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a b s t r a c t

In this study the efficiency of evanescent wave coupling between two air-clad silica
nanowires in single-mode operation is numerically predicted in time-domain using the
finite difference method. To this end, a three-dimensional scheme developed for solving
the Maxwell’s equations on staggered grids will be employed. The electric and magnetic
field solutions are sought subjected to the zero-divergence condition (or Gauss’s law) in
discrete level. In addition, we aim to conserve Hamiltonians existing in ideal Maxwell’s
equations at all times by adopting the explicit second-order accurate symplectic par-
titioned Runge–Kutta temporal scheme. Moreover, all the spatial derivative terms in
the Faraday’s and Ampère’s equations are approximated by the proposed scheme which
can render not only fourth-order spatial accuracy, but also minimize the discrepancy
between the exact and the derived numerical phase velocities.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

In areas of optical communication, power delivery, and sensing, silica (SiO2) waveguides with diameters greater
than the wavelength of transmitted light have been widely applied in the past three to four decades. With the rapid
progress in fabrication technique, low-loss air-clad waveguides with subwavelength diameters desirable for photonic
device applications are now practically available. An increasing demand on the designs of these modern waveguides for
industrial applications has attracted intensive research recently. In this study, subwavelength-diameter silica nanowires,
which have been known to be one of the promising building blocks for couplers, modulators, resonators, lasers and
sensors, are considered. We aim to predict the efficiency of evanescent wave coupling in two parallel nanowires.

Subjected to an incident electromagnetic wave, schematically shown in Fig. 1, with the wavelength of 633 nm, its
energy shall be concentrated along the direction of wire (or horizontal direction). The field strength decreases sharply in
an exponential-like manner in the direction away from the wire surface, leaving it concentrated only in a region fairly
close to the interface. This type of surface wave propagating along the waveguide surface has been referred to as the
evanescent wave.

Evanescent waves have many applications in optics and acoustics. One can exploit electromagnetic evanescent waves
to exert optical radiation pressure on small particles to achieve different design goals. One can refer to [1] for other
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applications in the presence of an evanescent wave. In this study, we are interested to understand more about the
evanescent wave coupling mechanism between two parallel optical nanowires which allow a single-mode operation and
have a low optical loss.

We consider evanescent wave propagation in parallelly configured silica nanowires whose diameters are very small.
The parameters such as permittivity (ϵ) and permeability (µ) can be used to describe the response of a dielectric silica
to an incident electromagnetic field. The ideal Maxwell’s equations, as a result, can be reasonably applied to model
wave propagation in silica because of its constant dielectric property in visible light region. The finite difference method
developed in time-domain has advantage in conducting wave simulation due to its simplicity in programming and
in computer storage capacity [2,3]. Therefore, the Finite Difference Time Domain (FDTD) method is employed in the
present study to approximate Maxwell’s equations on staggered grids. Our objective is to compute the divergence-free
electromagnetic field solutions.

While approximating the derivative terms in Maxwell’s equations, the numerically introduced dissipation error can
smear wave solution profile. Moreover, the dispersion error can lead to an inaccurately predicted phase speed or group
velocity [4,5]. Since numerically introduced dispersion error can make the scheme less stable, it is essential to develop a
dispersion-error reducing method and apply it to approximate the first-order spatial derivative terms. Prediction of correct
propagation characteristics is the second objective of our scheme development for solving the Maxwell’s equations. On
the long time simulation of the electromagnetic wave prediction, the solution quality can be seriously deteriorated by the
other kind of numerical error arising from the application of non-symplectic temporal schemes. Preserving the symplectic
property in long-term simulation of Maxwell’s equations motivated us to properly approximate the time derivative terms
shown in the Faraday’s and Ampère’s equations.

The rest of this paper is organized as follows. In Section 2, the Maxwell’s equations for simulating EM wave propagation
in non-dispersive silica nanowires are presented. Some remarkable features of the Maxwell’s equations, which are
essential to develop a better numerical scheme in time-domain, are briefly described. In Section 3, the lossless Maxwell’s
equations are approximated in space and time underlying their respective mathematical theories. The explicit symplectic
PRK (Partitioned Runge–Kutta) temporal scheme developed to conserve Hamiltonians in the ideal Maxwell’s equations is
applied. Based on the employed explicit scheme, its corresponding numerical dispersion relation equation (DRE) can be
derived. The scheme endowed with the optimized numerical phase velocity feature is also verified in Section 3. Then, we
will describe the evanescent wave problem in Section 4 and discuss the results predicted in the investigated parallel silica
nanowires in Section 5 aiming to gain a better understanding of the coupling efficiency between two parallel nanowires.
Finally, some concluding remarks are drawn in Section 6.

