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Abstract. Turbidity current over a Gaussian-bump is investigated numerically using
the upwinding combined compact difference (UCCD) scheme and the immersed bound-
ary (IB) method in Cartesian grids. In the prediction of lock-exchange gravity-driven
flow motion, the initial discontinuous concentration field is smoothed to avoid numer-
ical oscillation by solving the Hamilton-Jacobi equation. The UCCD spatial scheme
with sixth-order accuracy which introduces less dispersion errors is then used to dis-
cretize advection and diffusion terms in the calculation of concentration transport
equation. Direct forcing IB method is employed to treat solid object bumps in the fluid
flow. The incompressible Navier-Stokes solutions are obtained through the projection
method. Analysis of the smoothing procedure, grid sensitivity and the effect of the
Schmidt numbers is performed for the turbidity current problem to validate the pro-
posed numerical algorithm, which is shown to be capable of accurately demonstrating
their results. Finally, several problems of turbidity current over a three-dimensional
seafloor are investigated. The front locations of the currents interacting with the bump
are predicted under different Reynolds numbers. Also, the current properties, namely
the suspended particle mass, sedimentation rate and energy budget, are compared
with the available numerical results.
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1 Introduction

The density difference between flow and its ambient environment results in the forma-
tion of gravity currents [1–4]. Among all types of gravity currents, turbidity current, has
a tendency to be slowed down earlier due to settlement-induced energy loss of particles.
Turbidity current is ubiquitous in various natural processes. For example, the turbid-
ity currents flowing down continental shelves can suddenly release dense gases into the
atmosphere. Besides, turbidity currents can interact with seafloors of various shapes,
which may form complex topographical features including fans and lobes, gullies, lev-
ees and sediment waves [5–7]. Further investigation is needed to study the dynamical
mechanism of turbidity currents.

Laboratory experiments have been conducted to investigate evolution of turbidity
currents [8]. A high resolution scheme is then adopted to investigate gravity currents
in a rectangular domain with a varying slope [9]. The lock-exchange gravity current
propagating along a flat bottom is studied by a two-way coupled Euler-Lagrange model
proposed by Chou et al. [10]. Their numerical simulations have revealed more detailed
features of particle-laden flow concerning front location and deposited mass. For more
information about the theoretical formulation and application of two-way coupled Euler-
Lagrange models, one can refer to [11, 12]. Large Eddy Simulation (LES) is applied to
study the evolution of gravity currents and its interaction with structures on complex 3-
D seafloors under high Reynolds number conditions [13]. Direct Numerical Simulation
(DNS) is also applied to investigate the interaction of turbidity currents with bumps of
various shapes. Investigation shows that mixing of gravity currents with the ambient
environment is not as intensive as that of turbidity currents because of the difference in
particle settling velocity [5]. Refs. [14–18] discussed the features of turbidity current and
its accompanying instability mechanism in detail using high resolution schemes.

High resolution schemes, i.e., ENO (Essentially non-oscillatory) and WENO (Weighted
essentially non-oscillatory) [19, 20], usually adopt different nonlinear adaptive proce-
dures to obtain locally smoothest stencils, to suppress numerical oscillations across phys-
ical discontinuities. It is well known that ENO and WENO schemes are over-dissipative
in turbulence simulation because of the excessive dissipation introduced. Continuous
efforts have been dedicated to WENO schemes to expand its application area. Latest
development in WENO schemes can be found in [21].

Different from high resolution schemes, compact schemes receive in-depth investiga-
tion in DNS of Navier-Stokes simulation thanks to their advanced capability in providing
high accuracy solutions [22]. Besides, compact schemes are less costly and more accurate
than explicit finite difference schemes. Centered compact difference schemes were first
proposed by Lele [23] in 1970s. However, due to its zero-dissipation property, centered
compact difference schemes may induce high-frequency oscillations in smooth flow re-
gions. In order to eliminate this high-frequency oscillation, artificial viscosity should be
included. Upwind compact schemes contain inherent artificial viscosity, which makes it
more stable than centered compact schemes [24–29]. It should be noted, however, that, it
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may be premised that the introduced artificial viscosity should not be too large. Other-
wise, it may smear genuine physical properties.

In order to predict fluid flows in regions bounded by complex geometry, the Immer-
sive Boundary method (IB) is applicable to problems with irregular solid objects, and
does not necessarily have to conform to Cartesian grids. Because grids do not conform to
the solid boundary, proper boundaries should be imposed to carefully modify the gov-
erning equations around the boundary. Sheu et al. [30] developed an exact advection-
diffusion-reaction scheme, which has already been successfully applied to get flow so-
lutions in irregular domains using IB methods. Interpolation techniques have been pro-
posed by some researchers to evaluate the momentum forcing term [31, 32]. However,
application of polynomials in algebraic-based interpolations to treat boundaries may to a
more or less extent induce numerical instabilities. Differential-based interpolations have
been proposed to improve classical algebraic-based interpolations [33]. More examples
using IB methods can be found in Refs. [34, 35].

