout the domain is shown as emin and

Table 3. Result for the Eq. (31). L1 denotes the infinite error norm of the solution obtained; (iters) denotes the number of
iterations needed until convergence; emin and emax are the minimum and maximum values of the optimal e:

N

e ¼ FD e ¼ CCD

L1 (iters) emin emax L1 (iters) emin emax

10 4.432e-3 (8) 1.55 5.78 2.070e-3 (17) 1.57 6.36
20 1.545e-4 (6) �54.12 46.13 4.025e-5 (9) �61.79 39.15
50 4.364e-6 (4) �50.19 71.49 1.15e-6 (6) �50.97 69.58
100 2.551e-7 (4) �5.45eþ 3 4.03eþ 2 7.426e-8 (6) �1.74eþ 3 1.08eþ 4

N

e ¼ exact solution

L1 emin emax

10 5.619e-4 �1.90eþ 3 5.82
20 3.200e-5 �46.58 36.06
30 8.331e-7 �51.50 68.90
40 6.266e-8 �3.36eþ 5 3.77eþ 2
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emax: From the tabulated result, it is clear that the solution obtained by using the value of e pre-
dicted through the CCD scheme is more accurate. The range of e values computed by using the
CCD scheme is also closer to that of the exact solution.

The plot of L1 error norm of the solution obtained with different values of e for solving Eq.
(31) at N ¼ 50 is shown in Figure 5. The result obtained by using the conventional FD scheme is
plotted in dash-dotted line for comparison purpose. The solutions obtained by using the value of

Figure 5. L1 error norms of the solution are plotted with respect to e for the Eq. (31) at N ¼ 50:

Figure 6. Distribution of the value of e throughout the domain for the Eq. (31) at N ¼ 50: Red square: e computed by using the
FD scheme. Blue delta: e computed by using CCD scheme. Black circle: e computed by using the exact solution.
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variable e predicted through the FD (red solid line in Figure 5) and the CCD (blue solid line in
Figure 5) schemes have shown a very significant improvement in accuracy as compared to the
conventional FD method and the RBF-FD scheme by using constant e (dashed line in Figure 5).

Figure 6 shows the distributions of the values of e computed by using the FD (red square in
Figure 6) and the CCD (blue delta in Figure 6) schemes at N ¼ 50: The value of e computed
from the exact solution is shown in black circle on the surface. In general, the distributions of
the values of e predicted by using either of the schemes agree well with the one computed from
the exact solution (black circle in Figure 6). Note that there is a discontinuity on the value of e
across the small intervals at y ¼ 0:25 and y ¼ 0:75: Similar distribution pattern on the value of
shape parameter is also observed in [11] by using their error minimization scheme in computing
the optimal value of the shape parameter. Unfortunately, a direct comparison cannot be made
between our computed shape parameter and the one reported in [11]. This is because the nega-
tive value of shape parameter is permitted in the present approach, and an imaginary number
will be obtained if we convert our shape parameter e to their shape parameter c in [11],
where c ¼ 1=

ffiffi
e

p
:

The rate of convergence of the solution obtained by using the present RBF-FD scheme is
shown in Figure 7. We also include the results of Bayona et al. [11] generated from their non-
constant shape parameter, and the result of Wright and Fornberg in [25] computed from the
five-node RBF-FD scheme with e ¼ 2:56 (our e is equivalent to their e2; due to different ways of
describing the MQ kernel) as this gives the best solution at N ¼ 10� 100 from their tabulated
results. From Figure 7, it is found that the scheme in [25] has a ROC a of 2, which is similar to
the conventional five-node central differencing scheme. Also, by using the five-node scheme, the
scheme in [11] and our RBF-FD scheme improve the ROC to 3 and 4, respectively. This shows
that the use of a variable shape parameter is able to eliminate the leading error term in the dis-
cretized equation and increase the ROC.

5.1.2. Computational cost evaluation
From the results above, it is obvious that the solution of the present RBF-FD scheme is more
accurate than that of the conventional FD scheme at the expense of a higher computational cost.
In the present RBF-FD scheme, the optimal value of e and the coefficients of the PDE matrix are
re-computed at every iterative level. The cost-effectiveness of the present RBF-FD scheme is

Figure 7. The rate of convergence of the present RBF-FD scheme for the Eq. (31) using the values of e predicted by using differ-
ent approaches. The results of [9] and [22] are included to compare with the present RBF-FD result.
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investigated by comparing the computing time required to reach a predetermined accuracy level
against that of the conventional FD scheme.

