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Dynamics of bubble-bubble interactions experiencing viscoelastic drag
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The subject of the present theoretical study is the dynamics of bubble-bubble interactions in a viscoelastic
medium. First, new equations for calculating the viscoelastic drag exerted on bubbles during their translational
motion in a viscoelastic medium are derived. The drag equations are incorporated in the bubble-bubble
interaction model in which, thereby, both the translational and radial motions of the bubbles are affected by the
viscoelastic features of the medium. Second, the derived equations are applied to investigate how the viscoelastic
properties of the medium can affect the dynamics of multiple bubbles, as well as how the bubbles can affect each
other. It was discovered that the bubble-bubble interaction can significantly influence the dynamics of a single
bubble. As the distance between the bubbles increases, their effect on each other decreases, and at a distance
of several millimeters, this effect can be neglected. Moreover, it was concluded that with increasing elasticity
and viscosity of the medium, as well with decreasing relaxation time, the effects of other bubbles on the current
bubble’s radial motion can become negligible. The translational motion of the bubbles was investigated for
different viscoelastic models. The elasticity resists the motion of bubbles in space, resulting in a dynamical
steady state of the distance between the bubbles at high elasticity values. The relaxation time of the medium was
also found to be important in terms of the bubbles’ translational movement.
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I. INTRODUCTION

Extensive work has been performed to study cavitation
in Newtonian fluids, particularly in water. Comparatively
fewer investigations have been dedicated to studying cavi-
tation in non-Newtonian fluids, namely, in viscoelastic me-
dia. However, due to the rapidly emerging biomedical ap-
plications, interest in the motion of bubbles in viscoelastic
media has recently increased [1–8]. A detailed review of
those biomedical applications in which cavitation plays an
important role is given in Ref. [9]. Applications include tumor
ablation procedures [10,11], ultrasound contrast agents for
biomedical imaging [12,13], drug and gene delivery [14–17],
sonothrombolysis [18,19], dentistry applications using ultra-
sonically vibrating probes [20,21], and cataract surgery uti-
lizing ultrasound phacoemulsification [22]. Note that in the
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aforementioned therapies, the medium surrounding the bub-
bles is tissue fluid, blood, or saliva that display certain
viscoelastic behavior. Therefore, it is essential to take the
viscoelastic features of the medium surrounding the bubbles
into account in the simulations of these treatments (the current
study will be focused on media represented by blood and
tissue fluid).

In the majority of ultrasound applications of cavitation
described above, multiple bubbles or even a bubble cloud are
generally present. Thus, the dynamics of multiple bubbles,
including their interaction, in viscoelastic media should also
be investigated. A significant contribution has been made by
Doinikov [23–27] to the understanding of the translational
motion of bubbles and their interaction in Newtonian fluids.
Two theoretical descriptions of the translational motion of
bubbles in an acoustic field exist [25]. The first description
uses Newton’s second law for the forces experienced by bub-
bles, which might include primary and secondary Bjerknes
forces, added mass force, viscous drag, buoyancy force, and
gravity [28–31]. The major drawback of this approach is that it
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utilizes time-averaged bubble behavior. The second approach
to calculate the translational motion of bubbles is to couple
bubble dynamics equations with translational motion equa-
tions [23]. This approach is able to calculate instantaneous
translational motion of bubbles and is employed in the current
paper. Additionally, this approach is deemed to be applicable
to strong acoustic fields [25].

The bubble-bubble interaction model employed by
Doinikov [23] does not simulate the viscoelastic properties
of the medium surrounding the bubbles. To be able to de-
scribe bubble-bubble interactions in the biomedical appli-
cations mentioned above, the viscoelastic properties of the
surrounding biological fluid should be taken into account for
both the translational and radial motions of the bubbles.

The radial motion of a bubble is well known to be affected
by the viscoelasticity of the surrounding medium [32–36].
Therefore, the cavitation model should be coupled with a
viscoelastic model that represents the surrounding medium
(as was done in the present authors’ previous studies for the
Gilmore-Akulichev-Zener model [34,37]). However, in the
current paper, the coupling equations are modified. Moreover,
the Keller-Miksis cavitation model in Ref. [23] is replaced
by the Gilmore-Akulichev cavitation model [38], which is
suitable for simulating the bubble dynamics under an acoustic
pulse of high amplitude. The Keller-Miksis model might ex-
ceed its applicability range at high ultrasound intensities [34].

Regarding the translational motion of bubbles, the viscous
drag force should be substituted with the viscoelastic drag
force. Until now, for simulating the translational motion of
bubbles in fluids, only viscous drag has been used (typically in
the Levich form [39]). In the current paper, equations for the
viscoelastic drag were derived because important properties,
such as elasticity and relaxation time, might affect the motion

of bubbles in space. The drag derivation is based on the
approach described in Ref. [40]. In Ref. [40], however, the
derivation was performed for a single bubble of constant
volume. Conversely, in the present paper, the drag equations
are rederived for an oscillating bubble. Then, these equations
are used for the multiple bubble model.

In the present research, equations for calculating the vis-
coelastic drag experienced by bubbles moving in a viscoelas-
tic fluid are presented. Additionally, a new model capable
of describing bubble-bubble interactions under an ultrasound
pulse of high amplitude in a viscoelastic medium is proposed.
Then, the motion of bubbles in space is studied with respect
to the viscoelastic features of the surrounding medium.

II. FORMULATION

A. Bubble-bubble interaction

To describe bubble-bubble interactions, the model devel-
oped in Ref. [23] is modified in the current section. The
model in Ref. [23] describes the translational motion of a
bubble pair in an acoustic field and employs the Keller-Miksis
cavitation model. In the current research, replacing the Keller-
Miksis model with the Gilmore-Akulichev cavitation model
is proposed [38]. This replacement is performed to be able to
describe bubble dynamics when subjected to a driving pulse
of high amplitude. The applicability range of the Gilmore-
Akulichev model is larger than that of the Keller-Miksis
model [34]. The Gilmore-Akulichev model can be applied
for the high Mach number case that occurs at the moment of
bubble collapse.

The scheme of the model is shown in Fig. 1. The equations
that were proposed to describe two bubbles are written as
follows:
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Ṙ2

i

(
1 − Ṙi
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In the above equations, Ri(t ) and Rj (t ) are the radii of the
ith and the jth bubble, and xi(t ) and x j (t ) are the positions
of the centers of the ith and the jth bubble. The indexes i
and j are interchangeable and they stand for the bubbles’
numbers (i.e., {1, 2} or {2, 1}). d (t ) = |x j (t ) − xi(t )| denotes
the distance between the bubble centers. Hi is the ith bubble
enthalpy, Ci is the local speed of sound at the bubble wall,
c∞ is the speed of sound, ρt is the density of the surrounding

medium, τ (i)
rr is the stress in a motion in the r direction

of the ith bubble, B and n are specific constants for the
surrounding medium, p0 is the static background pressure,
p(t ) is the varying driving sound field, p(i)

in is the pressure
inside the ith bubble, S is the surface tension, and R(i)

0 is
the initial radius of the ith bubble. The variable qi is equal

to qi = ∫ ∞
Ri

τ (i)
rr (r,t )

r dr. This variable was introduced to be able
to couple the cavitation model with the viscoelastic models.
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FIG. 1. Schematic of the bubble-bubble interaction model. Two bubbles with radii R1(t ) and R2(t ) and center positions x1(t ) and x2(t ) are
attracted or repelled from each other in a biological viscoelastic fluid. The biological fluid is exposed to an ultrasound driving pulse p(t ). The
bubbles are experiencing bubble-bubble interaction forces and viscoelastic drag D(i)

ve , i = {1, 2}.