2. Mathematical model

In visible light region, the dielectric constant of silica remains almost unchanged. As a result, a set of Maxwell’s
equations including three Faraday’s equations, three Ampère’s equations and two Gauss’s equations for modelling
non-dispersive silica in visible light region is employed for solving the field variables E =

(
Ex, Ey, Ez

)T and H =(
Hx,Hy,Hz

)T
∂H
∂t

= −
1
µ

∇ × E, (1)

∂E
∂t

=
1
ϵ

∇ × H. (2)

The above Maxwell’s equations defined in vacuum are known to have many mathematically intriguing properties
which all play key roles in determining the quality of the finite difference solution predicted in time-domain. The helicity
Hamiltonian H1 of the currently investigated infinite-dimensional Hamiltonian equations (1)–(2) is given below [6]

H1 =
1
2

∫
1
ϵ
H · ∇ × H +

1
µ
E · ∇ × E dΩ. (3)

The other quadratic Hamiltonian (or energy density) is given below [7]

H2 =
1
2

∫
µH · H + ϵE · E dΩ. (4)

Both Hamiltonians H1 and H2 will be considered in our discussion of three-dimensional simulated results.
In the presence of eight differential equations, two of Maxwell’s equations shall be neglected for uniquely computing a

total number of six solutions for E and H . Note that Gauss’s law is normally not taken into account since the divergence-
free equations for H and E can be derived analytically from the Faraday’s law and Ampère’s law, respectively, within
the continuous context. However, calculation of the EM wave solutions from Faraday’s and Ampère’s equations may
cause the computed magnetic and electric fields no longer to satisfy two divergence free conditions. One can circumvent
this simulation problem by discretizing the Maxwell equations on staggered grids. The other way of overcoming this
computational difficulty is to force the magnetic and electric divergences towards zero by adding, for example, two
properly introduced gradient terms into the Maxwell’s equations [8–10].
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3. Numerical model

Faraday’s and Ampère’s equations (1)–(2) constitute a Hamiltonian differential system. It is therefore necessary to
numerically preserve the symplectic structure and conserve the total energy. To this end, the second-order accurate
explicit symplectic partitioned Runge–Kutta scheme presented in [11] is adopted to approximate the time derivative
terms shown in (1)–(2).

When applying the finite difference method to solve the hyperbolic Maxwell’s equations in time-domain, we need to
reduce the dispersion and anisotropy errors [12,13]. To this end, all the spatial derivative terms shown in their resulting
semi-discretized equations will be approximated using the modified equation analysis and the dispersion analysis detailed
in [14].

On staggered grids, the first-order derivative terms
∂Hn

y
∂x and ∂Hn

x
∂y at the interior node (i, j, k +

1
2 ) are approximated as

∂Hy

∂x
|
n
i,j,k+ 1

2
=

1
h

[
a1
(
Hy|

n
i+ 5

2 ,j,k+ 1
2
−Hy|

n
i− 5

2 ,j,k+ 1
2

)
+ a2

(
Hy|

n
i+ 3

2 ,j,k+ 1
2
−Hy|

n
i− 3

2 ,j,k+ 1
2

)
+ a3

(
Hy|

n
i+ 1

2 ,j,k+ 1
2
−Hy|

n
i− 1

2 ,j,k+ 1
2

) ]
, (5)

∂Hx

∂y
|
n
i,j,k+ 1

2
=

1
h

[
a1
(
Hx|

n
i,j+ 5

2 ,k+ 1
2
−Hx|

n
i,j− 5

2 ,k+ 1
2

)
+ a2

(
Hx|

n
i,j+ 3

2 ,k+ 1
2
−Hy|

n
i,j− 3

2 ,k+ 1
2

)
+ a3

(
Hx|

n
i,j+ 1

2 ,k+ 1
2
−Hx|

n
i,j− 1

2 ,k+ 1
2

) ]
. (6)