The computational times of the conventional FD and the present RBF-FD schemes are
reported in Table 4 for different grid resolutions. Figure 8 plots the L1 error norm against the
computational time. From this plot, it is apparent that the present RBF-FD scheme (using e pre-
dicted by either FD or CCD schemes) is more cost-effective than the conventional FD scheme,
especially when the grid resolution increases.

Under the same computational time, the RBF-FD scheme with e predicted by using the FD scheme
is more accurate than that by using the CCD scheme. It is noted that CCD scheme requires additional
computational effort (higher number of iterations, see Table 3). Also, due to the implicit procedure of
CCD scheme, additional matrices should be solved. Hence, albeit the fact that the present RBF-FD
scheme with e predicted by using the CCD scheme gives more accurate solution under the same grid
resolution, its computational efficiency is somewhat inferior to that of using the FD scheme.

The effect of iteration number on the solution accuracy is shown in Figure 9. One can see that
the enhancement in solution accuracy is very apparent at the 2nd iteration level. Beyond that, the
solution accuracy is almost similar. Hence, it is interesting to check if the cost-effectiveness of the

Table 4. L1 error norm and the CPU time in solving Eq. (31) by using different schemes at different grid resolutions N:

N

RBF � FD; e ¼ FD RBF � FD; e ¼ CCD

L1 CPU time; T sð Þ L1 (iters) CPU time; T ðsÞ
10 4.432e-3 7.40E-02 2.070e-3 4.39E-01
20 1.545e-4 3.42E-01 4.025e-5 1.25Eþ 00
50 4.364e-6 2.36Eþ 00 1.150e-6 9.29Eþ 00
100 2.551e-7 1.19Eþ 01 7.426e-8 6.67Eþ 01

N

FD scheme

L1 CPU time; T ðsÞ
10 5.619e-4 9.00e-03
20 3.200e-5 5.90e-02
50 8.331e-7 6.49e-01
100 6.266e-8 3.41eþ 00

Figure 8. L1 error norm versus computational time for different schemes applied to solve Eq. (31).
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Figure 9. L1 error norm versus computational time for different schemes applied to solve Eq. (31).

Table 5. L1 error norm and the CPU time in solving Eq. (31) by using the present RBF-FD scheme with only two iterations
for different grid resolutions N:

N

RBF � FD; e ¼ FD RBF � FD; e ¼ CCD

L1 CPU time; T ðsÞ L1 (iters) CPU time; T ðsÞ
10 3.901E-03 1.09E-02 1.530E-02 3.40E-02
20 1.310E-04 1.90E-02 1.512E-05 1.86E-01
50 3.682E-06 1.11Eþ 00 5.318E-07 2.11Eþ 00
100 2.304E-07 5.72Eþ 00 6.921E-08 1.43Eþ 01

Figure 10. L1 error norm versus computational time for different schemes applied to solve Eq. (31). Dashed lines indicate the
solution at the second iteration.
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present RBF-FD scheme could be further improved when the number of iterations is limited
to two.

Table 5 shows the L1 error norm and the computational time when the number of iterations
is limited to two. The results in Figure 9 are overlaid on the plot in Figure 10. It is found that
the cost-effectiveness of the present RBF-FD scheme (e predicted from CCD) is more cost effect-
ive at a certain point. However, as the grid size is further refined, the accuracy per cost of the
proposed RBF-FD scheme is independent of the prediction method of e:

5.1.3. 2D numerical experiment 2
Consider the boundary value problem below:

@2u
@x2

þ @2u
@y2

¼ �f ¼ �5p2sin pxð Þ cos 2pyð Þ; in X ¼ 0; 1ð Þ � 0; 1ð Þ;
u x; yð Þ ¼ sin pxð Þcos 2pyð Þ on @X:

8><
>: (32)