F (i)
ex denote instantaneous external forces acting on the bubble,

such as an acoustic force that moves bubbles to pressure nodes
or antinodes (can be referred to as a primary Bjerknes force)
and viscous (viscoelastic) drag.

In the previous paper of the present authors [34], it was
shown that, for high ultrasound frequencies and correspond-
ingly very small periods of the wave (10−6 s in the current
research), even adiabatic equations of state are quite a robust
approximation. Thus, in the present research, the pressures
inside the bubbles are assumed to follow adiabatic equations
of state [41,42], namely,

p(i)
in =

(
p0 + 2S

R(i)
0

)(
R(i)

0

Ri

)3γ

. (5)

However, for a wider range of parameters, the current model
can be extended by modeling the pressure inside the bubble as
a function of the bubbles’ interior temperature and vapor mass
transfer through the bubbles’ surface [37,43].

Only linear wave propagation will be considered in this
paper. The harmonic driving pulse is known to be a fair
approximation of the real ultrasound pulse in terms of the bub-
ble dynamics. Therefore, it is frequently used in simulations
of the cavitation occurring in the ultrasound acoustic field
[32,33,44,45]. Although nonlinear wave propagation effects
can easily be added [46,47]. The ultrasound signal is p(t ) =
A sin(2π f t ), where A is the pulse amplitude and f is the
frequency.

In the system Eqs. (1)–(4), radial pulsations of the bubbles
are represented by Eq. (1) with two extra equations for the
enthalpy and local speed of sound given in Eqs. (3) and (4),
respectively. The terms on the right-hand side of Eq. (1)

have been added to the traditional Gilmore-Akulichev model
to take bubble-bubble interactions into account. The transla-
tional motion of the bubbles is described by Eq. (2). The sec-
ond term in Eq. (2) is the contribution of the added mass force,
which appears during the accelerated motion of the object in
the liquid. The third and fourth terms in Eq. (2) take bubble-
bubble interactions into account. In the current paper, the
drag force is the only external force (F (i)

ex = −D(i)
ve ). The drag

equations will be derived in Sec. II C. Since the aim of this
study is to understand the motion of bubbles in a viscoelastic
medium, the acoustic radiation force Fac = − 4π

3 R3∇p(x, t )
acting on bubbles (the primary Bjerknes force) is neglected in
the current study (under the assumption that there is no phase
difference in ultrasonic pressures acting on both bubbles, and
p = p(t ) in the present one-dimensional model). This force
should be taken into account in the three-dimensional exten-
sion of the current model [24] and will be studied elsewhere.

The cavitation models, such as Rayleigh-Plesset, Keller-
Miksis, Herring-Trilling, and Gilmore-Akulichev, have a lim-
itation because of the assumption of spherical symmetry.
However, there are different approaches in which a bubble will
be able to display an asymmetrical shape deformation. The
studies dedicated to a nonspherical bubble’s translational mo-
tion in a non-Newtonian fluid can be found in Refs. [48–50].

B. Viscoelastic models

Previously, bubble-bubble interactions have been consid-
ered in a viscous medium [23]. However, due to the rapid
emergence of biomedical applications, there is a need to
understand bubbles’ interactions in viscoelastic media. There-
fore, in the present section, the modified bubble-bubble in-
teraction model [Eqs. (1)–(4)] will be coupled with different
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TABLE I. Viscoelastic models.

Differential Relaxation modulus Assumptions for
Viscoelastic model Counting for equation function E (t ) Eqs. (8) and (9)

Newton model Viscosity τrr = 2μγ̇rr μδ(t ) λ1 = 0, G = 0,

λ2 = 0

Maxwell model Viscosity and τrr + λ1τ̇rr = 2μγ̇rr
μ

λ1
e− t

λ1 G = 0, λ2 = 0
relaxation time

Kelvin-Voigt Viscosity and τrr = 2Gγrr + 2μγ̇rr G + μδ(t ) λ1 = 0, λ2 = 0
model elasticity

Zener model Viscosity, relaxation τrr + λ1τ̇rr = 2Gγrr + 2μγ̇rr G + ( μ

λ1
− G)e− t

λ1 λ2 = 0, λ1 < μ/G
time and elasticity

Jeffreys model Viscosity, relaxation τrr + λ1τ̇rr = 2μγ̇rr + 2μλ2γ̈rr
μλ2
λ1

δ(t ) +( μ

λ1
− μλ2

λ2
1

)e− t
λ1 G = 0, λ1 > λ2

time and retardation time

viscoelastic models. For this purpose, it is necessary to pro-
vide the equations for the stress τrr and the additional vari-
able q(t ). In the following, λ1 is the relaxation time of the
surrounding medium, G is the elasticity of the surrounding
medium, μ is the viscosity of the surrounding medium, and
λ2 is the retardation time of the surrounding medium.

In the current research, coupling of the bubble-bubble
interaction with the following models is considered: New-
ton viscous model and Maxwell, Kelvin-Voigt, Zener, and
Jeffreys viscoelastic models. The differences between these
models are summarized in Table I.

The general equation that describes these viscoelastic mod-
els can be written as

τrr + λ1
dτrr

dt
= 2Gγrr + 2μ

dγrr

dt
+ 2μλ2

d2γrr

dt2
, (6)

where γrr is the strain and γ̇rr is the strain rate. For both
compressible and incompressible cases, the strain rate near
the bubble surface is equal to γ̇rr = −2 R2 ˙xR

r3 (derived from
a purely radial solution of the continuity equation while
neglecting terms on the order of c−2, [32]). The strain is thus
γrr = − 2

3r3 (R3 − R3
0), whereas γ̈rr = − 2

r3 (2RṘ2 + R̈R2).
The variable q = ∫ ∞
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r dr is used. Dividing Eq. (6) by r

and integrating the resulting equation from R to ∞, one can
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If the viscoelastic model does not account for the relaxation
time λ1 (i.e., Newton or Kelvin-Voigt models), then the stress
τrr can be calculated directly from Eq. (6), whereas the
variable q in Eqs. (1)–(4) can be obtained from Eq. (7).

In previous investigations using Maxwell family models
[34,35,37,51], the next step was to calculate Eq. (7) at r = R to
obtain an ODE equation for the variable τrr |r=R. However, this
approach incorrectly assumes the equality of the derivatives
dτrr |r=R

dt and dτrr
dt |r=R, as noted in Ref. [33]. Nevertheless, the

coupling equations proposed in Ref. [33] for the Keller-Miksis
cavitation model are not suitable for the current Gilmore-
Akulichev cavitation model. Therefore, in the present paper,
a new, corrected equation for τrr |r=R that can be coupled with
the employed cavitation model is proposed. The derivation is
presented in Appendix A.

As a result of the derivation, the equation for the additional
variable qi and the corrected equation for the stress τ (i)

rr |R that
should be coupled with Eqs. (1)–(4) are as follows:
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Equations (8) and (9) represent the general equations that
can be reduced to the Newton, Maxwell, Kelvin-Voigt, Zener,
and Jeffreys models by setting certain parameters to zero
(Table I).

C. Viscoelastic drag

To date, bubble-bubble interactions have been studied in a
fluid medium by different authors [23–25,52–54]. Therefore,

the viscous drag was typically used in the Levich form [39]:

FD = 12πμRBU (t ). (10)

In the above equation, FD is the drag force, U (t ) is the trans-
lational velocity of the moving bubble, and RB is the radius of
the bubble. Initially, this drag was derived for a bubble with
an unchanged radius at the high Reynolds limit [55].