The focus of this study is to smoothen the discontinuous initial concentration field by
solving the Hamilton-Jacobi equation introduced in [36, 37]. Then, UCCD scheme [25]
is adopted, which introduces less dispersion and dissipation errors into the formulation
and thus enables simultaneously approximating both first and second derivatives in the
concentration transport equation. Section 2 introduces the mathematical model including
governing equations and immersed boundary methods. Section 3 presents the problem
under investigation. Numerical methods of the turbidity current is presented in Section
4. Features of the turbidity current are discussed in Section 5, where comparison against
predicted results of Nasr-Azadni and Meiburg [7] is also made. Energy budget is also
discussed. Section 6 presents major conclusions drawn from this study.

2 Mathematical model

2.1 Governing equations

The motion of an incompressible viscous fluid flow under investigation is governed by
the following three-dimensional dimensionless continuity and momentum equations [14,
38]

∇·u=0, (2.1)

∂u

∂t
+u·∇u=−∇p+

1

Re
∇2u+c eg. (2.2)

In this elliptic-parabolic set of partial differential equations, u and p represent the di-
mensionless velocity vector and pressure, respectively. The vector eg which is defined as
(0,0,−1)T denotes the unit vector in the direction of gravitational acceleration. The term
c eg in Eq. (2.2) is denoted as the buoyancy force vector derived from the assumption that
the density difference between the particle-laden and clear fluid is minor. The Reynolds
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number is defined as

Re=
ûbĤ/2

v̂
, (2.3)

where v̂, Ĥ and ûb denote the kinematic viscosity coefficient, lock height and buoyancy
velocity, respectively. The buoyancy velocity shown in Eq. (2.3) is defined as

ûb=

√

Ĥ

2

(ρ̂p− ρ̂0)Cr

ρ̂0
ĝ. (2.4)

In Eq. (2.4), ρ̂p and ρ̂0 are the particle density and the ambient fluid density, respectively.
Cr denotes the fraction of particle volume in a cell at t=0. Note that parameters with the
symbol ”∧” are dimensional quantities in all the above equations.

As particles moving with the fluid velocity plus the Stokes settling velocity, the con-
centration fields for c1 and c2 evolve in Eulerian coordinates by

∂ci

∂t
+(ui+ui

seg)·∇ci =
1

SciRe
∇2ci i=1,2. (2.5)

In the above equation, ui
s and Sci (=

v̂
κ̂i

; i = 1,2) are the settling velocity of sediment in
the gravitational direction and the Schmidt number, respectively. The field variable ci

(i = 1,2) denotes the ith particle concentration which has been normalized by the total
initial volume fraction Cr of the particles

ci =
Ci

Cr
, i=1,2. (2.6)

The total concentration c given below is the sum of ci at all the computed locations

c=
2

∑
i=1

ci. (2.7)

In Eq. (2.6), Ci represents the particle concentration field. The particle inertia and particle-
particle interaction are negligibly small in the gravitational direction. It is implied that
the sediment is suspended in the ambient fluid. In line with the physical laws, particles
shall move along with the flow. Also, the Stokes settling velocity can be defined as

us=
d̂2

p(ρ̂p− ρ̂)ĝ

18µ̂
. (2.8)

It should be kept in mind that the particle settling velocity results from the balance be-
tween the gravitational force and the Stokes drag force over a sphere in a flow of uniform
velocity. The above Stokes settling velocity us is the function of particle diameter d̂p and
dynamic viscosity coefficient µ̂. Settling velocities on fine particles (u1

s =0.006) and coarse
particles (u2

s =0.03) are prescribed differently. Schmidt number Sci describes the ratio of
the kinematic viscosity v̂ to the molecular diffusion coefficient κ̂, whose effect on the dy-
namics of fluid flow can be ignored when Sci ≥O(1). The Schmidt number is therefore
set to have the value of unity in this study [7].
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2.2 Direct forcing Immersed Boundary (IB) method

First of all, the interface-grid relation should be established using the given immersed
boundary description, which can be a parametric curve, surface or triangulation. On this
basis, all the grid points can be classified into three categories, i.e., fluid points, forcing
points, and solid points. Fluid points refer to the points in the fluid phase, forcing points
refer to the points in the fluid phase with a few neighboring points in the solid phase, and
solid points refer to the grid points within the solid structure (See Fig. 1). The Navier-
Stokes solver is universally applicable to all the three categories of grid points. The force
exerted by the structure on the fluid, represented as a forcing vector fn+1

i , is introduced
as a source term in the momentum equation to simulate the effect of immersed boundary
on the flow field:

∂u

∂t
+u·∇u=−∇p+

1

Re
∇2u+c eg+fn+1

i . (2.9)

The forcing vector in Eq. (2.9) can be evaluated in the following way. First, use the explicit
forward Euler scheme to solve the provisional velocity field ũi for ûi in the following
equation

ûi−un
i

∆t
+un

i ·∇un
i =−∇pn

i +
1

Re
∇2un

i +cn
i eg. (2.10)

Figure 1: Grid classification for the forcing, fluid and solid points.
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Following this, substitute the ûi with u f in Eq. (2.10) to directly derive the forcing func-

tion fn+1
i :

fn+1
i =

û f −un
i

∆t
+un

i ·∇un
i +∇pn

i −
1

Re
∇2un

i −cn
i eg. (2.11)

This forcing is direct because the desired velocity is prescribed on the boundary in prior.
When the interface and the forcing points happen to coincide, then û f is the prescribed
velocity boundary condition and the prescribed or predicted local velocity of the im-
mersed body. Usually, the grid points and the moving interface can hardly coincide, and
the fn+1

i has to be computed using the given information. One can adopt the linear inter-
polation scheme presented in Ref. [33]. In fact, no interpolation is needed in our study,
and the geometry is described in a percentage of the solid volume way [39]. Detailed
algorithm of IB method in this study described in Section 4.3 can be seen.