The problem of Eq. (32) has an exact solution of u x; yð Þ ¼ sin pxð Þcos 2pyð Þ: For this problem,

one can easily find that the term � @4u
@x4 þ @4u

@y4

� �
= @2u

@x2 þ @2u
@y2

� �
is 3:4p2: This leads to the constant

value of eopt; that is, 2:7964 for the present RBF-FD scheme. However, the value of the denomin-

ator @2u
@x2 þ @2u

@y2 is zero when y ¼ 0:25 and y ¼ 0:75: Hence, this numerical experiment is to test the

accuracy and the robustness of the present scheme in computing the constant value of eopt:
The problem in Eq. (32) is solved by using the RBF-FD scheme proposed by Feng and Duan

[18]. In their work [18], the expression of the optimal shape parameter for the Poisson equation
is modified by substituting the PDE (Poisson equation) into the equation of shape parameter,
thus replacing the fourth order derivative terms with the mixed derivative term @4u=@x2@y2 and
the second derivative of source term f : The derived optimal shape parameter can be written as:

e ¼ �4
60f x; yð Þ �2

@2u
@x2@y2

� @2f
@x2

� @2f
@y2

" #
(33)

Note that the optimal shape parameter above is expressed as e instead of e2 (as used in [18])
in order to prevent confusion when comparison is performed against the optimal shape param-
eter derived using the present RBF-FD scheme. The substitution of the exact u and f into Eq.
(33) would yield a constant value of e ¼ 17p2=75 ¼ 2:2371:

For the problem in Eq. (32), we compare the L1 error of the solution obtained by using the
present RBF-FD scheme (with 2 iterations) and the RBF-FD scheme of Feng and Duan [18]. The
results are tabulated in Table 6. In general, the accuracy and the rate of convergence of the pre-
sent RBF-FD scheme is on par with those of Feng and Duan [18]. In fact, the RBF-FD scheme
with e computed using the CCD scheme is slightly more accurate.

The values of e obtained from both schemes are shown in Figure 11. As observed, the value of
e is almost constant throughout the domain, except along the lines of singularity, that is, y ¼ 0:25

Table 6. L1 error norm of the solution of the problem in Eq. (32) by using the present RBF-FD scheme and that reported in
[18] for different grid size h:

h

L1 error

Feng and Duan [18] RBF � FD; e ¼ FD RBF � FD; e ¼ CCD

1/5 4.900E-03 3.080E-02 1.446E-02
1/10 4.100E-04 9.979E-04 4.376E-04
1/20 2.920E-05 2.906E-05 9.551E-06
1/40 1.933E-06 1.760E-06 4.701E-07
1/80 1.242E-07 1.171E-07 3.004E-08
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and y ¼ 0:75: The e value computed using Feng and Duan [18] has minor fluctuation along the
singular lines. Meanwhile, the fluctuation of e predicted using the present RBF-FD scheme is
quite apparent near the boundaries. Nevertheless, the accuracy of the present RBF-FD scheme is
not significantly affected.

Although Eq. (33) can produce a smoother value of e near the boundaries, the calculation of
Eq. (33) involves the discretization of derivative terms @2f =@x2 and @2f =@y2: In other words, the
values of f must be known beforehand at the boundaries. It is also interesting to note that there
is a significant difference between the present RBF-FD scheme and the one proposed by Feng
and Duan [18]. The latter does not converge to the conventional finite differencing scheme when
e ! 0; however, the entire discretized term s00ðxÞ reduces to 0.

5.2. Solution of steady convection-diffusion equation

Consider the problem

a
@u
@x

þ b
@u
@y

�k
@2u
@x2

þ @2u
@y2

 !
¼ f x; yð Þ; in X ¼ 0; 1ð Þ � 0; 1ð Þ;

u ¼ u x; yð Þ; on @X;

8>><
>>: (34)

Here, the coefficients a and b in Eq. (34) are the transport velocity in x and y directions,
respectively. The diffusive coefficient is denoted as k:

The discretization of the diffusion term @2u=@x2 þ @2u=@y2 is already described in Section 5.1,
in which the central differencing type of method is applied. However, the discretization of con-
vective terms must take the flow direction of a and b into account. In the present study, the
RBF-FD scheme for convective terms is derived by utilizing the upstream nodes. By using @u=@x
and positive value of a as an example, the upwind discretization can be obtained by constructing
the RBF-FD equation using the local node ði; jÞ and the upstream nodes ði� 1; jÞ and ði� 2; jÞ:

@u
@x

ji;j �
@s
@x

ji;j ¼
0:5ui�2;j�2ui�1;j þ 1:5ui;j

Dx
þ e Dxð Þ 0:5ui�2;j�2ui�1;j þ 1:5ui;j½ �; (35)

The Taylor series expansion of Eq. (35) is:

@s
@x

ji;j ¼
@u
@x

þ Dxð Þ2 �1
3

@3u
@x3

�e
@u
@x

	 

þ Dxð Þ3 1

4
@4u
@x4

	 

þ Dxð Þ4 �7

60
@5u
@x5

þ e
1
3
@3u
@x3

	 

þ O Dx5ð Þ: (36)

Figure 11. Plot of the distribution of e value for grid N ¼ 40 for the problem in Eq. (32). Left: e for Feng and Duan [16]. Right: e
for present RBF-FD computed by using CCD scheme.
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From Eq. (36), it is obvious that if e ¼ � @3u
@x3 = 3 @u

@x

� �
; the order of accuracy of Eq. (35) would

be O Dx3ð Þ: The order of accuracy can be further improved to O Dx4ð Þ by taking into account the

term Dxð Þ3 1
4
@4u
@x4

h i
when computing the optimal value of e :

e ¼ 3 Dxð Þ @
4u

@x4
�4

@3u
@x3

� �
= 12

@u
@x

� �
: (37)

The fourth order derivative term @4u=@x4 is also computed and used during the discretization
of the second derivative term @2u=@x2 þ @2u=@y2: Therefore, when solving Eq. (34), the add-
itional computational cost incurred while improving the order of accuracy of Eq. (35) from
O Dx3ð Þ to O Dx4ð Þ is negligible.

By using the same procedure, the discretization of @u=@y when b is positive can be obtained
from nodes i; jð Þ; ði; j� 1Þ; and ði; j� 2Þ :

@u
@y

ji;j �
@s
@y

ji;j ¼
0:5ui;j�2�2ui;j�1 þ 1:5ui;j

Dy
þ e Dyð Þ 0:5ui;j�2�2ui;j�1 þ 1:5ui;j½ �; (38)

The optimal shape parameter expressed below would provide O Dy4
� 


accuracy of Eq. (38):

e ¼ 3 Dyð Þ @
4u

@y4
�4

@3u
@y3

 !
= 12

@u
@y

� �
: (39)

By using the discretization schemes in Eqs. (28), (35) and (38), the PDE in Eq. (34) is discre-
tized as:

a
@u
@x

þ b
@u
@y

� k
@2u
@x2

þ @2u
@y2

 !
¼ a

0:5ui�2;j�2ui�1;j þ 1:5ui;j
Dx

	 

þ b

0:5ui;j�2�2ui;j�1 þ 1:5ui;j
Dx

	 


� k
ui�1;j�2ui;j þ uiþ1;j

Dxð Þ2 þ ui;j�1�2ui;j þ ui;jþ1

Dyð Þ2
" #

þ edu=dx aDxð Þ �0:5ui�2;j þ 2ui�1;j�1:5ui;j½ �
þ edu=dy bDyð Þ �0:5ui;j�2 þ 2ui;j�1�1:5ui;j½ �
� eDu kð Þ ui�1;j þ uiþ1;j þ ui;j�1 þ ui;jþ1�4ui;j½ �:

(40)

In Eq. (40), edu=dx; edu=dy; and eDu are the shape parameters introduced to optimize the discret-
ization of @u=@x; @u=@y; and @2u=@x2 þ @2u=@y2; respectively. The value of eDu is optimized by
using Eq. (30) outlined in Section 5.1. The shape parameter of the first derivative terms
@u=@x; @u=@y is optimized using Eqs. (37) and (39). Hence, there are three different values of e
at the same node.

5.2.1. 2D numerical experiment 3

�2
@u
@x

þ 2
@u
@y

� @2u
@x2

þ @2u
@y2

 !
¼ 8e2 1�xð Þ þ 8e2y

e� 1
; in X ¼ 0; 1ð Þ � 0; 1ð Þ;

u ¼ e2 1�xð Þ þ e2y�2
e� 1

; on @X:

8>>>><
>>>>:

(41)

The exact solution uðx; yÞ of Eq. (41) above is given as u ¼ e2ð1�xÞ þ e2y�2ð Þ= e�1ð Þ: Note that
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the transport velocity in x-direction is negative for the problem in Eq. (41), hence, the term
@u=@x is discretized by using the nodes i; jð Þ; iþ 1; jð Þ; and iþ 2; jð Þ (see Figure 4).