Equation (10), which corresponds to the Levich drag, sim-
ulates the drag experienced by a bubble in the viscous fluid.
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It would be interesting to determine whether the viscoelastic
properties of the surrounding medium will change the drag
formulation. Additionally, bubbles in Sec. II A are known to
be in an oscillating motion. Therefore, the unsteady drag on
bubbles of variable radii in a viscoelastic fluid is an object
of interest. In the current section, to achieve the above goal,
the drag for a constant-volume sphere in the viscoelastic
medium presented in Ref. [40] is generalized for a bubble of
nonconstant volume. The generalization is performed through
the use of a cell model (as done for a Newtonian fluid in
Ref. [56]). In the present investigation, the obtained drag
equations are presented for different viscoelastic models. The
derived viscoelastic drag equations will then be coupled with
the bubble-bubble interaction model.

The derivation of the drag using the cell model can be
found in Appendix B. The resulting obtained equation is
written as follows:

FD = 2π

3
ρR3

BU̇ + 2πρUṘBR2
B

+ 12πRB

∫ t

−∞
E (t − t1)U (t1)dt1, (11)

where E (t − t1) is a relaxation modulus function.
Equation (11) represents the obtained drag, which consists

of three parts. The first two terms are contributed by the
added-mass force given by the acceleration of the bubble’s
translational motion and the rate of change of the bubble
radius (which was already presented in Refs. [40,56–59]). The
third term is the viscoelastic drag, which is dependent on the
instantaneous values of the velocity and radius of the bubble.
However, note that the first two terms in Eq. (11) are already
included on the left-hand side of Eq. (2). Therefore, external
forces F (1)

ex and F (2)
ex in Eq. (2) should be equal only to the

viscoelastic part of the drag, i.e., the third term in Eq. (11). It
can be written as follows (with the assumption that the fluid is
at the rest state at t = 0):

F (i)
ex =−D(i)

ve = −12πRi

∫ t

0
E (t − t1)Ui(t1)dt1, i = {1, 2}.

(12)

For the bubble in the Newtonian fluid [E (t ) = μδ(t )], Eq. (12)
reduces to the well-known Levich viscous drag (Eq. (10)
[39,60,61]).

The medium surrounding the bubble can be represented
by various viscoelastic models that model different biological
fluids. The viscoelastic part of the drag Dve will be calculated
for different viscoelastic models described in Sec. II B and
summarized in Table I.

1. Newton and Kelvin-Voigt drags

For the calculation of drags corresponding to the New-
ton and Kelvin-Voigt models (i.e., models where λ1 = 0),
the relaxation modulus function can be written as E (t ) =
G + μδ(t ) (Table I). Therefore, the viscoelastic drag can be
calculated as follows using Eq. (12):

Dve = 12πR
∫ t

0
[G + μδ(t − t1)]U (t1)dt1

= 12πRG[x(t ) − x0] + 12πRμU (t )[2θ (t ) − 1]. (13)

In the above equation, θ (t ) is a Heaviside function. At t = 0,
the viscoelastic drag is equal to zero.

Hence, the drag forces for each bubble are defined as
follows for t > 0:

D(i)
ve = 12πRi

[
μẋi + G

(
xi − x(i)

0

)]
, i = {1, 2}, (14)

where x(1)
0 and x(2)

0 are the initial positions of the bubbles’
centers. By setting certain viscoelastic parameters equal to
zero (Table I), Eq. (14) can be reduced to Newton and Kelvin-
Voigt drags.

2. Maxwell, Zener, and Jeffreys viscoelastic drags

For Maxwell, Zener, and Jeffreys viscoelastic models (i.e.,
models where λ1 �= 0), the relaxation modulus function can
be written as E (t ) = G + μλ2

λ1
δ(t ) + ( μ

λ1
− μλ2

λ2
1

− G)e− t
λ1 . The

corresponding viscoelastic drag force derivation is presented
in Appendix C.

Consequently, Eqs. (1)–(4), (8), and (9) should also be cou-
pled with the equations below for calculating the viscoelastic
drag experienced by each bubble:

dD(i)
ve

dt
+

(
1

λ1
− Ṙi

Ri

)
D(i)

ve

= 12πRi

[
G

λ1

(
xi − x(i)

0

) + μ

λ1
ẋi + μλ2

λ1
ẍi

]
, i = {1, 2}.

(15)

When setting certain viscoelastic parameters to zero (Table I),
Eq. (15) can be reduced to the Maxwell, Zener, and Jeffreys
viscoelastic drags.

III. RESULTS

In our simulations, the parameters were set according to
Table II. Unless specified otherwise, the viscosity μ was set
to 0.015 Pa s, the elasticity G was set to 105 Pa, the relaxation
time λ1 was set to 3 × 10−9 s, and the retardation time λ2

was set to 3 × 10−10 s. The equations were solved numer-
ically using the Dormand-Prince fourth-order Runge-Kutta
method with the use of an adaptive step size for controlling
purposes [62].

A. Verification and validation

In Ref. [34], the currently used single-bubble dynamics
model was verified with the analytical and numerical results of
other authors. Comparison of the single-bubble dynamics with
the experimental data will be performed in the current section
for both viscous [70] and viscoelastic media [71]. Since there
is no data available for the motion of multiple bubbles in a
viscoelastic medium, the validation of the current model for
the motion of multiple bubbles will be performed through
comparisons with the numerical results of other authors [23]
for viscous fluids. Multiple bubble dynamics in a viscoelastic
medium will be investigated in the following sections.

In Fig. 2(a), the present results are compared to the experi-
mental data described in Ref. [70]. In Ref. [70], contrast agent
bubbles with a lipid monolayer coating on a gas microbubble
were considered. The data were measured by a high-speed
camera, operated at several millions of frames per second.
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TABLE II. Simulation parameters.

Nomenclature Definition Value Source

ρt Density of the biological fluid 1060 kg/m3 [63,64]
f Ultrasound frequency 106 Hz [4]
A Ultrasound amplitude 106 Pa [4]
p0 Static background pressure 1.013 × 105 Pa [32]
S Surface tension 0.056 kg/s2 [32,65]
c∞ Speed of sound 1540 m/s [32,65]
G Elasticity of the biological fluid 10–106 Pa [32,35,66,67]
λ1 Relaxation time of the biological fluid 10−11–10−7 s [33,35]
μ Viscosity of the biological fluid 0.001–2 Pa s [68]
n Constant in GAZ model 7 [45]
B Constant in GAZ model c2

∞ρt/n − p0 [45]
γ Specific heat ratio for the bubble’s interior 1.4 [69]
λ2 Retardation time of the biological fluid 10−11–10−9 s [33]

The acoustic pulse was in the form p(t ) = A cos(2π f t ). It
consisted of repeated pulses separated by 60 ms, with in-
creasing amplitudes of A = 200 × 103 Pa, 250 × 103 Pa, and
300 × 103 Pa. To perform the comparison, surface tension

was considered to be a function of bubble radius (proposed
in Ref. [70]).

