
Annals of Mathematical Sciences and Applications

Volume 4, Number 2, 367–393, 2019

Space-time analysis and beyond: toward a better
understanding of Camassa-Holm equation
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∗

Camassa-Holm (CH) equation for modeling shallow water wave will
be analyzed through direct scattering analysis. Thanks to this anal-
ysis in spectral domain, some physically meaningful wave propaga-
tion features that can by no means be obtained from the analysis in
the space-time domain are exhibited. To broaden our understand-
ing of the CH equation, in this article the study underlying the
scattering analysis is performed in spectral domain and the solu-
tion of CH equation is computed by the finite difference method in
time domain. We aim to get some missing details in the space-time
analysis. The detailed wave transmission and reflection in the CH
equation, subject to the chosen initial condition, shall be theoreti-
cally enlightened.

AMS 2000 subject classifications: Primary 78A46, 81U40;
secondary 37K10.

1. Introduction

Shallow water wave can be modeled by different partial differential equations
[1, 2, 3, 4, 5] since the development of Korteweg–de Vries (KdV) equation
in 1895. In this paper, the Camassa-Holm (CH) equation [1, 2] is consid-
ered. This nonlinear equation is dispersive in nature for a function u of two
variables, which are x (space variable) and t (time variable). CH equation
shown below has been regarded as an important member of the completely
integrable equations.

(1) ut − uxxt + 2κux + 3uux = 2uxuxx + uuxxx.

In CH equation, the integrability, bi-Hamiltonian structure, infinite num-
ber of conservation laws [1], Lax pair and its inverse scattering processes
[6] have been well-studied. CH equation possesses many mathematical prop-
erties undiscovered in KdV equation. Moreover, this equation is the first
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equation capable of exhibiting the phenomena of soliton interaction and
wave breaking. The CH equation has therefore been considered as a master
equation for modeling shallow water wave (see [7] for the references therein).

There have been many numerical methods proposed to solve the CH
equation in space-time domain [8, 9, 10]. However, wave propagation details
in spectral domain cannot be observed. In order to get a thorough under-
standing of the wave propagation features in shallow water equation, one
can take the integrability in CH equation into account in spectral domain.
Transformation of equations from one to the other is an important tech-
nique to solve nonlinear and dispersive differential equations. The differen-
tial equation defined in the space-time domain needs to be transformed to its
equivalent equations defined in a domain with two new variables. Through
the use of these new variables the differential equation is transformed to a
much simple differential equation or even an algebraic equation. The most
well-known transformations in the context of differential equations are the
Laplace and Fourier transforms. In the discussion of the integrability of CH
equation, the transformation method normally employed is the inverse scat-
tering transform (IST) [6].

IST is now well accepted as one of the most important developments in
the community of mathematical physics in the last of the century. The key
theme in IST is to recover the potential from its time evolving scattering data
in spectral domain. The technique of inverse scattering involves analyzing
the isospectral problem from the corresponding Lax pair. In the isospectral
problem, an incident wave in the form of the eigenfunction emerging from one
side of the domain can be divided into a part transmitted to the other side
and a reflected part accounting for the eigenfunction, respectively. The sum
of the transmission and reflection waves equals the original incident wave
[6]. The data include the eigenvalues, and the reflected wave content called
the scattering data. The degree of wave reflection is essential in the study of
integrable equations. This can be seen from the following two examples. In
[11], the multi-soliton solutions have been constructed for the case without
reflected wave. However, it is physically reasonable that an incident wave
can completely transmit if there is no wave being reflected. Therefore, there
exists just a solitary wave emerging along the real line without exhibiting
its oscillatory tails [12]. In contrast to this example, Boutet de Monvel et
al. [13] observed the long-time asymptotic nature in the classical solutions.
They found that as the time becomes large enough, not only the multi-
soliton will be seen but also its oscillatory tail shall appear owing to the
reflection waves contributing to the propagation of incident wave. Because
of these important mathematical studies, now we know quite well about the
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Figure 1: The diagram linking the direct and inverse scatterings for the KdV
equation.

CH equation. However, there are still some questions awaiting for further
investigation, such as the difference between the computed CH solutions in
space-time and spectral domains (the solutions found by inverse scattering
transform); the dynamics of reflection wave, and how a reflection wave can
affect the dynamics of CH equations.

In this paper, the CH solution will be computed by the FDTD (finite
difference in time domain method) and in spectral analysis we will perform
direct scattering analysis on the CH equation as well [14]. The explicit ex-
pression of the ratio of the reflection/transmission coefficients which measure
the ratio of reflected/transmitted waves will be presented. This is a new at-
tempt to the best of authors’ knowledge. We also aim to reveal more clearly
the relation between the solution of CH equation and the corresponding
reflection coefficient.