The L1 error norms of the solution for Eq. (41) obtained by using the present RBF-FD
scheme are tabulated in Table 7. The accuracy of the solution can be obtained through the use of
e computed by using either approach, as the solution accuracies are on par (at the same order of
magnitude) with that using the value of e computed from the exact solution.

The minimum and maximum values of e applied to @u=@x; @u=@y; @2u=@x2 þ @2u=@y2 for
Eq. (41) are tabulated in Table 8. Meanwhile, the distributions of the values of e across the
domain at N ¼ 40 are plotted in Figures 12 and 13. Seemingly, the values predicted by using FD
(red square in Figure 12) or CCD (blue delta in Figure 12) scheme agree well with that computed
from the exact solution, except for the e applied to the discretization of @2u=@x2 þ @2u=@y2;
where the value of e predicted by either numerical approach exhibits a larger discrepancy near

Table 8. Minimum and maximum values of the optimal e predicted by using different approaches in solving Eq. (41). The dis-
cretized equations for @2u=@x2 þ @2u=@y2; @u=@x and @u=@y have their own emin and emax values.

N

eminðemaxÞ
@2u
@x2 þ @2u

@y2
@u
@x

@u
@y

e ¼ FD 10 �0.51 (�0.26) �1.42 (27.09) �1.27 (20.88)
20 �0.46 (�0.23) �1.38 (45.60) �1.30 (40.74)
30 �0.45 (�0.31) �1.36 (62.25) �1.31 (60.71)
40 �0.44 (�0.31) �1.36 (85.09) �1.32 (80.70)

e ¼ CCD 10 �0.46 (�0.26) �1.55 (23.34) �1.16 (23.31)
20 �0.43 (�0.29) �1.45 (42.98) �1.24 (42.88)
30 �0.42 (�0.30) �1.41 (62.87) �1.27 (62.79)
40 �0.42 (�0.31) �1.39 (82.82) �1.29 (82.75)

e ¼ exact solution 10 �0.33 (�0.33) �1.53 (23.04) �1.13 (23.04)
20 �0.33 (�0.33) �1.43 (42.82) �1.23 (42.82)
30 �0.33 (�0.33) �1.40 (62.76) �1.27 (62.76)
40 �0.33 (�0.33) �1.38 (82.74) �1.28 (82.74)

Figure 12. Distribution of the value of e throughout the domain for Eq. (41). Left plot: e for @2u=@x2 þ @2u=@y2: Center: e for
@u=@x: Right: e for @u=@y:

Table 7. L1 error norms of the predicted solution and the number of iterations needed to reach convergent solution for the
Eq. (41).

N e ¼ FD (iters) e ¼ CCD (iters) e ¼ exact solution

10 1.522e-3 (9) 1.736e-3 (18) 1.701e-3
20 2.245e-4 (8) 2.732e-4 (15) 2.364e-4
30 6.947e-5 (7) 7.239e-5 (13) 7.232e-5
40 2.991e-5 (6) 3.098e-5 (11) 3.097e-5
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the domain boundaries. From Figure 12, the optimal values of e for discretization of the terms
@u=@x and @u=@y show a sudden increase at boundaries x ¼ 1 and y ¼ 0; respectively. We have
to stress that this occurs due to the nature of the optimal e for Eq. (41) instead of the computa-
tional error.

The cost-effectiveness of the present scheme is further improved when the number of itera-
tions is limited to two. From Figure 14, it is clear that the solution of the present RBF-FD

Figure 13. Comparing the values of e applied to the discretized terms @2u=@x2 þ @2u=@y2 (red circle), @u=@x (blue circle), and
@u=@y (green circle) in Eq. (41). The points with the value of e > 5 are not shown in the figure.

Figure 14. L1 error norm versus computational time for different schemes applied to solve Eq. (41). Dashed lines indicate the
solutions at the second iteration.
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scheme for N ¼ 10 is as accurate as the solution obtained by using the conventional FD
scheme for N ¼ 40: However, in order to achieve the same level of solution accuracy, the
computation time of the conventional FD scheme is approximately 30 times higher than that
of the present RBF-FD scheme with two iterations. Again, the cost-effectiveness of the RBF-
FD scheme is independent of the prediction method for calculating e as the grid resolution
increases. The error norm and the computation time required for solving Eq. (41) is reported
in Table 9.