The verification of the current model and numerical so-
lution for the bubbles’ translational motion was performed

FIG. 2. Validation and verification of the current model by comparing our results with the available experimental and numerical data. R(t )
is a bubble radius. (a) Comparison with the experimental data presented in Ref. [70]. f = 2.9 × 106 Hz, R0 = 0.975 μm, c∞ = 1480 m/s,
ρt = 1000 kg/m3, σ = σ (R) [70], μ = 0.001 Pa s, G = 0 Pa, λ1 = 0 s. (b) Comparison with the simulation results presented in Ref. [23].
A = 1.21 × 105 Pa, f = 20 × 103 Hz, R(1)

0 = 6 μm, R(2)
0 = 4 μm, x(1)

0 = 0 μm, x(2)
0 = 200 μm, c∞ = 1500 m/s, ρt = 998 kg/m3, σ =

0.0725 kg/s2, μ = 0.001 Pa × s, G = 0 Pa, λ1 = 0 s. (c) Comparison with the experimental data presented in Ref. [71]. p(t ) = 0, R0 = 355 μm
(Requilibrium = 55 μm), c∞ = 1430 m/s, ρt = 1060 kg/m3, σ = 0.056 kg/s2, μ = 0.089 Pa s, G = 104 Pa, λ1 = 0 s, λ2 = 0 s.
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through comparison with the case presented in Ref. [23].
It consists of dynamically oscillating the distance between
two noncolliding bubbles with the sole viscous forces being
considered. As shown in Fig. 2(b), the current results exhibit
a very good agreement with those in Ref. [23].

The behavior of a single bubble in the viscoelastic medium
was validated with the very recent experimental data pre-
sented in Ref. [71]. The results in Ref. [71] showed the inertial
collapse of the large bubble generated by the short laser pulse
in the polyacrylamide. The pressure inside the bubble was
simulated as a function of the bubbles’ interior temperature
and vapor mass transfer through the bubbles’ surface. The
Kelvin-Voigt viscoelastic model was used in the validation.
As shown in Fig. 2(c), the agreement between the present
solution and the experimental observations is quite good. Note
that later in the current research, the simplified equations for
the bubbles’ interior will be used (Sec. II A).

To the best of the authors’ knowledge, an experimental
study on multiple bubble dynamics in a viscoelastic medium
has not yet been performed. Hopefully, the present study
will motivate some experimental groups to investigate this
topic.

B. Effect of the presence of nearby bubbles
on the single-bubble dynamics

In the majority of studies, single-bubble dynamics are
investigated. However, in real biomedical applications, bubble
clouds are quite often present. In the current subsection, the
effect of bubble-bubble interactions on the dynamics of a
single bubble is examined. For these purposes, bubble dynam-
ics obtained from the isolated bubble model is compared to the
one calculated using the bubble-bubble interaction model with
different viscoelastic drags.

As shown in Fig. 3, single-bubble oscillations are notice-
ably affected by the presence of nearby bubbles compared to
the case of an isolated single bubble. This behavior can be
observed in the case where bubbles are placed relatively close
to each other (initial distance was x(2)

0 − x(1)
0 = 170 μm).

However, in the limiting case, when the distance between the
bubbles is large enough (Fig. 4), the single-bubble dynamics
solutions of the bubble-bubble interaction model and the
isolated bubble model coincide. Two drags were studied in
Fig. 3, namely, viscous Levich drag [Eq. (10)] and viscoelastic
drag in the Zener form [Eq. (15)]. It was shown that radial
oscillations of the bubble are not affected by the choice of the
viscoelastic drag. Being an external force, viscoelastic drag
is expected to affect the translational motion of the bubbles
rather than their radial motion.

As shown in Fig. 4, with increasing initial distance d0

between the bubbles, the effect of the second bubble on the
first bubble is negligible. To determine the distance at which
the impact of the surrounding bubbles on the radial motion
of the single bubble can be neglected, the new variable ζ is
introduced. The variable ζ is chosen in a form of the relative
error measured between the solution curves in the case of
the bubbles being isolated from each other and the case of
the bubble-bubble interaction being taken into account. The

FIG. 3. The effect of the presence of the surrounding bubbles and
viscoelastic nature of the drag on the single-bubble dynamics. Three
cases were considered (on the basis of the Gilmore-Akulichev-Zener
model): single isolated bubble, bubble-bubble interaction model with
Levich viscous drag, and bubble-bubble interaction model with vis-
coelastic drag in a Zener form. (a) The first bubble dynamics. (b) The
second bubble dynamics. R(1)

0 = 5 μm, R(2)
0 = 3 μm, x(1)

0 = 0 μm,
x(2)

0 = 170 μm. μ = 0.015 Pa s, G = 105 Pa, λ = 3 × 10−9 s.

variable ζ is defined as follows:

ζ =
∥∥∥∥Risolated

1 (t ) + Risolated
2 (t )

R1(t ) + R2(t )
− 1

∥∥∥∥
L2

, (16)

where Risolated
1 (t ) and Risolated

2 (t ) are the radii of the first and
second bubbles being isolated from each other. The norm cast
in L2 is defined as follows: ‖g(t )‖L2 = [ 1

T

∫ T
0 g(t )2dt]

1
2 , where

T is several periods of the driving pressure (currently, T was
set to 10 periods). In the present research, ζ = 0.1 is chosen to
be a threshold value such that if ζ is smaller than the chosen
threshold, the effect is considered to be negligible (Fig. 4).
Note that the threshold value ζ = 0.1 can be slightly corrected
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FIG. 4. The effect of the presence of the surrounding bubbles on the single-bubble dynamics for different initial distances d0 between the
bubbles. The solid black line denotes the dynamics of the isolated bubble. When ζ � 0.1, the effect can be neglected. When ζ > 0.1, the
effect is noticeable (red font). R0 = [R(1)

0 + R(2)
0 ]/2. (a) R(1)

0 = 0.1 μm, R(2)
0 = 0.1 μm. (b) R(1)

0 = 0.6 μm, R(2)
0 = 0.2 μm. (c) R(1)

0 = 5 μm,

R(2)
0 = 3 μm. (d) R(1)

0 = 7 μm, R(2)
0 = 6 μm. The viscoelastic parameters are μ = 0.015 Pa s, G = 105 Pa, λ = 3 × 10−9 s.

according to the desired accuracy of simulations. However,
the authors consider the present threshold value ζ = 0.1 to be
already a good choice in terms of the calculations’ accuracy.

In Fig. 4, the effect of bubble-bubble interactions on the
dynamics of a single bubble is shown for several different
bubble radii and distances between bubbles. The initial radii of
the bubbles (R(1)

0 and R(2)
0 ) were varied in the range from 1 to

10 μm. It was determined that at a distance of several millime-
ters, the effect of bubble-bubble interactions on the dynamics
of a single bubble can be neglected (as d0/{[R(1)

0 + R(2)
0 ]/2} �

750 in Figs. 4(c) and 4(d) for micron-sized bubbles). For
very small bubbles (on the order of 0.1 μm and smaller), the
effect of the nearby bubbles can be neglected even at short
distances [ζ < 0.1 at d0/{[R(1)

0 + R(2)
0 ]/2} � 15 in Fig. 4(a)].

This phenomenon occurs only for small bubbles due to the
correspondingly small amplitude of bubble oscillations that
can be observed in Fig. 4(a).

Note that the effect of other bubbles on the current bubble’s
radial motion is dependent on the viscoelastic properties
of the biological fluid in which these bubbles are located.

Therefore, later in this section, the effect of nearby bubbles
will be studied with respect to the viscoelastic features of the
medium.

The elasticity of the surrounding medium is known to
dampen bubble radial oscillations (as was shown in the previ-
ous studies [33–36,72]). This pattern can still be observed in
the current model [Fig. 5(a)]. Since the amplitude of bubbles’
oscillations is much smaller at high elasticities, their influence
on each other should also be less, even at quite short distances
between them. This can indeed be observed in Figs. 6(a)
and 6(c), where for highly elastic fluids, the effect of the
nearby bubble can be neglected even at small initial distances
between the bubbles (d0 = 50 μm). Thus, at high elasticity
values, even the bubbles that are located close to each other
will not significantly affect each other’s radial motion.