3 Problem description and boundary condition

3.1 Problem description

The dam-break flow resulting from removal of the lock as shown in Fig. 2 will impound
the fresh water reservoir, thereby resulting in a flood over the Gauss-bump under inves-
tigation. The parameters are tabulated in Table 1 for all simulation cases. For the FL, B1
and B2 cases, the same lock and the same dimensionless settling velocity (u1

s = 0.03 for
coarse particles and u2

s =0.006 for fine particles) are considered. There is no bump in the
downstream end in the FL case while the bump height is 0.25 and 0.5 for the case B1

and B2, respectively. The cases B2−GC1 have the same parameters as those of the case
B2, except that the settling velocity in cases B2−GC1 is zero. The cases B2−GC1 are
simulated to observe the difference between gravity and turbidity currents.

Table 1: Parameters for the five simulation cases.

Name Shape

Bump

Re

Number of Domain size Lock-dimensions

height(h) grid points (Lx,Ly,Lz) (Ls,H,W)

(Nx,Ny,Nz)

FL Flat 0 2000 (760,40,60) (38,2,3) (1,2,3)

B1 Bump 0.25 2000 (760,40,60) (38,2,3) (1,2,3)

B2 Bump 0.5 2000 (760,40,60) (38,2,3) (1,2,3)

B2-GC1 Bump 0.5 2000 (760,40,60) (38,2,3) (1,2,3)

B2-GC2 Bump 0.5 5000 (760,40,60) (38,2,3) (1,2,3)
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Figure 2: Schematic of the initial condition for turbidity currents interacting with a Gaussian-bump.

Figure 3: Three different heights of the Gaussian-bump at the bottom surface in simulations FL (h= 0), B1
(h=0.25) and B2 (h=0.5), respectively. In the streamwise direction, the highest point is located at x=5.5.

In this paper, the bump configuration on the bottom surface is defined as:

Z=Γ(x,y), (3.1)

Γ(x,y)=hexp

(

−
(x−xb)

2+(y−yb)
2

2ε2

)

. (3.2)

Here, (xb,yb) denotes the center of the Gaussian bump, which is (5.5,1.5), and the width
is set at ε=0.25. The bump height h is 0.25 for the B1 case, and 0.5 for the B2, B2−GC1

and B2−GC2 cases (see Fig. 3). Note that the initial relative mass fraction held still by
the lock is chosen to be 50% (i.e. c1=0.5 and c2=0.5) for all the cases under investigation.
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3.2 Boundary conditions

3.2.1 Velocity boundary conditions

No-slip boundary conditions are applied on the bottom wall and on the left/right
side walls. Free-slip boundary conditions are imposed on the top wall and up-
stream/downstream side walls.

3.2.2 Concentration boundary conditions

As for the concentration field, the upstream, downstream, left and right boundary condi-
tions are imposed as

{

∂ci
∂x =0 at the upstream and downstream sides (x=0,Lx),
∂ci
∂y =0 at left and right walls (y=0,Ly).

(3.3)

No-flux condition is specified at the top boundary to ensure that no particles are allowed
to penetrate into this boundary [15]:

ciu
i
s+

1

SciRe
·
∂ci

∂z
=0 at top wall (z= Lz). (3.4)

At the bottom boundary, the suspended particles are assumed to leave the computational
domain because of the settling velocity [15]. This is numerically equivalent to

∂ci

∂t
=ui

s

∂ci

∂z
at bottom wall (z=0). (3.5)

4 Numerical method

4.1 Simulation of the concentration field

Resolving the discontinuous concentration field between the particle-laden water (c=1)
and the clear water (c = 0) is a critical issue in the current prediction. High-resolution
advection schemes can be used to capture such a step-like function moving with the
local flow velocity since numerical oscillations across the interface can be effectively sup-
pressed [40, 41]. To reduce oscillatory and distorted solutions, the tangent of hyperbola
for interface capturing (THINC) scheme can be employed as well to compute the numer-
ical flux for the step-like function [42–44]. High-order schemes such as the compact dif-
ference (CD) and combined compact difference (CCD) schemes will inevitably produce
numerical oscillations near discontinuities, thereby resulting in an incorrect prediction
of the concentration. Section 4.1.1 and Section 4.1.2 are aimed to tackle this difficulty by
applying the upwinding compact difference scheme.
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4.1.1 Smoothen the initial discontinuous concentration field

A discontinuous concentration profile prescribed at the initial time t= 0 generates most
often spurious oscillations. To avoid generating any unphysical instability relevant to the
Gibbs phenomenon, the sharp interface will be smeared over a few grid spacings by the
introduced smoothed Heaviside function:

c(x,t=0)=H(φ), (4.1)

where

H(φ)=











0; if φ<−1.5∆x,
1
2 [1+

2φ
3∆x +

1
π sin( 2πφ

3∆x )]; if |φ|≤1.5∆x,

1; if φ>1.5∆x.