In Section 4 some theoretical backgrounds closely related to the develop-
ment of finite difference numerical scheme will be briefly summarized. The
solutions found in space-time and spectral domains will be introduced in
Sections 4.3, 4.4 and in Section 5, respectively. Discussion of the transmis-
sion and reflection coefficients will be given in Section 6. Some remarks and
conclusions are drawn in Section 7.

2. The method of scattering transform

IST can be regarded as a nonlinear version of the Fourier transform. The
method of IST was first applied to KdV equation ut−6uux+uuxxx = 0 [15].
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Figure 2: The numerically predicted long-time asymptotics of the CH so-
lutions using the numerical method presented in Section 4 in six distinct
regions.

This equation is integrable and is associated with a linear ordinary differen-
tial equation (LODE), which is the Schrödinger equation −d2ψ

dx2 +u (x, t)ψ =
k2ψ containing the spectral parameter λ = k2. Note that the spectral pa-
rameter does not change with time [15]. While x and t are considered as
independent variables in KdV equation, in the linear Schrödinger equation,
x is an independent variable and λ and t are regarded as two parameters.
It is quite normal that the potential u(x, t) vanishes at each fixed t as x
becomes infinite. As a result, a scattering scenario can be created for the re-
lated LODE (or Schrödinger equation), in which the potential u(x, t) can be
uniquely related to some scattering data S(λ, t). The scattering data having
association with the LODE (Schrödinger equation) consist of a reflection
coefficient which is a function of the spectral parameter λ, a finite set of
constants λj corresponding to a set of poles of the transmission coefficient
in the upper half of the complex plane, and the bounded-state norming con-
stants. The number for each bounded-state pole λj is equal to the number
of poles. The potential u(x, t) in the LODE can be uniquely determined by
the corresponding scattering data and vice versa. Take the integrable KdV
equation as an example, the IST method can be explained by the diagram
schematically shown in Fig. 1:

The IST method involves the so-called direct scattering problem, which
is defined as the problem of determining S(λ, t) for all λ values from u(x, t)
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Figure 3: The computed solution of u at t = 40, q0 = 1
2 based on the finite

difference method presented in Section 4.

given for all x values, for the Schröinger equation and the inverse scattering
problem for Schröinger equation, which is defined as the problem of deter-
mining u(x, t) from S(λ, t). It is amazing that as t → 0 the limiting value of
u(x, t) agrees with the initial profile u(x, 0).

The IST method for solving the KdV equation was firstly proposed by
Gardner et al. in 1967 [15]. By the Gel’fand-Dorfmann theory [1], it is known
that the nonlinear KdV equation is in fact a compatibility condition for the
two linear equations, namely, the isospectral eigenvalue problem −d2ψ

dx2 +
u (x, t)ψ = k2ψ, and the linear evolution equation ψt = (2u+ 4λ)ψx − uxψ
for the eigenfunction ψ. In short, the solution of KdV equation is sought
subject to the compatibility of two linear equations i.e., ψxxt = ψtxx, and
isospectrality (dλdt = 0). Consequently, one can apply the method of IST to
solve the solution of KdV equation. This method was later extended to solve
the nonlinear Schrödinger equation, the sine-Gordon equation [16], the Toda
lattice equation [17], the Kadomtsev–Petviashvili (KP) equation [18], and
so on.

3. Scattering analysis of CH equation

The solution of CH equation (1) shall be sought subject to the specified
initial condition given by

(2) u (x, 0) =

⎧⎨
⎩

A(A+1+log(ex−A))
ex , for x ≥ log (1 +A) ,

A(A+1+log((1+A)2e−x−A))
(1+A)2e−x , for x < log (1 +A) .
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In the above, q0 ∈ (0, 1) is a given constant and A = q0
1−q0

. The reason of

choosing (2) as the initial data in the current study is as follows. Under the

above initial condition, the resulting scattering data have non-zero reflection

coefficients [19]. Provided that the reflection coefficient is zero, the process

of performing IST becomes comparatively easy. Moreover, for the case with

a single soliton the corresponding asymptotic exists. This prescribed initial

condition can be transformed to the Schrödinger type operator with the

corresponding delta-function potential. Subject to this initial condition, both

the soliton and the oscillatory phenomena can be exhibited in the long-time

asymptotics. Moreover, by applying the finite difference method in [20] one

can obtain the asymptotic CH solution from the known scattering data under

the initial condition given in (2).

Given the initial condition, the method underlying IST involves the solu-

tion step known as the forward scattering. In this step detailed in Section 3.1,

we aim to find the Lax pair, which comprises two linear operators. The next

step, detailed in Section 3.2, is to get the evolution of eigenfunctions as-

sociated with their corresponding eigenvalues, norming constants, and the

reflection coefficients. The final step schematic in Fig. 1 involves performing

inverse scattering procedure, which will not be dealt with in this study. As

opposed to the direct scattering problem of finding the scattering matrix

(or data) from the given potential, by solving the linear Gel’fand-Levitan-

Marchenko integral equation to get the solution in (x, t).