The coefficients a1, a2 and a3 will be determined theoretically below.
It is worthy to note that we intend to reduce the numerical dispersion error in order to get accurately predicted

propagation characteristics in Maxwell’s equations. The strategy of achieving this goal is to equate the numerical phase
velocity and the exact phase velocity υp (≡

ωnum
k ) in the integral range of −mpπ ≤ hk ≤ mpπ . As a result, the error function

defined as
[
|
ωnum

k | − |
ωexact

k |

]2
is minimized in the following weak sense

Ep =

∫ mpπ

−mpπ

[
|
ωnum

k
| − |

ωexact

k
(≡ c)|

]2
Wp d(kx∆x) d(ky∆y) d(kz∆z). (7)

In the above, kx∆x, ky∆y and kz∆z denote the scaled (or modified) wavenumbers along x, y and z directions, respectively.
The function Wp introduced into the above error minimization procedure is for analytically integrating Eq. (7). The value
of mp (= 1

2 ) has been chosen mainly for reducing much of the aliasing error [14]. It is noted that the exact and numerical
dispersion relation equations have been derived in detail in (8) and (9)(ωexact

c

)2
= k2x + k2y + k2z . (8)

1
c2

ω2
num

4

(
sin(ωnum∆t/2)

ωnum∆t

)2

= k2x

(
5
2
a1

sin( 52kx∆x)
5
2kx∆x

+
3
2
a2

sin( 32kx∆x)
3
2kx∆x

+
1
2
a3

sin( 12kx∆x)
1
2kx∆x

)2

+ k2y

(
5
2
a1

sin( 52ky∆y)
5
2ky∆y

+
3
2
a2

sin( 32ky∆y)
3
2ky∆y

+
1
2
a3

sin( 12ky∆y)
1
2ky∆y

)2

+ k2z

(
5
2
a1

sin( 52kz∆z)
5
2kz∆z

+
3
2
a2

sin( 32kz∆z)
3
2kz∆z

+
1
2
a3

sin( 12kz∆z)
1
2kz∆z

)2

. (9)

The minimal value of Ep in (7) is obtained at the limiting condition ∂Ep
∂a3

= 0. This procedure of minimization yields one
algebraic equation

+ 0.013462 a23a1 + 0.024686 a32 − 0.003317 a2 − 0.004562 a1 + 0.075261 a1a2a3
+ 0.105823 a1a22 + 0.078272 a31 + 0.001195 a33 + 0.155929 a21a2 + 0.054814 a21a3
+ 0.026761 a3a22 + 0.009749 a23a2 − 0.001222 a3 = 0 (10)

Eq. (10) is then applied together with the other two algebraic equations given below, which are (11) and (12) derived
from the modified equation analysis of second kind.

5a1 + 3a2 + a3 = 1, (11)

and
125
24

a1 +
9
8
a2 +

1
24

a3 −
Cr2

24
(5a1 + 3a2 + a3) = 0. (12)
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Fig. 1. Schematic of the investigated two overlapped parallel nanowires.

Fig. 2. The computed L2 error norms are plotted with respect to grid spacings to get the spatial rate of convergence.

The three introduced coefficients can then be obtained as a1 = −0.0002985, a2 = −0.0385073 and a3 = 1.1170147.
By virtue of the above minimization procedure implemented in wavenumber space and the modified equation analysis
for ∂Hx

∂x , the proposed space-centred scheme has fourth-order spatial accuracy because the derived modified equation is
∂Hx
∂x =

∂Hx
∂x |exact−0.00489575 h4 ∂5Hx

∂x5
+ O(h6) + · · ·.

For the verification of the applied explicit symplectic PRK temporal scheme and the spatial scheme capable of
preserving dispersion relation equation on staggered grids, the Maxwell’s equations in −1 ≤ x ≤ 1, −1 ≤ y ≤ 1 and
−1 ≤ z ≤ 1 are amenable to the analytic solutions given in [15] investigated at µ = 1 and ϵ = 1

Ex = cos(2π (x + y + z) − 2
√
3π t), Ey = −2Ex,

Ez = Ex, Hx =
√
3Ex, Hy = 0, Hz = −

√
3Ex. (13)

Subject to the initial conditions by setting t = 0 in Eq. (13), the computed errors are tabulated in Table 1 and the
corresponding spatial rate of convergence is plotted in Fig. 2. The proposed dual-preserving scheme in free space for
the TM-mode Maxwell’s equations is verified. The resulting deviation between the predicted spatial rate of convergence
2.44435 and the theoretical order of accuracy (i.e. 4) is mainly due to the use of one-sided second-order accurate scheme
applied at the end points and at the points next to the end points (see Table 2).