(4.2)

In Eq. (4.2), the function φ is the signed distance function and ∆x is the grid spacing. The
signed distance function in the particle-laden water and clear water is defined in a sense
that the function φ0 has the value of 1 in the particle-laden water and −1 in the clear
water. The condition of |∇φ|= 1 is imposed to keep the discontinuous function φ0 as a
signed distance function. In other words, the following Hamilton-Jacobi equation will be
chosen and solved [45–49]

φτ+sgn(φ0)(|∇φ|−1)=0. (4.3)

Note that the signed distance function φ is positive in the particle-laden water while is
negative in the water after initializing the function φ0. Fig. 4 shows the smoothing pro-
cess on the initial discontinuous concentration field c. The fifth-order weighted essen-
tially non-oscillatory (WENO5) scheme [47] and the third-order total variation diminish-
ing Runge-Kutta (TVD-RK3) scheme [50] are applied together to approximate the spatial
derivative term and the temporal derivative term, respectively, shown in the initialization
equation (4.3). Application of Hamilton-Jacobi equation has successfully predicted the
dam-break flow, Rayleigh-Taylor instability, and dislocation dynamics problems [48, 49].

4.1.2 Approximation of the convection and diffusion terms in the concentration

equation

After smoothing the discontinuous concentration field, the upwinding combined com-
pact difference (UCCD) scheme developed for approximation of the spatial derivative
term cx is presented. The novelty of the currently employed combined compact differ-
ence scheme is that the derivative term cxx is also considered as an unknown variable at
each grid point in the derivation of the numerical scheme for cx. The aim is to get the
solution of a spectral-like resolution. In a four-point grid stencil, the numerical schemes
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(a)

(b)

(c)

Figure 4: (a) Schematic of the initial concentration field of the particles and the color function φ0; (b) Color
function φ0 has been initialized to sign distance function; (c) Substitution of φ into H(φ) to derive the continuous
field c.

for ∂c
∂x and ∂2c

∂x2 are expressed below

a1
∂c

∂x
|i−1+

∂c

∂x
|i+a3

∂c

∂x
|i+1

=
1

h
(c1ci−2+c2ci−1+c3ci)−h

(

b1
∂2c

∂x2
|i−1+b2

∂2c

∂x2
|i+b3

∂2c

∂x2
|i+1

)

, (4.4)

−
1

8

∂2c

∂x2
|i−1+

∂2c

∂x2
|i−

1

8

∂2c

∂x2
|i+1

=
3

h2
(ci−1−2ci+ci+1)−

9

8h

(

−
∂c

∂x
|i−1+

∂c

∂x
|i+1

)

. (4.5)
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The coefficients shown in Eq. (4.5) are derived by virtue of the numerical method un-
derlying the Taylor series expansion. The leading truncation error terms are eliminated
by the modified equation analysis, thereby enabling us to get sixth-order accuracy [51].
After reducing the dispersion and dissipation errors by using the dispersion-relation-
preserving scheme introduced in [25], the eight introduced unknown coefficients shown
in Eq. (4.4) can be uniquely determined as a1 = 0.888252, a3 = 0.049229, b1 = 0.150072,
b2=−0.250713, b3=−0.012416, c1=0.016662, c2=−1.970805 and c3=1.954143. Applica-
tion of this upwinding scheme developed in the stencil points i−2, i−1, i and i+1 for ∂c

∂x
yields sixth-order spatial accuracy according to the following derived modified equation
for ∂c

∂x

∂c

∂x
=

∂c

∂x
|exact+0.424003657×10−6 h6 ∂7c

∂x7
+High order terms. (4.6)

4.1.3 Time integration of the concentration equation

To integrate the concentration transport equation given below

dci

dt
= L(ci)=−[(ui+ui

se
g)·∇ci]+

1

SciRe
∇2ci, (4.7)

the third-order TVD Runge-Kutta (TVD-RK3) scheme is applied [50]. The solution of this
ordinary differential equation is obtained through the following three solution steps

c
(1)
i = c

(n)
i +∆tL(c

(n)
i ), (4.8)

c
(2)
i =

3

4
c
(n)
i +

1

4
c
(1)
i +

1

4
∆tL(c

(1)
i ), (4.9)

c
(n+1)
i =

1

3
c
(n)
i +

2

3
c
(2)
i +

2

3
∆tL(c

(2)
i ). (4.10)

4.1.4 Solution procedures for the calculation of concentration equation

High-resolution schemes such as WENO and ENO surely can suppress numerical oscil-
lations. Different from using high-resolution schemes, however, this solution algorithm
aims to propose a compact difference scheme to suppress numerical oscillations. In all
our cases, the error range of the total concentration in each ∆t is 0.001%, when we filter
the under-shoot/over-shoot values through Step G. The computational procedures em-
ployed to obtain the discontinuous concentration field solution by the upwinding com-
bined compact difference (UCCD) scheme are summarized as below:

(Step A) Prescribe the values of φ0=1 in the particle-laden water and φ0=−1 in the clear
water, respectively.