3.1. Direct scattering

The step of conducting inverse scattering transform is to perform firstly the

forward scattering analysis. This direct scattering process involves finding

the Lax pair of the CH equation, which is composed of

1

w

(
−ψxx +

1

4
ψ

)
= λψ,(3)

ψt = −
(

1

2λ
+ u

)
ψx +

1

2
uxψ.(4)

In (3), w = u−uxx+1 denotes the momentum. The solution to the CH equa-

tion is sought subject to the initial condition which satisfies the following

conditions for some integer l ≥ 1.

w (x, 0) > 0, ∀x ∈ R,(5)
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w (x, 0) ∈
{
v ∈ H3 (R)

∣∣ ∫
R

(1 + |x|)1+l (|v (x)− κ|+
∣∣v′ (x)∣∣+ ∣∣v′′ (x)∣∣) dx}

(6)

It was shown in [6] that w(x, t) > 0 for t > 0 provided that the initial
condition (5) holds. By the Liouville transformation [21]

ψ̃ (y) = (w (x, t))
1

4 ψ (x) ,(7)

y = x−
∫ ∞

x

(√
w (r, t)− 1

)
dr,(8)

equation (3) can be reformulated as a spectral problem containing the op-
erator of the Schrödinger type

(9) Lψ̃ := −ψ̃yy + q (y, t) ψ̃ = k2ψ̃,

where ψ̃ = ψ̃ (y, k, t). It is noted that k and λ relate themselves by

(10) λ =
1

4
+ k2.

Moreover, one can get

(11) q (y, t) =
wyy (y, t)

4w (y, t)
− 3

16

(wy)
2 (y, t)

w2 (y, t)
+

1− w (y, t)

4w (y, t)

with w (y, t) = w (x (y) , t). From (6) we have∫
R

(1 + |y|)2 q (y, 0) dy < ∞.

Thanks to the previous work in [22], μ1, · · · , μN ∈ R exist for some N ∈
N and, in turn, the spectra at a finite number of discrete k = iμ1, · · · , iμN ex-
ist. All the eigenvalues are simple with the eigenfunction ψ̃j (y) = ψ̃ (y, iμj , 0)
for k = iμj . Let γj be a constant satisfying the following assumption

ψ̃j (y) = γje
−μjy + o (1) as y → ∞.

In the continuous spectrum context, the eigenfunction ψ̂ = ψ̂ (y, k) for k ∈ R

satisfies

(12) ψ̂ ∼
{

e−iky + R̃ (k) eiky; as y → ∞,

T̃ (k) e−iky; as y → −∞.
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Figure 4: The time dependence of �
(
R(k, t)

)
from t = 0 to t = 15 at q0 =

1
2 .

In the above equation, T̃ (k) and R̃ (k) are called as the transmission and
reflection coefficients, respectively. The eigenvalue μj , the constants γj , and
the reflection coefficient R̃ (k) constitute the so-called scattering data defined

as
{
R̃ (k) , μj , γj

}
(j = 1, ..., N). Let T (k) and R (k) be the transmission

and reflection coefficients of the spectral problem (3). The four transmission
and reflection functions T (k) , R (k) and T̃ (k) , R̃ (k) are related themselves
with the two equations given below

(13) T (k) = T̃ (k) eikH−1(w), R (k) = R̃ (k) ,

where H−1 (w) ≡
∫
R

(√
w (r, t)− 1

)
dr. It is noted that H−1 (w) is one of

the conservation laws [23].

3.2. Evolution of scattering data

From (4), which describes the time evolution of the eigenfunction in (3),
together with the asymptotic expressions in (12), we can get the isospectral
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Figure 5: The time dependence of �
(
R(k, t)

)
from t = 20 to t = 200 at

q0 =
1
2 .

property

μi (t) = μi, i = 1, ..., N.

The dependence of R(k) and γj on time can be derived as [21]

(14) R(k, t) = R(k)e−ikt/(1/4+k2), γj (t) = γje
μjt/2(1/4−μ2

j), for t > 0.

3.3. Inverse scattering

The inverse scattering transform is mathematically equivalent to the process
of recovering the solution u from the scattering data derived in the forward
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scattering step. For example, the solution of KdV equation corresponds to
the potential of Schrödinger type. The KdV solution can be therefore ob-
tained by solving the so-called Gel’fand- Levitan-Marchenko (GLM) integral
equation for the KdV equation [15]

(15) K (y, r, t) + f (y + r, t) +

∫ ∞

y
K (y, z, t) f (r + z, t) dz = 0, r > y,

where

(16) f (z, t) =

N∑
j=1

γ2j (t) e
−μjz +

1

2π

∫ ∞

−∞
R (k, t) eikzdk.