5.3. Optimizing e of the whole PDE

In Section 5.2, the value of e is optimized for the derivative terms in Eq. (41), and the results are
obtained using three optimal e values at the same node. Alternatively, the value of e could also be
optimized to eliminate the leading error term of the modified partial differential equation. This
could result in a more generic way of deriving the optimal e; instead of using three different val-
ues of e as outlined in Section 5.2.

By applying the Taylor series expansion, the optimal shape parameter for the discretized con-
vection-diffusion Eq. (34) can be found as

e ¼ 1

12 a Dxð Þ2 @u
@x þ b Dyð Þ2 @u

@y þ k Dxð Þ2 @2u
@x2 þ Dyð Þ2 @2u

@y2

� �� �

a �4 Dxð Þ2 @
3u

@x3
þ 3 Dxð Þ3 @

4u
@x4

� �
þ b �4 Dyð Þ2 @

3u
@y3

þ 3 Dyð Þ3 @
4u

@y4

 !
�k Dxð Þ2 @

4u
@x4

þ Dyð Þ2 @
4u

@y4

 !2
4

3
5:

(42)

Note that the optimal e in Eq. (42) above is also a function of transport velocities a; b and dif-
fusive coefficient k: When a ¼ b ¼ 0; Eq. (34) is reduced to the Poisson equation in Eq. (31).
The optimal shape parameter in Eq. (42) is also simplified to Eq. (30).

By employing the optimal shape parameter in Eq. (42), Eq. (41) is solved again by using the
present RBF-FD scheme. The number of iterations is limited to two. The L1 error norms of the
numerical solutions are tabulated in Table 10. As compare with the result obtained from segre-
gated e (reported in Table 9), there is no significant improvement in terms of the solution accur-
acy. Hence, regardless of whether the shape parameter is optimized for the PDE under

Table 9. L1 error norm and the CPU time in solving Eq. (41) by using the present RBF-FD scheme with only two iterations
under different values of N:

N

RBF � FD; e ¼ FD RBF � FD; e ¼ CCD

L1 CPU time; T sð Þ L1 (iters) CPU time; T ðsÞ
10 6.979e-4 2.40e-2 8.244e-4 3.50e-2
20 1.511e-4 2.02e-1 1.584e-4 2.20e-1
30 5.147e-5 7.41e-1 5.303e-5 6.89e-1
40 2.310e-5 1.83eþ 0 2.367e-5 1.62eþ 0

Table 10. L1 error norms of the solution obtained for Eq. (41) using the optimal e in Eq. (42) at different grid resolutions N:

N RBF � FD; e ¼ FD RBF � FD; e ¼ CCD

10 1.072e-3 1.076e-3
20 1.776e-4 1.405e-4
30 5.705e-5 4.821e-5
40 2.497e-5 2.174e-5
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investigation, or is optimized for each individual term appeared in the PDE, the solution accuracy
is not severely affected.

6. Conclusion

In this article, a new approach to solve the PDE problem with MQ-based RBF-FD scheme using
the optimal value of the shape parameter has been proposed. In the present RBF-FD scheme, the
optimal shape parameter that eliminates the leading error term depends on the local solution
derivatives. In other words, the optimal value of the shape parameter is indeed varying through-
out the domain. The RBF-FD scheme using the constant value of the shape parameter is found to
be more accurate than the conventional FD scheme within a limited range of shape parameter.
However, the proposed RBF-FD scheme employing the optimal shape parameter field has been
found to be more accurate and effective. In general, the present RBF-FD scheme that employs the
shape parameter computed by using the CCD scheme is more accurate than that predicted using
the FD scheme. Even though the computational cost of CCD scheme is higher than that of the
explicit FD scheme, the cost-effectiveness of the RBF-FD scheme is independent of the prediction
methods employed in determining the shape parameter when the number of iterations for calcu-
lating e is limited to 2. Meanwhile, by considering the same grid resolution, the usage of a more
accurate scheme in predicting e would yield a more accurate solution. As a result, it is essential
to predict the derivative terms in the optimal shape parameter by using a more accurate scheme.
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