The predicted and exact energy densities given in (4) are plotted against time in Fig. 3. Note that the Hamiltonian
defined in (3) is equal to zero. The predicted value of ∇ ·H is almost equal to zero, as shown in Fig. 4, indicating that the
Gauss’s law is satisfied in the discrete level by using the employed explicit symplectic partitioned Runge–Kutta scheme.
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Table 1
Comparison of the computed L2 − error norms at t = 5 (s) using the current and Yee’s schemes.
Present Yee [2]

L2−error norm Grid CPU time (s) L2−error norm Grid CPU time (s)

3.1852E−03 61 × 61 × 61 15.2725 3.2169E−03 218 × 218 × 218 1363.6359
2.2449E−03 71 × 71 × 71 28.6730 2.24778E−03 260 × 260 × 260 2731.1719
1.5974E−03 81 × 81 × 81 48.7659 1.6084E−03 308 × 308 × 308 5438.8657

Table 2
Comparison of the computed L2 − error norms and the CPU times based on the results computed at
t = 5 (s).

L2−error norm CPU time (seconds)

Present Yee [2] Present Yee [2]

41 × 41 × 41 4.6573E−02 0.1107 1.1388 0.5772
51 × 51 × 51 2.1792E−02 0.1031 2.8548 1.3884
61 × 61 × 61 7.1823E−03 7.3707E−02 5.8032 3.0264
71 × 71 × 71 2.6276E−03 5.1761E−02 10.3273 5.2260

Fig. 3. The predicted and exact energy densities are plotted with respect to time.

4. Description of the evanescent wave problem

In the prediction of the coupling efficiency between two optical nanowires of short length, we can reasonably assume
that the parallel wires under investigation are not dissipative and are source free. Under these assumptions, the Maxwell’s
equations can be reduced to a much simplified set of one-dimensional Helmholtz equations given below along the
z-direction in the first wire between x = −1.1375 µm and x = 0 µm schematically shown in Fig. 1

(∇2
+ k2 − β2)Ez = 0,

(∇2
+ k2 − β2)Hz = 0, (14)

where k = 2π/λ = n2k20 and β is denoted as the propagation constant. Note that, ∇2
=

∂2

∂r2
+

1
r

∂
∂r +

1
r2

∂2

∂φ2 in cylindrical
coordinates.

The exact solution for the z-dependence Helmholtz equation takes the form of (Ez,Hz)T = (Ez,Hz)T (r)exp(±ilφ), where
l = 0, 1, 2, . . .. The equation for Ψ = (Ez,Hz)T turns out to be the Bessel equation. The exact solution (or Bessel function
of order l) of the even/odd mode can be derived inside and outside of the core of nanowires. The reader can refer to [16]
or [17] for the derivation of exact solutions.

Having derived the exact solution which is the function of propagation constant β , we need to determine its value for
the investigated subwavelength-diameter silica wire so as to get the incident wave solution. The wave under consideration
involves a silica wire of diameter 2a = 350 nm with n1 = 1.46 operated in single mode with the wavelength λ = 633 nm.
According to the equation derived below or the values of Jl−1 and haJl plotted with respect to the value of ha in Fig. 5

Jl−1(ha)
haJl(ha)

= −(
n2
1 + n2

2

2n2
1

)
K ′

l (qa)
qaKl(qa)

+ [
1

(ha)2
− R], (15)
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Fig. 4. The predicted value of ∇ · H is plotted with respect to time.

we can get ha = 1.6118125 or h = 9205714.286. In the above, R = [( n
2
1−n22
2n21

)2( K ′
l (qa)

qaKl(qa)
)2 + ( lβ

n1k0
)2( 1

q2a2
+

1
h2a2

)2]1/2. Note

that h = (n2
1k

2
0 − β2)1/2, where k0 = 2π/λ = 9926043.139. Now, for the nanowire of radius 175 nm operated in single

frequency (or in wavelength of 633 nm), the propagation constant can be determined as β = 11192566.94. This value
lies exactly on the β curve, which is plotted with respect to 2a, shown in Fig. 6.