Bubbles’ oscillations are well known to be reduced by
the viscosity of the medium [34]. Therefore, with increasing
viscosity, the bubbles’ influence on each other also decreases
[Figs. 6(a) and 6(b)]. In highly viscous fluids, the impact of
other bubbles on the current bubble can be neglected even
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FIG. 5. Viscoelastic effects on the bubbles’ radial motion.
(a) Elasticity effect. Sum of bubble radii R1(t ) + R2(t ) plotted for the
case of x(1)

0 = 0 m, x(2)
0 = 200 μm, λ1 = 3 · 10−10 s. (b) Relaxation

time effect. Sum of bubble radii R1(t ) + R2(t ) plotted for the case
of x(1)

0 = 0 m, x(2)
0 = 200 μm, G = 3 · 103 Pa. R(1)

0 = 5 μm, R(2)
0 =

3 μm. μ = 0.015 Pa s.

for the case where bubbles are placed at short distances (d0 =
50 μm in Fig. 6).

The relaxation time is the time that is required for the
viscoelastic material to return back to the unperturbed state.
Thus, it is expected that small relaxation times of the medium
will suppress the radial motions of the bubbles since the
material permits a fast return to the undisturbed state. The
relaxation time effect is shown in Fig. 5(b). Due to the use of
the new viscoelastic coupling equations Eqs. (8) and (9), an
increase in the relaxation time results in less damping on the
bubble oscillations and faster growth of the bubble (Fig. 5(b),
which is in accordance with [33]). Since bubbles’ oscillations
are larger at longer relaxation times, their influence on each
other is also larger. In Figs. 6(b) and 6(c), it is shown that an
increase in the relaxation time of the medium also enlarges
the initial distance at which bubbles do not impact each

FIG. 6. The distance d0 between bubbles at which their effect on
each other is negligible (ζ � 0.1), plotted for different viscoelastic
properties of the medium. (a) Variation of the elasticity and viscosity
of the medium, λ1 = 3 × 10−9 s. (b) Variation of the relaxation
time and viscosity of the medium, G = 105 Pa. (c) Variation of
the elasticity and relaxation time of the medium, μ = 0.015 Pa s.
R(1)

0 = 5 μm, R(2)
0 = 3 μm.

other’s radial motion. However, the relaxation time effect is
not dominant; it can be observed only at moderate values of
elasticity and viscosity.

It can be concluded that the presence of nearby bubbles
noticeably affects the dynamics of a single bubble. The con-
sideration of multiple bubbles makes the radial motion of a
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FIG. 7. Distance between the bubbles for the Zener, Maxwell,
Newton, and Kelvin-Voigt viscoelastic models with the correspond-
ing viscoelastic drags. R(1)

0 = 5 μm, R(2)
0 = 3 μm, x(1)

0 = 0 μm,
x(2)

0 = 200 μm.

single bubble more complicated. However, depending on the
viscoelastic properties of the medium in which the bubbles are
located, the effect of other bubbles’ presence can occasionally
become negligibly small. This effect becomes negligible with
increasing elasticity and viscosity of the biological fluid, as
well as with decreasing relaxation time.

C. Comparison of different viscoelastic drags

Although the viscoelastic properties of the drag do not
impact single-bubble dynamics (Sec. III B), they are expected
to significantly change the translational motion of the bubbles.
As is known, various viscoelastic models exist. In the current
subsection, the translational motion of the bubbles is exam-
ined with respect to different types of viscoelastic media, i.e.,
different viscoelastic drags.

With the current parameters (Table II), bubbles in a New-
tonian fluid are observed to be drawn to each other with
time (Fig. 7). In addition to the attraction of the bubbles, the
dynamical steady state of the distance between the bubbles
can be observed in the present case. Dynamical steady state
means that the distance between bubbles does not remain
constant; however, its oscillations are sufficiently small, and
the average value over several periods is constant. This stably
oscillating distance between the bubbles can be observed only
for models that account for the elasticity of the surrounding
medium (i.e., Zener and Kelvin-Voigt models). In contrast, for
the Maxwell, Jeffreys, and Newton models, bubbles are drawn
to each other.

With a long calculation time, it is even more obvious that
the elastic properties of the drag force play the key role
in the bubbles’ translational motion. The dynamical steady
state of the distance between the bubbles is obtained for
Zener viscoelastic drag [Fig. 8(a)]. When considering Levich
viscous drag, bubbles tend to collide [Fig. 8(b)].

It can be concluded that the elastic properties of the drag
in the viscoelastic surrounding medium cannot be ignored
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FIG. 8. Viscoelastic drag effect. (a) Motion of the bubble centers
exerted by Zener viscoelastic drag. (b) Motion of the bubble centers
exerted by Levich viscous drag. R(1)

0 = 5 μm, R(2)
0 = 3 μm, x(1)

0 =
0 μm, x(2)

0 = 200 μm.

because they noticeably resist the translational motion of the
bubbles and prevent their collision. A further discussion of
the influence of the viscoelastic properties of the medium on
the bubbles’ translational motion, as well as their variation, is
presented in Sec. III D.

In Figs. 7 and 8, in the case of the absence of the elasticity
component in the drag, the attraction of bubbles can be ob-
served. However, in general, this attraction is not the only pos-
sible pattern of the bubbles’ motion. It is known that pulsating
bodies in fluid either attract each other, when they oscillate in
phase, or repel each other, when they oscillate in antiphase
(as was discovered by Bjerknes and Bjerknes [73,74]). In
particular, according to the classical theory of the secondary
Bjerknes force, there are two scenarios of bubbles’ behavior.
If the frequency of the driving pulse is between the bubbles’
resonance frequencies (which can be calculated according to
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Minnaert’s formula [75,76]), then bubbles are repelled. In all
other cases, bubbles are attracted to each other. However,
recent experimental and theoretical studies [23,30,76–83]
have shown that bubbles do not always behave in agreement
with the classical Bjerknes theory, and their dynamics are
more complicated. Several new effects have been observed.
With increasing amplitude of the driving pulse, the direction
of the secondary Bjerknes force can be different from that in
the classical Bjerknes theory [79]. With decreasing distance
between the bubbles, for the bubbles driven below resonance,
the secondary Bjerknes force can change sign, leading to
the formation of the effect known as “bubble grapes” (stable
clusters of large bubbles with persistent separation distances
comparable to the bubbles’ sizes [80,81,84]). Bubbles can be
in the regime of stable periodic translational motion that is
not present in the classical Bjerknes theory [23,82,83]. In this
case, the dynamical equilibrium distance exists, which can be
an explanation of the effect known as “acoustic streamers,”
when in a strong acoustic field, bubbles group themselves
in branched filamentary structures [23,76]. The mechanisms
causing the new regimes of the bubbles’ motion are not very
clear, and they are currently still under investigation. One
of the profound studies on bubbles’ motion can be found in
Ref. [77], in which the refined Bjerknes theory is proposed,
which includes some newly observed regimes of the bubbles’
motion. The equations derived in Ref. [77] (that correspond
to the bubble-bubble interaction model) are similar to the
currently used ones [23,25].