(Step B) Calculate the initialization equation (i.e. Eq. (4.3)) to obtain the signed distance
function φ at time t=L, where L is set to be the maximum length of the computational
domain.
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(Step C) Define the concentration field variable c according to the signed distance func-
tion φ shown in Eq. (4.1).

(Step D) Set c1=
c
2 and c2=

c
2 .

(Step E) Approximate the convection and diffusion terms in Eq. (2.5) using the proposed
UCCD scheme described in Section 4.1.2.

(Step F) Approximate the temporal derivative term using the third-order TVD Runge-
Kutta scheme described in Section 4.1.3.

(Step G) If ci>0.5, set ci =0.5; if ci <0, set ci =0 for i=1,2.

(Step H) Repeat the steps from step ”E” to step ”G” within each time loop. Note that the
procedure (i.e. ”Step A” to ”Step C”) taken to smooth the discontinuous concentration
field is performed only once at t=0.

4.2 Incompressible Navier-Stokes solution solver

4.2.1 Approximation of the convection and diffusion terms in the momentum

equations

The convection terms in the momentum equations are discretized using the third-order
Quadratic Upstream Interpolation for Convective Kinematics (QUICK) scheme. Take u ∂u

∂x
as an example, this term can be approximated as

u
∂u

∂x
=

u

2△x
(ui+1,j,k−ui−1,j,k)−

u+ CF

△x

(

ui+1,j,k−3ui+1,j,k+3ui−1,j,k−ui−2,j,k

)

−
u− CF

△x

(

ui+2,j,k−3ui+1,j,k+ui,j,k−ui−1,j,k

)

, (4.11)

where u+ = 1
2(ui,j,k+|ui,j,k|), u− = 1

2(ui,j,k−|ui,j,k|) and CF = 0.125. Note that the choice
of CF =0, CF =0.25 and CF =0.5 corresponds to the center difference method, second-
order upwind scheme and the Fromm’s scheme, respectively, based on the curvature-
factor convection scheme of Minkowcyz and Sparrow [52]. The viscous terms in the x-
momentum equation can be approximated by the second-order accurate center difference
scheme given below

∂2u

∂x2
=

ui+1,j,k−2ui,j,k+ui−1,j,k

△x2
. (4.12)

4.3 Pressure field

For the sake of effectively solving the pressure field, the projection method introduced
by Chorin in 1972 [53] applied together with the use of IB method has been employed to
solve the time-dependent incompressible flow solutions. In Eq. (2.2), the time derivative
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term is approximated in a way given below to obtain the intermediate velocity u∗ without
considering the pressure and the virtual force terms

u∗−un

△t
+u·∇u=

1

Re
∇2u+c eg. (4.13)

By taking the divergence operator on Eq. (4.13) and imposing the constraint condition
∇·u

′
=0, the Poisson equation for pn+1 can be derived as

∇2 pn+1=
1

∆t
∇u∗. (4.14)

Eq. (4.14) is then solved using the Gauss-Seidel iterative solver to get the solution of pn+1.
The solutions u

′
are computed from the following equations, respectively

u
′
−u∗

△t
+

∂pn+1

∂x
=0. (4.15)

After obtaining the values of u
′
, the relation between un+1 and the virtual force f can be

shown as

un+1−u
′

△t
=η fn+1, (4.16)

where η is the percentage of the solid volume in one cell. Therefore, the force fn+1 can
be calculated according to the following equations to account for the presence of solid
bumps







η=0, un+1=u
′
, fn+1=0 on fluid,

η 6=0, un+1=usolid, fn+1= usolid−u
′

η△t on solid.
(4.17)

In Eq. (4.17), usolid is the solid velocity vector. We provide a detailed calculation for vol-
ume fraction of a solid (i.e. η) in Appendix.

5 Validation studies

Ref. [15] presents a gravity current problem where the suspended mass of particle is
calculated. The model is validated using this problem. Sensitivity of the computational
grids is assessed by calculating the suspended mass of the gravity currents problem [15]:

mi
s=
∫

Ω
ci dv, i=1,2, (5.1)

where Ω is the computational domain.
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5.1 Grid sensitivity analysis

Fig. 5 presents the suspended particle mass against the temporal evolution obtained in
150×20, 375×50, 750×100 and 1125×150 grids. It is observed that results of the sus-
pended particle mass for 375×50 and 750×100 grids are almost identical. In addition,
the suspended particle mass matches quite well with the numerical result in [15]. After
ensuring that the grids are independent of suspended particle mass, the grid interval (i.e.
∆x=0.05) will be carried out in the following three-dimensional current simulations.
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Figure 5: Grid sensitivity test for suspended particle mass.

5.2 Influence of smoothing procedure

The smoothing procedure introduced in Section 4.1.1 implies that the Heaviside func-
tion introduces an interface thickness which depends on the mesh size, and generates
the discrepancy in suspend particle mass among different works. Therefore, the quantity
of suspended particle mass is evaluated with/without smoothing procedure to investi-
gate the performance of the present model. As is shown in Fig. 6, a numerical model
with smoothing procedure tends to yield more accurate results of the concentration field
than a numerical model without smoothing procedure. It is found that Fig. 6(b) exhibits
unreasonable contours of the concentration field (i.e. c>1 at some nodal points).