The operator for the spectral problem of CH equation is much different
from that of the KdV equation. We need, as a result, to recover the solution
of CH equation after deriving the potential q in (9) from the GLM equation

(17) q (y, t) = −2
d

dy
K (y, y, t) .

Some results concerning the IST performed on the CH equation are now
available in the literature, for example, [6, 14, 24, 25]. In [6], Constantin
stated that w(y, t) is equal to C4 (y, t), which satisfies

Cyy = C

(
q (y, t) +

1

4

)
− 1

4C3
, lim

|y|→∞
C (y, t) = 1.

In order to eliminate the difficulties in solving the nonlinear differential
equation stated above, another version of IST was proposed in [14] as follows.
Consider ψ (y, t) as the unique solution to the equation

(18) φyy =

(
q (y, t) +

1

4

)
φ

subject to the asymptotic behavior given by

(19) ψ (y, t) ≈ e−
y

2 and fy (y, t) ≈
−1

2
e−

y

2 as y → ∞.

If Ht : R → R is the bijection given by

Ht (y) =

∫ y

−∞

1

ψ2 (ξ, t)
dξ
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then we can get Ht (y) = ex and

w (x, t) = e2xψ4
(
H−1

t (ex) , t
)
.

The momentum w can now be expressed in the following parametric form
with the variable y being considered as a parameter.

(20)

⎧⎪⎪⎨
⎪⎪⎩

w (y, t) = e2 lnHt(y)ψ4 (y, t) ,
= H2

t (y)ψ
4 (y, t) ,

x (y, t) = lnHt (y) = ln
∫ y
−∞

1
ψ2(ξ,t)dξ.

Note that one can verify the inverse processes either by the example given
in [14] or by the initial condition (2). In the later case, at t = 0 the unique
solution r(y, 0) to φyy =

(
q (y, 0) + 1

4

)
φ can be found explicitly as

ψ (y, 0) =

⎧⎨
⎩

e
−y

2 , y ≥ 0,

q0e
y

2 + (1− q0) e
−y

2 , y < 0.

Given the above expression of ψ (y, 0), we can get

H0 (y) =

⎧⎨
⎩

1
1−q0

1
q0+(1−q0)e−y , y ≤ 0,

1
1−q0

+ ey − 1, y > 0.

and then the solution

ψ
(
H−1

0 (ex) , 0
)
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(ex −A)
−1

2 , x ≥ ln (1 +A),

q0

(
(1 +A)2 e−x −A

)−1

2

+

(1− q0)
(
(1 +A)2 e−x −A

) 1

2

,
x < ln (1 +A).

Finally, one can easy verify that e2xψ4
(
H−1

0 (ex) , 0
)
equals w (x, 0) in [19].

3.4. Long-time asymptotic

The long-time asymptotics of the CH equation were obtained within the
Riemann-Hilbert analysis context [13, 21]. Subject to a suitable initial con-
dition satisfying (5) and (6), Boutet de Monvel et al. [13, 21] showed that



378 Chueh-Hsin Chang et al.

the asymptotics of CH equation can be classified into different types in (x, t)
domain. After a sufficiently long time, the regions can be divided into the (i)
soliton region, (ii), (iii) two oscillatory regions, and (iv) fast decay region.
Two transition regions denoted by (T1) exist between the regions (i) and
(ii). The (T2) region between the regions (iii) and (iv) can be also seen in
Fig. 2 and 3. We will confirm the existence of these regions by virtue of the
space-time finite difference method detailed in Section 4. In (T1) and (T2)
regions, the solutions to the CH equation asymptotically approach to the
solutions of the Painlevé II transcendents

(21)
d2w

dz2
= 2w3 + zw

fixed by the asymptotics

w (z) ∼ ρAi (z) as z → ∞, z ∈ R

where Ai(z) is the Airy function (see [13]).
The regions (ii) and (iii) result from the fact that the reflection coefficient

R(k) in scattering data is non-zero. On the other hand, if R(k) ≡ 0 (i.e., only
discrete eigenvalues exist), oscillatory solutions are not observed. Under the
circumstances, only the multi-soliton solutions are permitted to appear [11].

4. The solution in space-time domain

In this section, for the sake of clarity, we will briefly introduce the finite
difference method employed to solve the CH equation in space-time domain.
For the details of this method, one can refer to the paper [20].

Given an initial condition u(x, 0) ∈ H1, where H1 is the Sobolev space,
the CH equation investigated at the critical shallow water speed, which
is zero, has been shown to have the well-known conservation law M =∫∞
−∞ udx = constant := c1. The other conservation quantities are expressed

as 1
2

∫∞
−∞ u2 + (ux)

2dx = constant := c2 (Hamiltonian H1) and 1
2

∫∞
−∞ u3 +

u(uxx)
2dx constant := c3 (Hamiltonian H2). The Hamiltonian H1 =

1
2

∫∞
−∞ u2 + (ux)

2dx has association with the energy density u2 + (ux)
2.