With the current simulation parameters, bubbles being
repelled from each other are difficult to observe. First, in the
current one-dimensional model, the space propagation of the
ultrasound wave has not been taken into account. However,
consideration of the space propagation of the wave (which
should be taken into account in the three-dimensional model,
as mention ed in Sec. II A) can lead to bubbles’ oscillations
being in antiphase and thus their repulsion. Second, a high
frequency (and amplitude) of the driving pulse has been
considered. However, by using the lower ultrasound frequency
(and amplitude), slight repulsion of bubbles can be captured
on the basis of the current model with consideration of Levich
drag (Fig. 9). Nevertheless, the regimes of the bubbles’ mo-
tion are not the objective of the current investigation. The
present study is focused on illustrating how the newly derived
viscoelastic drag affects bubbles’ motion (where the motion
itself can be either attractive, repulsive, or shifting between
those two). In Fig. 9, it can be observed that the effect of
the viscoelastic drag in the case of the bubbles’ repulsion
is analogous to that in the case of the bubbles’ attraction
(Fig. 8). Later in this paper, ultrasound of high frequency
and amplitude will be considered, while the consideration of
lower frequencies and amplitudes of the driving pulse can be
investigated in future studies.

Note that at lower ultrasound intensities, the inclusion of
viscoelastic features of the medium might switch the direction
of the bubbles’ interaction force. This might occur due to
the change in the frequencies of the bubbles’ oscillations
associated with the viscoelastic effects on bubble dynamics
(discussed in Sec. II A). Nevertheless, at the currently
considered case of high ultrasound frequency and amplitude,
this behavior has not been observed.

FIG. 9. Repulsion of the bubbles at lower ultrasound frequencies
(and amplitudes, A = 1.3 × 105 Pa, f = 20 × 103 Hz). The black
line is the distance between bubble centers experiencing the Levich
viscous drag. The red line is the distance between bubble centers
experiencing the Kelvin-Voigt viscoelastic drag. R(1)

0 = 3 μm, R(2)
0 =

2 μm, x(1)
0 = 0 μm, x(2)

0 = 150 μm, G = 2 × 103 Pa.

D. Influence of the viscoelastic properties of the medium
on the bubbles’ translational motion

The viscoelastic parameters can vary in a wide range for
different biological materials. For example, the elasticity can
range from 0 to 10 MPa [32,35,66,67]. Thus, it is important
to understand how viscoelastic features of the medium can
impact the dynamics of multiple bubbles. In Sec. III C, it
was shown that viscoelastic parameters such as elasticity and
relaxation can affect the bubbles’ translational motion. The
easiest model that takes both elasticity and relaxation time
into account is the Zener model. Moreover, by varying the
viscoelastic parameters, the Zener model can be reduced to
all other considered viscoelastic models, except the Jeffreys
model. Therefore, for studying elasticity, viscosity, and relax-
ation time effects, the description of the surrounding medium
was chosen to be in the Zener form, while the retardation time
effect was examined based on the Jeffreys model.

The effect of the viscoelastic features on the bubbles’ trans-
lational motion is summarized in Fig. 10. Because viscosity
is known to resist the movement of bubbles in space, the
elasticity and relaxation time effects were studied with respect
to different viscosity values. In Fig. 10, it can be observed
that in fluids with either high elasticity or viscosity (or both),
bubbles will remain near their initial locations in space. Thus,
as stated in Sec. III C, increasing elasticity tends to resist
translational motion of the bubbles (as also shown in Fig. 11).
At low values of elasticity and viscosity, at the currently used
parameters, bubbles are attracted toward each other (Fig. 10).

Two patterns of the relaxation time effect were revealed
(Fig. 12). Figure 12(a) shows that larger relaxation times
cause larger oscillations of the bubbles’ spacing. However,
the effect will vanish at high viscosity values (Fig. 10). Mean-
while, with decreasing elasticity of the medium G → 0, larger
relaxation times of the medium start to accelerate bubbles’
attraction (Fig. 12(b): λ > 10−9 s, Fig. 10).

The retardation time λ2 effect was studied on the basis of
the Jeffreys model. However, its contribution was found to be
not significant.
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FIG. 10. Viscoelastic effects on the translational bubbles’ motion
at high ultrasound frequency and amplitude. Zones of the relaxation
time effect are shown by Latin letters. The area ABCD: relaxation
time enlarges the oscillations of the bubbles’ distance. The area
CDEF : large relaxation times accelerate bubbles’ attraction. The
area FGHB: relaxation time effect vanishes.

Overall, there is a significant difference between the mo-
tion of bubbles in the viscoelastic medium in comparison with
the viscous medium. The elasticity of the biological fluid is the
key parameter that affects the translation motion of bubbles.
Moreover, the relaxation time effect was also found to be very
important.

IV. CONCLUSIONS

Due to the rapid emergence of biomedical applications,
interest in the motion of bubbles in viscoelastic media has
recently increased. Most of the previous studies regarding
the motion of multiple bubbles have been performed in
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FIG. 11. Elasticity effect on the distance between the bubbles
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FIG. 12. Relaxation time effect on the distance between the
bubbles d (t ) = x2(t ) − x1(t ). (a) G = 104 Pa. (b) G = 10 Pa. R(1)

0 =
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0 = 3 μm, x(1)
0 = 0 m, x(2)

0 = 200 μm, μ = 0.015 Pa s.

Newtonian fluids. In the present paper, a study of bubble-
bubble interactions in viscoelastic media was performed. To
achieve the above goal, the bubble-bubble interaction model
in the Newtonian fluid [23] was generalized for viscoelastic
media. To elucidate the viscoelastic features of the medium
surrounding the bubbles that impact bubbles’ translational
motion, the relation for viscoelastic drag was derived.

For different applications and materials, different vis-
coelastic models can be suitable. Therefore, the viscoelastic
drag equations were derived for different viscoelastic models.
The elasticity of the surrounding medium was revealed to
be the key parameter in terms of the bubbles’ translational
motion (in addition to the viscosity being conventionally taken
into account). It was shown that the elastic features of the
surrounding medium significantly resist translational motion
of the bubbles. For the parameters considered in the current
paper, the bubbles are drawn to each other in the Newtonian
fluid. Conversely, if the elasticity of the medium is taken into
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account, a dynamical steady state for the distance between the
bubbles can be achieved.

In modern biomedical applications, the ultrasound driving
pulse can be of high amplitude. Therefore, the Gilmore-
Akulichev cavitation model was chosen to simulate the bub-
ble’s radial motion. To allow the radial motion of a single
bubble to be affected by the viscoelasticity of the surround-
ing medium, the cavitation model was also coupled with
the viscoelastic model. Thus, in the model proposed in the
current research, both the translational and radial motions of
the bubbles are affected by the viscoelastic features of the
medium.

Most of the theoretical studies are focused on the dynamics
of a single bubble. However, in the majority of biomedical
applications, bubble clouds are present. Thus, the study on the
radial motion of a single bubble in the multiple-bubble model
was performed. It was concluded that single-bubble dynamics
are noticeably affected by the presence of the nearby bubbles.
However, with increasing distance between the bubbles up to
several millimeters, their influence on each other vanishes.
The influence of bubbles on each other strongly depends
on the viscoelastic properties of the medium in which the
bubbles are located. Increasing elasticity and viscosity, as well
as decreasing relaxation time, of the medium decreases the
effect of other bubbles on the radial motion of the current
bubble (thereby shortening the distance at which this effect
is negligible).

A parametric study with respect to the viscoelastic proper-
ties of the medium was conducted. The effect of the viscoelas-
ticity on the radial behavior of a single bubble has already
been studied by different authors. The current study investi-
gated its effect on the translational motion of multiple bubbles.
The elasticity of the biological fluid (as well as conventionally
taken into account viscosity) significantly resists the transla-
tional motion of the bubbles. At high and moderate elasticity
values, the relaxation time of the surrounding medium can
cause larger oscillations of the distance between the bubbles,
whereas at small elasticity values, large relaxation times start
to accelerate the movement of bubbles in space. It can be
concluded that both elasticity G and relaxation time λ1 are

very important. After the evaluation of the viscoelastic models
considered in the current paper, the Zener model was found
to be the most appropriate one since it accounts for both the
elasticity and the relaxation time.