Following the above z-dependence exact solution derived in the wire between x = −5.578125 µm and x = 0 µm,
simulation will be carried out in the domain schematically shown in Fig. 1. The solution is sought subjected to a time
harmonic incident wave of amplitude 1. For clearness, the incident electric field Ez(y, z) specified at the plane x = 0 µm
is plotted in Fig. 7.

The nanowire system under investigation involves two cylindrical silica nanowires which have the same diameter
d = 350 nm. These wires placed in parallel and separated by a width of H = 0 are overlapped by different lengths of L.
The refractive index of the two silica nanowires under investigation is n1 = 1.46, whereas the refractive index of air na is
1. The magnitude of the V-number, defined as V =

πd
nλ (n

2
− n2

a), is chosen to be 2.405. The wavelength of the propagating
light (or λ = 633 nm) inside the wire permits single-mode operation [18].

While simulating the EM wave equations (1)–(2) in an open domain, the physical domain needs to be truncated
somewhere because of the limited availability of computer time and memory. In this simulation, we attempt to overcome
this practical difficulty by prescribing a proper boundary condition at users’ truncated boarder to prevent wave re-entry
into the analysis domain and interact with the outgoing wave as time elapses. The Convolutional Perfectly Matched Layer
(CPML) method [19] is applied to calculate the time-dependent solutions from the Maxwell’s equations in the domain
schematically shown in Fig. 1, which contains the absorbing layer.

5. Discussion of results

When two nanowires are in close proximity, they tend to attract each other through the electrostatic force. Under the
circumstances, perturbation theory can no longer be suitably applied to study the mode efficiency of coupling, which is
defined as the fraction of the available output from the upper nanowire (source). We must resort to numerical approach
to calculate the evanescent coupling efficiency. In this study, we will keep the wire diameter unchanged but allow it to
be varied with the overlapping length L. The resulting evanescent wave coupling in two nanowires will be investigated
in detail in the following sections.

5.1. The effect of overlapping lengths on the coupling coefficient

Under the condition of the same nanowire diameter, the coupling efficiency of two parallel nanowires will be
numerically calculated at different overlapping lengths. In this study, fifteen overlapping lengths, namely L = 0 µm,
0.30625 µm, 0.590625 µm, 0.896875 µm, 1.203125 µm, 1.793750 µm, 1.990625 µm, 2.40625 µm, 2.996875 µm,
3.303125 µm, 3.605 µm, 3.89375 µm, 4.06875 µm, 4.790625 µm, 5.096875 µm, are investigated at the condition of
a = 175 nm. Based on the simulated 3D solutions using the proposed solver, we can first calculate their x-components of
the Poynting vector and plot them, for example, at t = 7.29×10−5 s at different values of L. The computed time-dependent
values of Px(x, t) are then integrated over a time period T to obtain the averaged value of Px,ave(x) ≡

1
T

∫ T
0 Px(x, t)dt . This
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Fig. 5. The magnitudes of the terms on the left (blue) and right (red) sides of Eq. (15) are plotted against the value of ha.

Fig. 6. The plot of the coefficient β with respect to d.

Fig. 7. The predicted contours of Ez at the plane x = 0 µm schematic in Fig. 1.
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Fig. 8. The predicted averaged values of Px are plotted with respect to x for the cases investigated at different overlapping lengths. (a) L = 0.0 µm;
(b) L = 0.3 µm; (c) L = 0.6 µm; (d) L = 0.9 µm; (e) L = 1.2 µm; (f) L = 1.8 µm; (g) L = 2.0 µm; (h) L = 2.4 µm; (i) L = 3.0 µm; (j) L = 3.3 µm;
(k) L = 3.6 µm; (l) L = 3.9 µm; (m) L = 4.1 µm; (n) L = 4.8 µm; (o) L = 5.1 µm.
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Fig. 9. The predicted evanescent coupling efficiencies are plotted with respect to the chosen overlapping lengths.