4.1. Symplecticity and dispersion relation equation preserving
finite difference scheme in space-time domain

Given a set of properly prescribed boundary condition and initial condi-
tion for u(x, 0) ∈ H1, the space-time solution to (1) can be sought from
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the following equivalent inhomogeneous nonlinear hyperbolic pure advec-
tion equation for u to avoid approximating the mixed space-time derivative
terms and the third-order dispersive term

(22) ut + uux = −Px.

The above pressure-like term P is governed by the following elliptic
Helmholtz equation

(23) P − Pxx = u2 +
1

2
u2x + 2κu.

4.2. Approximation of spatial derivatives

Within the framework of the combined compact difference (CCD) schemes,
the derivative terms ∂u

∂x and ∂2u
∂x2 in (1.1) are approximated implicitly in a

three-point grid stencil as follows for the case of u > 0

a1
∂u

∂x
|i−1 +

∂u

∂x
|i + a3

∂u

∂x
|i+1

=
1

h
(c1ui−2 + c2ui−1 + c3ui)

− h

(
b1
∂2u

∂x2
|i−1 + b2

∂2u

∂x2
|i + b3

∂2u

∂x2
|i+1

)
,(24)

− 1

8

∂2u

∂x2
|i−1 +

∂2u

∂x2
|i −

1

8

∂2u

∂x2
|i+1

=
3

h2
(ui−1 − 2ui + ui+1)−

9

8h

(
−∂u

∂x
|i−1 +

∂u

∂x
|i+1

)
.(25)

The coefficients shown in (25), which can be determined partly from the
modified equation analysis, by performing Taylor series expansion on the
terms ui−1, ui+1,

∂u
∂x |i−1,

∂u
∂x |i,

∂u
∂x |i+1,

∂2u
∂x2 |i−1,

∂2u
∂x2 |i and ∂2u

∂x2 |i+1 shown in
(24) with respect to ui to yield a formal accuracy order of six [27]. The other
algebraic equation derived to uniquely determine all the introduced coeffi-
cients is based on the strategy of reducing dispersion error by matching the
exact and numerical wavenumbers. For the details of maximizing dispersion
accuracy, one can refer to [20, 28].

By virtue of these two rigorous analyses, a1 = 0.888251792581, a3 =
0.049229651564, b1 = 0.150072398996, b2 = −0.250712794122, b3 =
−0.012416467490, c1 = 0.016661718438, c2 = −1.970804881023 and c3 =
1.954143162584 can be obtained. The resulting upwinding difference scheme
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Figure 6: The time dependence of �
(
R(k, t)

)
from t = 0 to t = 15 at q0 =

1
2 .

developed in a stencil of three grid points i − 1, i and i + 1 for ∂u
∂x has the

spatial accuracy of order six according to the derived modified equation,
namely, ∂u

∂x = ∂u
∂x |exact + 0.424003657 × 10−6h6 ∂

7u
∂x7 + H.O.T . As u < 0, the

three-point non-centered CCD scheme can be similarly derived.
The three-point combined compact difference (CCD) scheme [29] is used

here to approximate the gradient term Px shown in (22) as follows

h

16

∂2P

∂x2
|i−1 −

h

16

∂2P

∂x2
|i+1

=
15

16h
(−Pi−1 + Pi+1) +

(
7

16

∂P

∂x
|i−1 +

∂P

∂x
|i +

7

16

∂P

∂x
|i+1

)
,(26)

− 1

8

∂2P

∂x2
|i−1 +

∂2P

∂x2
|i −

1

8

∂2P

∂x2
|i+1

=
1

h2
(3Pi−1 − 6Pi + 3Pi+1)−

1

h

(
−9

8

∂P

∂x
|i−1 +

9

8

∂P

∂x
|i+1

)
.(27)

The above centered CCD scheme developed in a grid stencil involving three
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Figure 7: The time dependence of �
(
R(k, t)

)
from t = 20 to t = 200 at

q0 =
1
2 .

points i− 1, i and i+ 1 for ∂P
∂x yields the sixth-order accuracy.

The Helmholtz equation (or equation (23)) for Pi is approximated as

follows for gi = −(u2i + uiux,i)

Pi+1 −
(
2 + h2 +

1

12
h4 +

1

360
h6

)
Pi + Pi−1

= h2gi +
1

12
h4

(
fi +

∂2gi
∂x2

)
+

1

360
h6

(
gi +

∂2gi
∂x2

+
∂4gi
∂x4

)
.(28)

According to the corresponding modified equation for equation (23), which

is ∂2P
∂x2 −P = g+ h6

20160
∂8P
∂x8 + h8

1814400
∂10P
∂x10 + · · ·+H.O.T ., the proposed three-

point compact differencing scheme is deemed sixth-order accurate.
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4.3. Approximation of temporal derivatives