5.3 Influence of filter/no filter

The present results will never exceed 1 in the sense that we have already filtered the
concentration through Step G. In fact, the upwinding combined compact difference
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(a)

(b)

Figure 6: Influence of the smoothing procedure for concentration values at t = 0.7. (a) With smoothing
procedure; (b) Without smoothing procedure.

(UCCD) scheme described in Section 4.1.2 is not a non-oscillatory one, so that the under-
shoot/over-shoot values for concentration field occur inevitably. We compare the filtered
results with the non-filtered ones for 375×50 girds solution. In Fig. 7, one can see that
under-shoot/over-shoot values appear inevitably in the concentration profile when the
non-filtered step is not used.

5.4 Comparison of upwind scheme and high resolution scheme

Approximation of the convective terms in the concentration equation requires taking the
upwind nodal solutions along the flow direction into consideration. To show the ad-
vantage of the present UCCD scheme, we compared the numerical results derived from
using the weighted essentially non-oscillatory scheme [47], QUICK scheme described in
Section 4.2.1 and the proposed scheme for solving the first derivative terms in Eq. (2.5).
For the sake of comparison, the numerical results by WENO, QUICK and the present



1192 C. H. Yu et al. / Commun. Comput. Phys., 25 (2019), pp. 1177-1212

x

y

1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

C: 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(a)

x

y

1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

C: -0.01 0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95 1.01

(b)

Figure 7: Influence of the filter for concentration values at t=4.8. (a) With filter; (b) Without filter.

method are plotted in Fig. 8(a)-(c). The numerical results with the 375×50 grid only
present slight differences. Fig. 9 shows the comparison of the suspended mass using the
above three schemes.

5.5 Effect of Schmidt numbers

The effect of the Schmidt number Sci on the dynamics of fluid flow is negligible when
Sci ≥O(1). The value of Schmidt number is therefore set to unity [6]. In this study,
different Schmidt numbers Sc=1,20,100 and Sc=1000 are adopted to investigate whether
Schmidt number affects the suspended particle mass. In Fig. 10, one can see that the
suspended particle mass can be accurately predicted at different Schmidt numbers.
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Figure 8: Comparison with difference scheme for concentration values at t=4.8. (a) WENO scheme; (b) QUICK
scheme; (c) Present scheme.
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Figure 10: Effect of Schmidt number on suspended particle mass.

Bonometti and Balanchandar [54] pointed out that effect of the Schmidt number on
the concentration field depends on the Reynolds number. Therefore, the results of four
cases with Re = 100, 1000, 5000 and 10000 at time t = 8 are selected to see whether the
smoothing procedure and artificial dissipation provided for the upwind scheme hide
these differences. Fig. 11(a) presents the results of Re=100. The left column shows the re-
sults using QUICK and WENO schemes without smoothing, and the right column shows
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(a)

(b)

(c)

(d)

Figure 11: Comparison of with/without smooth procedure and WENO/QUICK scheme for concentration values
at t=8.0 at four distinct Reynolds number. (a) Re=100; (b) Re=1000; (c) Re=5000; (d) Re=10000.
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the results with smoothing. It can be seen from the four subfigures that the structure of
the mixing region and the front velocities are almost the same. The Re=1000 results are
shown in Fig. 11(b). Slight differences can be found in the mixing region structure using
both schemes, both with and without smoothing, implying the slight influence of artifi-
cial dissipation provided by upwind schemes on the mixing region structure. However,
neither the smoothing procedure nor the artificial dissipation affects the front velocity. In
Fig. 11(c) with Re=5000, the front velocity is not influenced by smoothing procedure or
artificial dissipation either. In Fig. 11(d) with Re=10000, great disparities can be found in
the mixing region structure between the two schemes, both with and without smoothing.
This indicates that artificial dissipation can influence the structure of the mixing region.
However, the front velocity is not influenced.

6 Current properties and energy budget

The simulated current properties, including the front location, suspended mass, sedi-
mentation rate and energy budget, will be compared with the numerical results of Nasr-
Azadani and Meiburg [7]. The predicted time-evolving structures of the turbidity current
and gravity current are plotted in Fig. 12 and Fig. 13 for the cases B1 and B2−GC1. A
uniform Cartesian grid with the spacing of 0.05 in all the three directions is employed.
The time interval ∆t is equal to 0.005∆x, which is 0.00025.

6.1 Front location

The front location is defined as the farthest downstream location, at which c f exceeds

the threshold value of 10−3 [7]. In Fig. 14, the predicted front locations are seen to match
well with the numerical results of Nasr-Azadani and Meiburg [7] for the turbidity current
cases B1 and B2 simulated at Re= 2000. Fig. 14 also shows that the present results for
the gravity current case (i.e. B2−GC1 and B2−GC2) and the numerical results of Nasr-
Azadani and Meiburg [7] match very well at Re = 2000 and Re = 5000. The Reynolds
number seems to have a negligible effect on the front velocity. In [55, 56], details of the
turbidity current propagation in three stages are shown. In the first stage (or slumping
stage), in which the lock-exchange sediment propagates at a constant velocity, the effect
of the settling velocity on the front velocity of the turbidity current can be almost ignored.
It means that the front velocity of the current is nearly independent of the settling veloc-
ity in the slumping stage. Fig. 14 shows that turbidity currents in the slumping stage
propagate at the constant velocity before t= 15. This simulated result is consistent with
those in [55, 56]. In Fig. 15, the front velocity for the turbidity current (Case B2) and the
gravity current (Case B2−GC1) are similar to each other when the current arrives at the
bump. Afterwards, the settled sediment particles cause the reduction of front velocity to
occur for the turbidity current. However, the current head for the gravity current is still
thick and it moves faster.
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(a)