The present model, based on the relatively simple model
described in Ref. [23], attempts to clarify the impact of the
newly derived viscoelastic drag on the dynamics of bubble-
bubble interactions. In the future, the current model is going
to be expanded to take the three-dimensional movement of
multiple bubbles into account (based on Ref. [24]).
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APPENDIX A: COUPLING STRESS EQUATION
FOR VISCOELASTIC MODELS OF MAXWELL FAMILY

To make the derivation more intuitive, the variables in
strain are separated:

γrr = X (r)Y [R(t )] = X (r)Y (t ),

X (r) = − 2

3r3
, Y (t ) = R(t )3 − R3

0. (A1)

Using hypotheses of casual histories, the stress-strain in-
tegral relationship for viscoelastic fluids is written as follows
[85,86]):

τrr = 2γrr (r, t )|t=0+E (t ) + 2
∫ t

0
E (t − t1)

dγrr (r, t1)

dt1
dt1

= 2X (r)
∫ t

0
E (t − t1)

dY (t1)

dt1
dt1, (A2)

where E (t − t1) is a relaxation modulus function.
For the viscoelastic models, when λ1 �= 0, the relaxation

modulus function can be written as E (t ) = G + μλ2

λ1
δ(t ) +

( μ

λ1
− μλ2

λ2
1

− G)e− t
λ1 (Table I, [85]). Then, one can obtain

τrr = 2X (r)
∫ t

0

[
G + μλ2

λ1
δ(t − t1) +

(
μ

λ1
− μλ2

λ2
1

− G

)
e

t1−t
λ1

]
dY (t1)

dt1
dt1

= 2X (r)GY (t ) + 2X (r)
μλ2

λ1

dY (t )

dt
[2θ (t ) − 1] + 2X (r)

[
μ

λ1
− μλ2

λ2
1

− G

] ∫ t

0
e

t1−t
λ

dY (t1)

dt1
dt1. (A3)

In the above equations, θ (t ) is a Heaviside function.
At r = R, Eq. (A3) is written as

τrr |r=R = 2X (R)GY (t ) + 2X (R)
μλ2

λ1

dY (t )

dt
[2θ (t ) − 1] + 2X (R)

[
μ

λ1
− μλ2

λ2
1

− G

] ∫ t

0
e

t1−t
λ

dY (t1)

dt1
dt1. (A4)
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At t = 0, τrr |r=R(t = 0) = 0. The derivative of the stress Eq. (A4) with respect to t (for t > 0) is given as follows:

dτrr |r=R

dt
= 2G

∂X (R)

∂R
ṘY (t ) + 2GX (R)Y ′

t + 2
∂X (R)

∂R
Ṙ

μλ2

λ1
Y ′

t + 2X (R)
μλ2

λ1
Y ′′

tt

+ 2
∂X (R)

∂R
Ṙ

(
μ

λ1
− μλ2

λ2
1

− G

) ∫ t

0
e

t1−t
λ1

dY (t1)

dt1
dt1 + 2X (R)

(
μ

λ1
− μλ2

λ2
1

− G

)
Y ′

t

− 2X (R)

(
μ

λ1
− μλ2

λ2
1

− G

)
1

λ1

∫ t

0
e

t1−t
λ1

dY (t1)

dt1
dt1

= 2G
∂X (R)

∂R
ṘY (t ) + 2

(
μ

λ1
− μλ2

λ2
1

)
X (R)Y ′

t + 2
∂X (R)

∂R
Ṙ

μλ2

λ1
Y ′

t + 2X (R)
μλ2

λ1
Y ′′

tt

+
(

∂X (R)

∂R
Ṙ

1

X (R)
− 1

λ1

)[
τrr |r=R − 2X (R)GY (t ) − 2X (R)

μλ2

λ1
Y ′

t

]
. (A5)

Equation (A5) can be further written as

dτrr |r=R

dt
= 2GṘ

∂X (R)

∂R
Y (t ) + 2

(
μ

λ1
− μλ2

λ2
1

)
dγrr

dt

∣∣∣∣
r=R

+ 2
∂X (R)

∂R
Ṙ

μλ2

λ1
Y ′

t + 2
μλ2

λ1

d2γrr

dt2

∣∣∣∣
r=R

+
(

∂X (R)

∂R

1

X (R)
Ṙ − 1

λ1

)[
τrr |r=R − 2Gγrr |r=R − 2

μλ2

λ1

dγrr

dt

∣∣∣∣
r=R

]
. (A6)

Then, the above equation can be reduced to

τrr |r=R

(
1 + 3λ1

Ṙ

R

)
+ λ1

dτrr |r=R

dt
= 2Gγrr |r=R + 2μ

dγrr

dt

∣∣∣∣
r=R

+ 2μλ2
d2γrr

dt2

∣∣∣∣
r=R

. (A7)

APPENDIX B: DERIVATION OF THE UNSTEADY DRAG
ON BUBBLES OF VARIABLE RADII

IN THE VISCOELASTIC FLUID

In Ref. [56], by invoking a cell model, the expression of
the drag FD experienced by a bubble of nonconstant volume in
viscous fluid was derived. The model is schematically shown
in Fig. 13. The cell model simulated a spherical bubble that
is restricted by surface S1. A bubble was changing its size

FIG. 13. Schematic of the cell model used for the drag deriva-
tion. A bubble of radius RB with surface S1 is surrounded by fluid of
volume V with surface S2 and radius RS . n1 is a normal to S1, n2 is a
normal to S2, t(α)

1 are unit vectors on S1, and t(α)
2 are unit vectors on

S2. {n1, t(1)
1 , t(2)

1 } and {n2, t(1)
2 , t(2)

2 } are orthogonal. The bubble with
the changing radius RB is moving with velocity U along ex . ε is the
distance between the bubble center and the center of the outer fluid
sphere.

and translationally moving inside a fluid volume that was also
bounded by a sphere with surface S2. In the following, n1

is the normal to S1; n2 is the normal to S2; t(α)
1 and t(α)

2 are
the unit vectors on spheres, respectively; u is the velocity of
an inertial reference frame; and v is the velocity of a nonin-
ertial reference frame (bubble) that is moving with velocity
Uex relative to inertial frame (u = Uex + v). The following
boundary conditions are applied: q1 = n1 · v on surface S1

and q2 = n2 · u on S2. p is the irrotational flow pressure
(simulated by irrotational Bernoulli equation); τ is the stress;
E is the kinetic energy; and D = 1

2 (∇u + ∇uT ) is the strain
rate tensor. A dissipation approximation was performed for
potential flow: u = ∇φ, where φ is the velocity potential.
The boundary conditions at the surfaces of the spheres were
(n1 · (−pI + τ ) · t(α)

1 )|
S1

= 0 (clean gas-liquid interface) and

[n2 · (−pI + τ ) · t(α)
2 ]|

S2
= 0 (the outer boundary is a free

surface). Operation : is a double dot product. For matrix A,
it is defined as follows: A : A = Ai jAi j .