Due to the symplectic structure inherent in the CH equation, the time-
stepping scheme for equation (22) cannot be chosen arbitrarily provided
that one wishes to obtain a long-term accurate solution. To conserve this
property in the currently investigated non- dissipative Hamiltonian system
of equations (22-23), the following sixth-order accurate symplectic Runge-
Kutta scheme [30] is applied to compute the CH solution iteratively for
ut = F (u, P ) = −uux − Px

u(1) = un +Δt

[
5

36
F (1) + (

2

9
+

2c̃

3
)F (2) + (

5

36
+

c̃

3
)F (3)

]
,(29)

u(2) = un +Δt

[
(
5

36
− 5c̃

12
)F (1) + (

2

9
)F (2) + (

5

36
+

5c̃

12
)F (3)

]
,(30)

u(3) = un +Δt

[
(
5

36
− c̃

3
)F (1) + (

2

9
− 2c̃

3
)F (2) +

5

36
F (3)

]
,(31)

un+1 = un +Δt

[
5

18
F (1) +

4

9
F (2) +

5

18
F (3)

]
.(32)

In the above, c̃ = 1
2

√
3
5 and F (i) = F (u(i), P (i)), i = 1, 2, 3.

5. The solution in spectral domain

By means of the method of IST detailed in [6], the following scattering data
can be rigorously derived [19, 20].

Theorem 5.1. (Theorem 3.1 in [20]) Let q0 ∈ (0, 1) be a given constant and
A = q0

1−q0
. For the Camassa-Holm equation (1) subject to the initial condition

(2), the scattering data can be derived as follows in spectral domain

(33) R (k) =
−q0

q0 + 2ik
, μ1 =

q0
2
, γ1 =

√
q0
2
.

In this section we will numerically solve the GLM equation under the
initial condition (2).

5.1. Derivation on IST

The time dependent expressions of R(k) and γj are derived in the following
form [21]

R(k, t) = R(k)e−ikt/(1/4+k2), γj (t) = γje
μjt/2(1/4−μ2

j), for t > 0.
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In (3.15), the expression of f (z, t) can be written as

f (z, t) =
q0
2
e

2q0
1−q2

0
t− q0

2
z
+

1

2π

∫ ∞

−∞

−q0
q0 + 2ik

e
i
(
kz− k

1/4+k2 t
)
dk.

By the residue theorem, the integral term shown above can be simplified in

a way similar to the KdV equation featuring with the initial condition of

the delta function type [31, 32]. That is, f (z, t) can be rewritten as

(34) f (z, t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

q0
2 e

2q0
1−q2

0
t− q0

2
z

for z < 0,

q0
4 for z = 0,

0 for z > 0.

In the first step of IST, the GLM equations (15) and (34) are solved by the

underlying idea given in [33]. For simplicity, in the processes of performing

IST the parameter t is omitted. The variable y is considered in the bounded

interval [−n, n]. Provided that the domain [−n, n] is partitioned into N

parts, the grid size turns out to be h = 2n
N . Then, the discrete variables

yi, rj , zm are defined as

yi = −n+ (i− 1)h, i = 1, ..., N + 1,
rj = −n+ (j − 1)h, j = 1, ..., N + 1,
zm = −n+ (m− 1)h, m = 1, ..., N + 1.

Let K (yi, rj) = Kij , and f (yi + rj) = fij , equation (15) can then be ap-

proximated using the trapezoidal integration rule

(35) Kij + fij + h

N+1∑
m=i

ΔimKimfjm = 0, i ≤ j ≤ N + 1

where

Δik =

{
1
2 for k = i, N + 1,
1 otherwise.

Our objective of solving (35) is to find q (yi, t). From (17), the discrete form

of q (yi, t) is expressed as

(36) qi = q (yi, t) = −2

(
Ki+1,i+1 −Ki,i

h

)
, i = 1, ..., N.
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The forward difference scheme is chosen from the physical viewpoint. That
is, the incident waves expressed in (12) move from right (y → ∞) to left
(y → −∞), Like the application of the upwinding schemes in solving the
hyperbolic PDEs, the potential q (y) at y = yi shall be influenced by q at
y = yi+1.

Following similar process given in [33], equation (35) is simplified as
follows. For i = N + 1, we have j = N + 1. Then, (35) is considered as a
degenerate case. In this case we set KN+1,N+1 = −fN+1,N+1 = 0. For i ≤ N ,
let Fi = prini+1 (F ) be the principal sub-matrix of order i+ 1, where

F :=

⎛
⎜⎝

fN+1,N+1 · · · fN+1,1
...

. . .
...

f1,N+1 · · · f1,1

⎞
⎟⎠,

and fT
i be the last row of Fi. Similarly, let Ki = prini+1 (K), where

K =

⎛
⎜⎝

KN+1,N+1 · · · KN+1,1
...

. . .
...