(b)

(c)

(d)

Figure 12: Time evolution of the turbidity currents over the Gaussian-bump at t=6, 8, 9, and 20. Iso-surfaces
of the concentration field represent the c=0.1 contour.
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(a)

(b)

(c)

(d)

Figure 13: Time evolution of the compositional gravity currents over the Gaussian-bump at t=6, 7, 9, and 14.
Iso-surfaces of the concentration field represent the c=0.1 contour.
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Figure 14: Comparison of the front locations x f (x) with the numerical result of Nasr-Azadani and Meiburg [7].

6.2 Suspended mass

The suspended mass is defined in Eq. (5.1). Beyond t= 15, turbidity currents gradually
slow down (i.e. B1, B2 cases) in comparison with the compositional gravity currents (i.e.
B2−GC1,B2−GC2 cases) as shown in Fig. 14 and Fig. 16. This predicted propagation
is due to the decreased driving force as a result of the loss of suspended particles in
turbidity. In Figs. 16(a) and 16(b), about 50% of the particle mass is still in suspension
at t=20 for all the cases under investigation. It is implied that the presence of obstacles
does not cast any significant influence on the mass of suspended particles.

The temporal evolution of turbidity current B1 for coarse and fine particles are clearly
exhibited in Fig. 17. During the early stage, the concentration field of coarse and fine
particles are almost identical. By t = 16, plenty of coarse particles have already been
settled down, whereas most of fine particles are still in suspension. For the Re=5000 case
(i.e. B2−GC2 case) presented in Fig. 18, a significant effect of the Reynolds number on
the flow evolution is revealed.

6.3 The sedimentation rate

On the bottom surface, the sedimentation rate, which is defined below as the time deriva-
tive of the suspended sediment mass, evolves with time

mi
d=−

∫

A
ui

sc
i
weg ·n dA, i=1,2. (6.1)
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 15: Front location for B2 (the iso-surface in red) and B2−GC1 (the iso-surface in gravy) cases and the
bird’s-eye view. (a),(b) t=8; (c),(d) t=16; (e),(f) t=30.
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Figure 16: Suspended particle mass plotted as a function of time is compared with the numerical results of
Nasr-Azadani and Meiburg [7]. Note that coarse, fine and tot in the figure refer to the normalized suspended

masses of coarse (u1
s =0.03), fine (u2

s =0.006) and all particles, respectively. (a) B1 case; (b) B2 case.

In Eq. (6.1), A denotes the bottom surface area. In addition, n is the normal direction
along the bottom surface of Gaussian-bump, and ci

w represents the particle concentration
at the bottom surface. Sedimentation rate against time for two turbidity cases B1 and B2
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(a) (b)

(c) (d)

Figure 17: Iso-surfaces (c=0.1) of the concentration field are represented at t=8 and t=16 from top to bottom.
(a),(c) coarse particles; (b),(d) fine particles.

(a)

(b)

Figure 18: Time evolution of the turbidity currents over the bump at t=25. Iso-surfaces of the concentration
field represent the ct =0.1 contour. (a) for the B2−GC1 case; (b) for the B2−GC2 case.
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Figure 19: Sedimentation rate plotted as the function of time for two turbidity cases are compared with the
numerical results of Nasr-Azadani and Meiburg [7]. (a) B1 case; (b) B2 case.

.

are plotted in Fig. 19. Good agreement with the numerical results of Nasr-Azadani and
Meiburg [7] can be seen. The sedimentation rate for both particle sizes show a dramatic
change as the authors pointed out in [7, 15]. The bottom topography only poses a weak
impact on the sedimentation rate. In Fig. 20, the time evolution of the concentration
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Figure 20: The concentration field c is predicted for case B1. (a) t=4; (b) t=6. Note that the vertical plane
describes the particle concentration profile at y=1.5.

c=0.95 is exhibited. Since no-slip boundary condition is applied at the bottom wall, the
particle concentration has been reduced.

6.4 Energy budget

The reduction of the mechanical energy is linked to three mechanisms that are responsible
for the changes of εd (implying the loss due to viscous dissipation at macroscopic scale),
εs (implying the loss due to viscous effect in the microscopic Stokes flow around each
particle), ε l (implying the deposition of particles along the bottom boundary)

εd=
∫

Ω

2

Re
SmnSmn dv, Smn=

1

2

(

∂um

∂xn
+

∂un

∂xm

)

, (6.2)

εs =
2

∑
i=1

(

∫

Ω
ui

scidv

)

, (6.3)

ε l =−
2

∑
i=1

(

∫

A
zΓui

sc
i
weg ·ndA

)

. (6.4)

In Eq. (6.2), Smn denotes the symmetric components in the velocity gradient tensor and
zΓ is the surface height along the bottom wall. The energy equation for the rate of change
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Figure 21: Time history of the predicted kinetic Ek, potential energy Ep, dissipation components Ed and Es,
the energy loss El due to particle settling on the bump for the B2 case and Et indicates the total energy. It is
noted that all energy components have been normalized by the initial energy.