Using the dissipation method and assumption of zero tan-
gential stress on the outer boundary S2, the following equation
for the drag on the bubble was obtained in Ref. [56]

FD = 1

U

(
dE

dt
+

∫
V

τ : DdV − W

)
, (B1)

where

W = −
∫

S1

n1 · (−pI + τ ) · n1(n1 · v)dS

+
∫

S2

n2 · (−pI + τ ) · n2(n2 · u)dS. (B2)
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An approach presented in Refs. [40,87] is followed. A relation for the stress τ = 2
∫ t
−∞ E (t − t1)D[u(χ, t1)]dt1 is considered,

where χ is the path line, χ = x − ex
∫ t
τ

U (t1)dt1. With the equation D[u(χ, t1)] = U (t1 )
U (t ) D[u(x, t )], stress can be written as follows:

τ = 2D[u(x, t )]

U (t )

∫ t

−∞
E (t − t1)U (t1)dt1. (B3)

For the derivation, denote the integral in Eq. (B3) as Ive(t ) = ∫ t
−∞ E (t − t1)U (t1)dt1.

Substitution of the stress from Eq. (B3) into Eq. (B1) leads to

FD = 1

U

{
dE

dt
+

∫
S1

n1 · pI · n1(n1 · v)dS −
∫

S2

n2 · pI · n2(n2 · u)dS + 2Ive(t )

U (t )

×
[∫

V
D : DdV +

∫
S1

n1 · D · n1(n1 · v)dS −
∫

S2

n2 · D · n2(n2 · u)dS

]}
. (B4)

The calculation of the kinetic energy rate dE
dt from the irrotational Bernoulli equation and the Navier-Stokes incompressible

equation can be found in Ref. [56]. After some algebra, Eq. (B4) yields the following expression for the drag on the bubble:

FD =
∫

S1

pn1 · exdS + 2Ive(t )

U (t )

[
−

∫
S1

(n1 · D · n1)n1 · exdS − 1

U

∫
S1

n1 · D · t(α)
1 (t(α)

1 · u)dS + 1

U

∫
S2

n2 · D · t(α)
2 (t(α)

2 · u)dS

]
.

(B5)

In the cell system described above, let RB be the radius of the bubble, Rs be the radius of the surrounding liquid volume, and ε

be the distance between the bubble center and center of the outer sphere. In that notation, the translational velocity of the bubble
will be U = ε̇. Later, the spherical coordinates (r, θ, ϕ) will be used. However, the motion is assumed to occur only in a polar
plane (r, θ ) (the bubble is moving only along one direction, Fig. 13).

Drag equation (B5) can be written as

FD = 2πR2
B

∫ π

0
(p) cos(θ ) sin(θ )dθ + 2Ive(t )

U (t )

[
−2πR2

B

∫ π

0
Drr

∣∣∣∣
RB

cos(θ ) sin(θ )dθ

− 2πR2
B

U

∫ π

0
Drθ uθ

∣∣∣∣
RB

sin(θ )dθ + 2πR2
S

U

∫ π

0
Drθuθ

∣∣∣∣
RS

sin(θ )dθ

]
. (B6)

The following form of the velocity potential is employed [56]:

φ(r, θ, ϕ) = B0

r
+

(
rA1 + 1

r2
B1

)
cos(θ ), A1 = −R3

B

(
U + 2εṘBR−1

B

)
R3

S − R3
B

,

B1 = −R3
BR3

S

(
U + 2εṘBR−1

B

)
2
(
R3

S − R3
B

) , B0 = −R2
BṘB. (B7)

Equation (B7) with RS → ∞ (infinite outer sphere), ε → 0 (two spheres are concentric), and l = 1 can be reduced to

φ(r, θ, ϕ) = B0

r
− 1

r2

R3
BU

2
cos(θ ), (B8)

where the first term is a purely radial solution of the continuity equation (that was mentioned in Sec. II B, [32]) that corresponds
to the external flow generated by bubble oscillations [88]. The second term is equal to the traditional velocity potential for a
spherical bubble moving with velocity U [89].

From Eq. (B7), velocity components can be calculated as follows:

ur = ∂φ

∂r
= −B0

r2
+

(
A1 − 2B1

r3

)
cos(θ ), uθ = 1

r

∂φ

∂θ
= −

(
A1 + B1

r3

)
sin(θ ), uϕ = 0. (B9)

Now, one can calculate the strain rate tensor D:

D =

⎛
⎜⎝

2B0
r3 + 6B1

r4 cos(θ ) 3B1
r4 sin(θ ) 0

3B1
r4 sin(θ ) − 3B1

r4 cos(θ ) − B0
r3 0

0 0 − 3B1
r4 cos(θ ) − B0

r3

⎞
⎟⎠. (B10)

Then, Eq. (B6) can be calculated using Eq. (B10) for the strain rate tensor.
With RS → ∞, one can obtain the following expression from Eqs. (B6) and (B10):

FD = 2π

3
ρR3

BU̇ + 2πρUṘBR2
B + 12πRB

∫ t

−∞
E (t − t1)U (t1)dt1. (B11)

023109-15



ZILONOVA, SOLOVCHUK, AND SHEU PHYSICAL REVIEW E 99, 023109 (2019)

APPENDIX C: VISCOELASTIC DRAG FOR VISCOELASTIC MODELS OF MAXWELL FAMILY

Using Eq. (12), the viscoelastic drag force can be derived as

Dve = 12πR
∫ t

0

[
G + μλ2

λ1
δ(t − t1) +

(
μ

λ1
− μλ2

λ2
1

− G

)
e− t−t1

λ1

]
U (t1)dt1

= 12πRG[x(t ) − x0] + 12πR
μλ2

λ1
U (t )[2θ (t ) − 1] + 12πR

(
μ

λ1
− μλ2

λ2
1

− G

)
e− t

λ1

∫ t

0
e

t1
λ1 U (t1)dt1. (C1)

At t = 0, the viscoelastic drag equals zero.
Differentiation of Eq. (C1) with respect to t (t > 0) leads to

dDve

dt
= 12πGṘ[x(t ) − x0] + 12πGRU (t ) + 12π Ṙ

μλ2

λ1
U (t ) + 12πR

μλ2

λ1
U ′

t + 12π Ṙ

(
μ

λ1
− μλ2

λ2
1

− G

)
e− t

λ1

∫ t

0
e

t1
λ1 U (t1)dt1

+ 12πR

(
μ

λ1
− μλ2

λ2
1

− G

)(
− 1

λ1

)
e− t

λ1

∫ t

0
e

t1
λ1 U (t1)dt1 + 12πR

(
μ

λ1
− μλ2

λ2
1

− G

)
U (t )

= 12π Ṙ

{
G[x(t ) − x0] + μλ2

λ1
U (t ) +

(
μ

λ1
− μλ2

λ2
1

− G

)
e− t

λ1

∫ t

−∞
e

t1
λ1 U (t1)dt1

}

+
[

12πGRU (t ) + 12πR
μλ2

λ1
U ′

t + 12πR

(
μ

λ1
− μλ2

λ2
1

− G

)
U (t )

]

+ 12πR

(
μ

λ1
− μλ2

λ2
1

− G

)(
− 1

λ1

)
e− t

λ1

∫ t

0
e

t1
λ1 U (t1)dt1

= Ṙ

R
Dve +

{
− 1

λ1
Dve + 12

λ1
πRG[x(t ) − x0] + 12

λ1
πR

μλ2

λ1
U (t )

}
+

[
12πR

μλ2

λ1
U ′

t + 12πR

(
μ

λ1
− μλ2

λ2
1

)
U (t )

]

= Dve

(
Ṙ

R
− 1

λ1

)
+ 12

λ1
πRG[x(t ) − x0] + 12πR

μ

λ1
U (t ) + 12πR

μλ2

λ1
U ′

t . (C2)

Equation (C2) can be written as

Ḋve +
(

1

λ1
− Ṙ

R

)
Dve = 12πR

{
G

λ1
[x(t ) − x0] + μ

λ1
U (t ) + μλ2

λ1
U ′

t

}
. (C3)
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