K1,N+1 · · · K1,1

⎞
⎟⎠,

and kTi be the last row of Ki. By writing Si = diag(ΔN+1−i,N+1, ...,
ΔN+1−i,N+1−i), equation (35) can be expressed differently as

(Ii+1 + hFiSi) ki = −fi.

It should be noticed that Ii+1 + hFiSi is not a positive definite matrix.
Unlike the work carried out in [33], we need to compute ki in a direct way.
Let KN+2,N+2 be the polynomial extrapolation

KN+2,N+2 =
1

h+ 2n− 2Nh
(4(n−Nh)KN+1,N+1 + (h− 2n+ 2Nh)KN,N ).

To compute qN+1, the forward difference scheme is applied.

The next derivation step is to recover the momentum variable w(y) from
q(y). This step is the most difficult part in IST analysis. More importantly,
this step clearly shows the primary difference between the IST analysis of
the CH and KdV equations in the sense that the recovery from q(y) to w(y)
needs to proceed a nonlinear process rather than its linear counterpart for
the KdV equation.
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We can find the solution ψ (y) of φyy =
(
q (y) + 1

4

)
φ with the asymp-

totics (19) by solving the following integral equation.

ψ (y) = e−
y

2 +

∫ ∞

y

(
e

ξ−y

2 − e
y−ξ

2

)
q (ξ)ψ (ξ) dξ, y ∈ R.

The discrete version for the above integral equation is expressed as

ψ (yi) := ψi = ei + h

N+1∑
k=i

Δf
i,kEikq (ξk)ψ (ξk) ,

where Eik = e
ξk−yi

2 − e
yi−ξk

2 , ξk = −n+ (k − 1)h, ei = e−
yi
2 ,

Δf
ik =

{
1
2 for k = i, k = N + 1,
1 otherwise.

Finally, we can obtain the equation

(
IN+1 − hE0diag (qi)

)
Ψ = e

where

Ψ =

⎛
⎜⎜⎜⎜⎜⎜⎝

ψ1

ψ2
...
...

ψN+1

⎞
⎟⎟⎟⎟⎟⎟⎠

, e =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

e1
...
...
...

eN+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

E0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 E12 · · · E1N
E1,N+1

2

0 0
. . .

...
...

. . .
. . . EN−1,N

...
. . .

. . . 0 EN,N+1

2
0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

The next step is to find ψ4
(
H−1

t (ex) , t
)

through (20). Recall that

Ht (y) =
∫ y
−∞

1
ψ2(ξ,t)dξ = ex. From the values of Ψ = (ψ1, ..., ψN+1)

T , the
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discrete representation of Ht (y) can be expressed as

(37) Hi := H (yi) = h

i∑
k=1

ΔH
i,k

1

ψ2 (ξk)

where

ΔH
ik =

{
1
2 for k = 1, k = i,
1 otherwise.

For i = 1, we set H1 = 0. Then, equation (37) is solved for i = 2, ..., N + 1,
thereby leading to

⎛
⎜⎜⎜⎜⎝

H2
...
...

HN+1

⎞
⎟⎟⎟⎟⎠ = h

⎛
⎜⎝

ΔH
2,1 ΔH

2,2 · · · 0
...

...
. . .

...

ΔH
N+1,1 ΔH

N+1,2 · · · ΔH
N+1,N+1

⎞
⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1

ψ2
1
...
...
1

ψ2
N+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.

If one uses the resulting Hi as the data to perform IST analysis, the depen-
dence of x on y cannot be accurately obtained and we need to add an error
term to Hi. For t = 0, we have

∫ −n
−∞

1
ψ2(ξ,0)dξ = 4

1+en and use this as the

error for all t > 0. Ĥ1, ..., ĤN+1 are therefore defined as Ĥi = Hi +
4

1+en .

The value of H−1 (exi) can then be computed through interpolation for
(H1, ..., HN+1). When representing w (xi) = e2xiψ4

(
H−1 (exi)

)
in terms of x,

we need to perform interpolation to find w (xi). In order to avoid generating
unnecessary error, the momentum w and the solution u are expressed in
terms of y. That is, we use the parametric expression (w (y, t) , x (y, t)) (resp.
(u (y, t) , x (y, t))) to express w(x, t) (resp. u(x, t)) with y being considered
as a parameter. By substituting x (yi) = logH (yi) into the momentum
variable, we have

(38)
wi := w (yi) = e2x(yi)ψ4 (yi)

= H2 (yi)ψ
4 (yi),

i = 1, ..., N + 1.