Fig. 10. The predicted contours of Px (z = 0, xy-plane) with respect to time for the case investigated at L = 2.40625 µm. (a) t = 1.98471E − 014
(s); (b) t = 3.37108E − 014 (s); (c) t = 4.93258 (s).

is followed by plotting the profiles of the average Px with respect to x for the cases investigated at different overlapping
lengths in Fig. 8. The coupling efficiency is defined below

Coupling Efficiency ≡
maximum of Px,ave(x) in second nanowire after overlapping position
maximum of Px,ave(x) in first nanowire before overlapping position

.
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Fig. 11. The electric energies predicted in two nanowires are plotted with respect to time. (a) electric energies; (b) magnetic energies; (c) total
energies; (d) ratio of electric and magnetic energies.

Given this definition, we can compute the respective coupling efficiency and plot it with respect to the overlapping length
in Fig. 9.

5.2. Electric and magnetic energies in two nanowires

Subjected to a prescribed incident z-dependence wave at the x = 0 µm plane, we can compute the time varying values
of Px from the simulated solutions of Maxwell’s equations. Take the overlapping length L = 2.4 µm as an example, the
contours of Px plotted with respect to time in Fig. 10 show us how the wave energy is propagated from the first nanowire
to the second nanowire. Based on the simulated electric and magnetic field solutions, we plot the electric energy

∫ 1
2ϵE

2dV
in Fig. 11(a) and the magnetic energy

∫ 1
2µH2dV in Fig. 11(b) with respect to time. The result of the total energy with

respect to time is plotted in Fig. 11(c). Also, the percentages of the total energy in two nanowires are plotted in Fig. 11(d) to
indirectly validate the simulated results. We can also compute the time rate of the total energy, or ∂

∂t

∫
( 12ϵE

2
+

1
2µH2)dV ,

and
∫
P · dS and plot them in Fig. 12 within the nanowires.

5.3. Investigation into the EM wave structure in two nanowires

To give a clear structure of the predicted electric and magnetic fields, the predicted contours of E and H are plotted
at some cutting planes. Like the streamlines, which are denoted as a family of curves that are instantaneously tangent
to the velocity vector of the fluid flow, in fluid dynamics, we plot the lines of ds

|ds| =
B
|B| and ds

|ds| =
E
|E|

. For the B and E
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Fig. 12. The predicted values of ∂
∂t

∫ 1
2 (ϵE

2
+ µH2)dV and

∫
P · dS are plotted with respect to time in the (a) first nanowire; (b) second nanowire.

vectors, they are tangent to the magnetic and electric field lines, respectively. The snapshots plotted in Fig. 13 exhibit
the magnetic and electric skeletons at t = 7.29167E − 14 s. These lines help to reveal the 3D magnetic and electric
topologies, respectively. Note that the magnetic and electric field lines are used to depict the electromagnetic vector field.
The streaklines, which are the loci of points passing continuously a particular spatial point in the past, are also plotted for
the electric and magnetic fields. These plots shed light that information of E and H injected into the EM field at a fixed
point extends along a streakline. One can clearly see from Fig. 14 that the predicted streaklines spiral along the magnetic
and electric field lines, respectively.

5.3.1. Three-dimensional skeleton of the electric field
In x-direction, we choose two planes, namely x = 2.7125E − 06 m and x = 2.975E − 06 m, in the first nanowire and

five planes, namely x = 3.54375E − 06 m, x = 3.959375E − 06 m, x = 4.571875E − 06 m, x = 5.3825E − 06 m, and
x = 5.665625E−06 m in the region of overlapping nanowires, to plot the predicted three-dimensional electric field lines.
Our aim is to understand better the coupling effect between the two parallel nanowires.