of the total mechanical energy is governed by

d

dt
(Ek+Ep)= εd+εs+ε l . (6.5)

Here, Ek and Ep are the kinetic and potential energy components, respectively. Integra-
tion of Eq.(6.5) with respect to time leads to

Ek+Ep+Ed+Es+El = const=Ep0+Ek0=Et, (6.6)

where

Ed(t)=
∫ t

0
εd(t)dt, (6.7)

Es(t)=
∫ t

0
εs(t)dt, (6.8)

El(t)=
∫ t

0
ε l(t)dt. (6.9)

In Eq. (6.6), Ep0 and Ek0 represent the initial potential and kinetic energy in the domain.
Note that the influence of the particle diffusion on the potential energy as indicated in [7]
has been neglected. The predicted kinetic and potential energy results are compared
with those of Nasr-Azadani and Meiburg [7] in Figs. 21-24 for the cases of B1, B2 and
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Figure 22: Total energy time series for three grids. Note that total energy has been normalized by the initial
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B2−GC1. Fig. 21 illustrates the time history of all energy components for case B2. When
the dense fluid is released, potential energy is rapidly converted to kinetic energy, which
has reached its peak magnitude at t≈5. Since then, both the potential and kinetic energy
components decline as a result of the viscous dissipation effect. As a result of the fact
that the bump takes only a small fraction of the bottom boundary, particles settling on
the bump (El) are of O(5%). We have noticed that the total energy is not conserved in
Fig. 21. We believe that this is caused by numerical errors, i.e., numerical dissipation and
dispersion. In order to best conserve the energy, we calculated the results till time t=30
in three grids, 380×20×30, 570×30×45 and 760×40×60. As Fig. 22 shown, total energy
loss for the coarsest grid is 13.5%, while that for the finest one is only 7.5%.

The kinetic and potential energy for B1 and B2 cases are compared in Fig. 23. The
temporal evolution of the energy components for case B2 resembles closely to that of
case B2−GC1 until t= 4 (Figs. 23(c) and 23(d)). In Fig. 24, the viscous (Ed) and Stokes
(Es) dissipation components are compared with the numerical results of Nasr-Azadani
and Meiburg [7]. It is noted that Es is present only in the turbidity currents B1 and B2

since the settling velocity is not taken into account.

7 Concluding remarks

In this paper the upwinding combined compact difference scheme is applied together
with the immersed boundary method in collocated grids to predict gravity and turbidity
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Figure 23: Time history of the predicted kinetic and potential energies, which are compared with the numerical
results of Nasr-Azadani and Meiburg [7]. (a) FL; (b) B1; (c) B2; (d) B2−CG1.

current flows, inside which there is a solid Gaussian-bump. The discontinuous concen-
tration field has been calculated by the proposed algorithm described in Section 4.1 to
avoid numerical oscillations near discontinuities. In other words, this algorithm smooths
the discontinuous initial concentration field by solving the Hamilton-Jacobi equation and
then approximates the smoothed concentration field by solving the concentration trans-
port equation using the UCCD scheme. IB method has been applied aiming to easily
and accurately predict fluid flows in a domain with complex geometry. This new model
developed underlying the projection method can be successfully applied to compute the
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Figure 24: Time history of the predicted dissipation components Ed and Es, which are compared with the
numerical results of Nasr-Azadani and Meiburg [7]. (a) FL;(b) B1; (c) B2; (d) B2−CG1.

incompressible Navier-Stokes solutions. The predicted front location, suspended mass,
sedimentation rate, and energy budget are all in good agreement with the simulated re-
sults using the direct numerical simulation model.
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Appendix

Computation of the volume fraction of a solid (i.e. η) is necessary due to the interaction
of fluid with the bump on the bottom surface (See Fig. 25). A reaction force will be
generated from the bump. The center of a grid is defined in one cell at (xi+ 1

2 ,j+ 1
2
, yi+ 1

2 ,j+ 1
2
)

and finer grids with spacings △x1 and △y1 are chosen to calculate the volume fraction of

the bump. By defining △x
△x1

=M,
△y
△y1

=N, the location of xa,b in one cell can be expressed
as

xa,b =
1

2
(xi− 1

2 ,j+ 1
2
+xi+ 1

2 ,j+ 1
2
)+

△x1

2
+(a−1)△x1, a=1,··· ,M, (A.1)

ya,b =
1

2
(yi+ 1

2 ,j− 1
2
+yi+ 1

2 ,j+ 1
2
)+

△y1

2
+(b−1)△y1, b=1,··· ,N, (A.2)

where M,N denote the number of grid points in one cell along x,y-direction, respectively.
The location (xa,b,ya,b) can be obtained from Eq. (A.1) and Eq. (A.2). The number of the
points S in the solid region is then counted. Finally, the volume fraction of the bump of
interest can be estimated as

η=
S

MN
. (A.3)

Note that the values of M,N shown above are set to be 20.
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Figure 25: Computation of the volume fraction of a solid. M,N denote the number of grid points in one cell
along x,y-direction, respectively.
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