The final step in the IST analysis is to recover u from w. Since we want
to express u in y domain, we recast the equation u−uxx = w−1 in x domain
to the corresponding equation defined in y domain:

wuyy +
1

2
wyuy − u = 1− w
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In the above equation, dy
dx =

√
w (y, t). By performing a centered finite

difference approximation on the above equation, we have(
wi +

1

8
(wi+1 − wi−1)

)
ui+1 −

(
2wi + h2

)
ui +

(
wi −

1

8
(wi+1 − wi−1)

)
ui−1

= −h2 (wi − 1) , i = 2, ..., N.

or

A

⎛
⎜⎜⎜⎜⎜⎝

uN
uN−1

...
u3
u2

⎞
⎟⎟⎟⎟⎟⎠ = (−h2)

⎛
⎜⎜⎜⎜⎜⎝

wN − 1
wN−1 − 1

...
w3 − 1
w2 − 1

⎞
⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎝

−
(
wN + 1

8 (wN+1 − wN−1)
)
uN+1

0
...
0

−
(
w2 − 1

8 (w3 − w1)
)
u1

⎞
⎟⎟⎟⎟⎟⎠(39)

The components of the above matrix A = (Aij)1≤i,j≤N−1 are defined as

Aii = −
(
2wN+1−i + h2

)
, for i = 1, ..., N − 1,

Ai,i+1 = wN+1−i −
1

8
∗ (wN+2−i − wN−i) , for i = 1, ..., N − 2,

Ai,i−1 = wN+1−i +
1

8
∗ (wN+2−i − wN−i) , for i = 2, ..., N − 1,

Ai,j = 0, otherwise,

Note that u1 and uN+1 are interpolated by the Lagrange polynomial formula,
thereby yielding

u1 = u2
(y1 − y3) (y1 − y4)

(y2 − y3) (y2 − y4)
+ u3

(y1 − y2) (y1 − y4)

(y3 − y2) (y3 − y4)
+ u4

(y1 − y2) (y1 − y3)

(y4 − y2) (y4 − y3)

= 3u2 − 3u3 + u4;

uN+1 = uN
(yN+1 − yN−1) (yN+1 − yN−2)

(yN − yN−1) (yN − yN−2)
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Figure 8: The graph of γ1 (t) is plotted with respect to t at q0 =
1
2 .

+ uN−1
(yN+1 − yN ) (yN+1 − yN−2)

(yN−1 − yN ) (yN−1 − yN−2)

+ uN−2
(yN+1 − yN ) (yN+1 − yN−1)

(yN−2 − yN ) (yN−2 − yN−1)

= 3uN − 3uN−1 + uN−2.

6. Numerical study of the influence of transmition/reflection
coefficients on the solutions

Under the initial condition (2), we recall that the time evolution of the reflec-
tion and normalization coefficients are expressed respectively as
R(k, t) = R(k)e−ikt/(1/4+k2) = −q0

q0+2ike
−ikt/(1/4+k2) and T (k, t) = T (k) =

T̃ (k) eikH−1(w). For the derivation of the scattering data and H−1 (w), one
can refer to [19].

In order to explain the influence of the reflection coefficient R(k, t) on
the computed solutions u(y, t) at different times, we plot the profiles of
R(k, t) in Fig. 4 and Fig. 5. From the above derived expression for R(k, t),
we know that R(0, t) = −1 for all t ≥ 0. In Figs. 4 and 5, the height of
�
(
R(k, t)

)
is increased with respect to time t. Moreover, Figs. 6 and 7 reveal

that �
(
R(k, t)

)
changes its profile shape, from the maximum appearing in
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the left to that appearing in the right. All the four figures show that the
heights of �

(
R(k, t)

)
and the amplitudes of �

(
R(k, t)

)
change more abruptly

as time increases. According to the definition of reflection coefficient, at a

larger time the profile of γ1 (t) = γ1e
μ1t

2(1/4−μ2
1
) =

√
q0
2 e

q0
1−q2

0
t
, ∀t > 0 is also

plotted in Fig. 8.

7. Concluding remarks

In this article, we continue our work in [20] on the long-time asymptotics of
the Camassa-Holm equation. In the works of Boutet de Monvel [13, 21], there
exist some asymptotic solution formulas. However, what the solution profiles
look like and how the space-time domain information corresponding to the
solution in spectral domain are not clear. In the so-called “spectral domain”,
the solutions are not solved in the original space-time domain but rather we
intend to apply the inverse scattering transform (IST) method underlying
the characteristics of integrable system. The Gelfand-Levitan-Marchenko
(GLM) integral equations are discretized first to get the potential q(y, t)
of the transformed Schrödinger type operator. Then, in the inverse process
of the CH equation, which is different from that of the KdV equation, we
transform the equation from the potential q(y, t) to the momentum w(y, t)
and then perform the change of variables from y to x from their relation (8).
However, due to the computational difficulty encountered in the numerical
integration of GLM, which involves the term et in the example of the one-
soliton solution of KdV equation, the current computational accuracy is
insufficient for the case at a large time. Therefore, it is difficult at the time
being to predict a very accurate solution at a large time. Our IST results
can however give us a conceptual guidance of making a comparison of results
using the finite difference and the IST methods at an early time of the wave
propagation.
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