In Fig. 15(a), the electric field line passing through a point at the x = 2.7125E−06 m plane clearly shows the presence
of a spirally configured electric field propagating towards the y-direction in a clockwise (CW) sense. Outside of the first
nanowire, the spiralling wave motion of a large radius that is featured with a smaller magnetic field value of |E| is seen to
propagate towards the core of the first nanowire which is featured with a reduced radius, thereby increasing the electric
field strength |E|. Such a spiralling propagation of the electric field exhibits a wave pattern of increasingly larger spiralled
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Fig. 13. The predicted field lines at t = 7.29167E − 14 s. (a) XY plane view; (b) YZ plane view.

radius and a weaker electric field. The predicted increased magnitudes of |E| in the nanowire core and the decreased
values of |E| at two ends of the field lines confirm the existence of evanescent wave in the presently investigated parallel
nanowires. Prior to the second nanowire, the three-dimensional spirallingly configured electric field structure remains the
same as that exhibited at the upstream side. The electric field line passing through a point at the plane x = 3.54375E−06
m in the overlapping region, the wave skeleton changes sharply in the sense that the electric wave propagates spirally in a
counter clockwise (CCW) direction, as shown in Fig. 15(b). The electric wave starting from a point outside of the nanowire
propagates into the overlapped nanowires in a clockwise direction (or y-direction) and it then leaves the second nanowire.
Afterwards, the phenomenon of wave entry into the overlapped nanowires can be observed in a CCW (or y-direction)
fashion. This is followed by an exit from the first nanowire. Similarly, when entering the nanowires, the radius of the
spiralling electric wave is decreased with the accompanied enhancement of electric field. The wave structure passing a
point at x = 3.959375E − 06 m, which is plotted in Fig. 15(c), takes the same form as that shown in Fig. 15(b). At a
further downstream plane, the electric field structure at x = 4.571875E − 06 m, for example, exhibits a different pattern
(Fig. 15(d)). At x = 5.3825E − 06 m, the spiralling wave motion proceeds along a CW (+y) motion and then a CCW (−y)
direction in the two overlapped nanowires, as shown in Fig. 15(e). At the plane x = 5.665625E − 06 m, the CCW wave
pattern remains unchanged. However, from Fig. 15(f) one can see that a CCT (or -y direction) type of wave propagates
directly into the second nanowire.

5.3.2. Three-dimensional skeleton of magnetic field
For the sake of completeness, we also plot the three-dimensional magnetic field passing through the points located at

three different planes, namely x = 2.7125E − 06 m, x = 2.975E − 06 m and x = 2.8E − 06 m. In Fig. 16(a), one can see
a similar magnetic spiralling wave structure as the one described in Section 5.3.1 for the electric field. One can find the
wave patterns of decreasing spiralling radius in the wire and an increasing spiralling radius outside the wire (Fig. 16(a)).
The field magnitude of |B| is larger inside the wire. The difference between the electric and magnetic fields is that the
clockwise spiralling motion is directed along the positive z-direction rather than along the y-direction. This is under our
expectation because of the fact that the electric and magnetic fields are orthogonal to each other. On the contrary, the
3D magnetic line passing through the point at x = 2.975E − 06 m, magnetic wave is propagated in a clockwise sense (or
along the −z direction), as shown in Fig. 16(b). The field magnitude |B| remains large inside the first nanowire. At a point
located closer to the second nanowire, the wave resumes its pattern as shown in Fig. 16(c).
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Fig. 14. The predicted streaklines of the electric field at t = 7.29167E − 14 s. (a) electric field; (b) magnetic field.

6. Concluding remarks

Three-dimensional Maxwell’s equation solver is developed to study the evanescent coupling efficiency of two over-
lapped parallel silica nanowires. Our aim of the current scheme developments is to numerically preserve symplecticity
and conserve Hamiltonians and invariants at all times in the Maxwell’s equations. Towards these perspectives, the explicit
symplectic partitioned Runge–Kutta time integrator is applied together with the space-centred scheme. For increasing
the phase accuracy, the discrepancy between the numerical and exact phase velocities is minimized. The temporally
second-order and spatially fourth-order accurate three-dimensional schemes developed on staggered grids for solving
the ideal Maxwell’s solutions have been numerically verified through one problem with exact solution. The evanescent
wave coupling in two nanowires is numerically studied under the fifteen chosen overlapping lengths at the fixed nanowire
diameter. Also, the EM wave structures in two wires have been explored and revealed in great detail.
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Fig. 16. The predicted streaklines of the magnetic field passing through some selected planes at t = 7.29167E − 14 s. (a) on x = 2.7125E − 06 m
plane; (b) on x = 2.975E − 06 m plane; (c) on x = 2.8E − 06 m plane.
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